1
|
Pepe G, Coco R, Corica D, Luppino G, Morabito LA, Lugarà C, Abbate T, Zirilli G, Aversa T, Stagi S, Wasniewska M. Endocrine disorders in Rett syndrome: a systematic review of the literature. Front Endocrinol (Lausanne) 2024; 15:1477227. [PMID: 39544232 PMCID: PMC11560452 DOI: 10.3389/fendo.2024.1477227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024] Open
Abstract
Background Rett syndrome (RTT) is an X-linked progressive neurodevelopmental disorder that involves mainly girls and is the second most frequent cause of genetic intellectual disability. RTT leads to neurological regression between 6 and 18 months of life and could be associated with a variable neurological impairment. However, RTT affects not only neurological function but also wide aspects of non-neurological organs. Recent data showed that the endocrine system is often involved in RTT patients, including disorders of growth, bone health, thyroid, puberty onset, and weight abnormalities However, systematic data on endocrinopathies in RTT are scarce and limited. Objective This review aims to analyze the prevalence and type of endocrine comorbidities in RTT population, to allow a precocious diagnosis and appropriate endocrinological management. Methods Systematic research was carried out from January 2000 to March 2024 through MEDLINE via PubMed, Scopus, and the Cochrane Library. Results After the selection phase, a total of 22 studies (1090 screened) met the inclusion criteria and were reported in the present review. Five studies were observational-retrospective, four were cross-sectional and case report or series, three were survey, prospective, and case-control, and finally one study for descriptive-transversal and longitudinal population-based study. The sample population consisted of multiethnic groups or single ethnic groups. The main endocrinopathies reported were malnutrition, bone alterations, and alterations of puberty onset. Conclusions Our analysis shows that endocrinopathies are not rare in RTT patients. Therefore, in the context of a multidisciplinary approach, accurate screening and monitoring for endocrinopathies should be recommended in all RTT patients, to improve clinical practice, healthcare management, and, finally, patients' quality of life.
Collapse
Affiliation(s)
- Giorgia Pepe
- Unit of Pediatrics, Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Roberto Coco
- Unit of Pediatrics, Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Domenico Corica
- Unit of Pediatrics, Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Giovanni Luppino
- Unit of Pediatrics, Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Letteria Anna Morabito
- Unit of Pediatrics, Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Cecilia Lugarà
- Unit of Pediatrics, Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Tiziana Abbate
- Unit of Pediatrics, Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Giuseppina Zirilli
- Unit of Pediatrics, Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Tommaso Aversa
- Unit of Pediatrics, Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Stefano Stagi
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Malgorzata Wasniewska
- Unit of Pediatrics, Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| |
Collapse
|
2
|
Pepe G, Coco R, Corica D, Di Rosa G, Bossowski F, Skorupska M, Aversa T, Stagi S, Wasniewska M. Prevalence of Endocrinopathies in a Cohort of Patients with Rett Syndrome: A Two-Center Observational Study. Genes (Basel) 2024; 15:287. [PMID: 38540345 PMCID: PMC10970698 DOI: 10.3390/genes15030287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 04/09/2024] Open
Abstract
Systematic data on endocrinopathies in Rett syndrome (RTT) patients remain limited and inconclusive. The aim of this retrospective observational two-center study was to assess the prevalence of endocrinopathies in a pediatric population of RTT patients. A total of 51 Caucasian patients (47 girls, 4 boys) with a genetically confirmed diagnosis of RTT were enrolled (mean age 9.65 ± 5.9 years). The patients were referred from the Rett Center of two Italian Hospitals for endocrinological evaluation. All the study population underwent clinical and auxological assessments and hormonal workups. MeCP2 mutations were detected in 38 cases (74.5%), CDKL5 deletions in 11 (21.6%), and FOXG1 mutations in 2 (3.9%). Overall, 40 patients were treated with anti-seizure medications. The most frequent endocrinological finding was short stature (47%), followed by menstrual cycle abnormalities (46.2%), weight disorders (45.1%), low bone mineral density (19.6%), hyperprolactinemia (13.7%) and thyroid disorders (9.8%). In the entire study population, endocrinopathies were significantly more frequent in patients with MeCP2 mutations (p = 0.0005), and epilepsy was more frequent in CDKL5 deletions (p = 0.02). In conclusion, our data highlighted that endocrinopathies are not rare in RTT, especially in patients with MeCP2 deletions. Therefore, in the context of a multidisciplinary approach, endocrinological evaluation should be recommended for RTT patients.
Collapse
Affiliation(s)
- Giorgia Pepe
- Pediatric Unit, Department of Human Pathology of Adulthood and Childhood, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (G.P.); (R.C.); (D.C.); (F.B.); (M.S.); (T.A.)
| | - Roberto Coco
- Pediatric Unit, Department of Human Pathology of Adulthood and Childhood, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (G.P.); (R.C.); (D.C.); (F.B.); (M.S.); (T.A.)
| | - Domenico Corica
- Pediatric Unit, Department of Human Pathology of Adulthood and Childhood, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (G.P.); (R.C.); (D.C.); (F.B.); (M.S.); (T.A.)
| | - Gabriella Di Rosa
- Child Neuropsychiatric Unit, Department of Human Pathology of Adulthood and Childhood, University of Messina, 98128 Messina, Italy;
| | - Filip Bossowski
- Pediatric Unit, Department of Human Pathology of Adulthood and Childhood, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (G.P.); (R.C.); (D.C.); (F.B.); (M.S.); (T.A.)
| | - Magdalena Skorupska
- Pediatric Unit, Department of Human Pathology of Adulthood and Childhood, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (G.P.); (R.C.); (D.C.); (F.B.); (M.S.); (T.A.)
| | - Tommaso Aversa
- Pediatric Unit, Department of Human Pathology of Adulthood and Childhood, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (G.P.); (R.C.); (D.C.); (F.B.); (M.S.); (T.A.)
| | - Stefano Stagi
- Department of Health Sciences, University of Florence, 50139 Florence, Italy;
- Meyer Children Hospital IRCCS, 50139 Florence, Italy
| | - Malgorzata Wasniewska
- Pediatric Unit, Department of Human Pathology of Adulthood and Childhood, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (G.P.); (R.C.); (D.C.); (F.B.); (M.S.); (T.A.)
| |
Collapse
|
3
|
Analysis of Insulin-like growth factor-1 serum levels and promoter (rs12579108) polymorphism in the children with autism spectrum disorders. J Clin Neurosci 2022; 99:289-293. [DOI: 10.1016/j.jocn.2022.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/09/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022]
|
4
|
Targeting the Ghrelin Receptor as a Novel Therapeutic Option for Epilepsy. Biomedicines 2021; 10:biomedicines10010053. [PMID: 35052733 PMCID: PMC8773216 DOI: 10.3390/biomedicines10010053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Epilepsy is a neurological disease affecting more than 50 million individuals worldwide. Notwithstanding the availability of a broad array of antiseizure drugs (ASDs), 30% of patients suffer from pharmacoresistant epilepsy. This highlights the urgent need for novel therapeutic options, preferably with an emphasis on new targets, since “me too” drugs have been shown to be of no avail. One of the appealing novel targets for ASDs is the ghrelin receptor (ghrelin-R). In epilepsy patients, alterations in the plasma levels of its endogenous ligand, ghrelin, have been described, and various ghrelin-R ligands are anticonvulsant in preclinical seizure and epilepsy models. Up until now, the exact mechanism-of-action of ghrelin-R-mediated anticonvulsant effects has remained poorly understood and is further complicated by multiple downstream signaling pathways and the heteromerization properties of the receptor. This review compiles current knowledge, and discusses the potential mechanisms-of-action of the anticonvulsant effects mediated by the ghrelin-R.
Collapse
|
5
|
Murasawa H, Kobayashi H, Imai J, Nagase T, Soumiya H, Fukumitsu H. Substantial acetylcholine reduction in multiple brain regions of Mecp2-deficient female rats and associated behavioral abnormalities. PLoS One 2021; 16:e0258830. [PMID: 34673817 PMCID: PMC8530288 DOI: 10.1371/journal.pone.0258830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 10/06/2021] [Indexed: 11/24/2022] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder with X-linked dominant inheritance caused mainly by mutations in the methyl-CpG-binding protein 2 (MECP2) gene. The effects of various Mecp2 mutations have been extensively assessed in mouse models, but none adequately mimic the symptoms and pathological changes of RTT. In this study, we assessed the effects of Mecp2 gene deletion on female rats (Mecp2+/−) and found severe impairments in social behavior [at 8 weeks (w), 12 w, and 23 w of age], motor function [at 16 w and 26 w], and spatial cognition [at 29 w] as well as lower plasma insulin-like growth factor (but not brain-derived neurotrophic factor) and markedly reduced acetylcholine (30%–50%) in multiple brain regions compared to female Mecp2+/+ rats [at 29 w]. Alternatively, changes in brain monoamine levels were relatively small, in contrast to reports on mouse Mecp2 mutants. Female Mecp2-deficient rats express phenotypes resembling RTT and so may provide a robust model for future research on RTT pathobiology and treatment.
Collapse
Affiliation(s)
- Hiroyasu Murasawa
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Gifu, Japan
- Hashima Laboratory, Nihon Bioresearch Inc, Gifu, Japan
| | - Hiroyuki Kobayashi
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Gifu, Japan
- Hashima Laboratory, Nihon Bioresearch Inc, Gifu, Japan
| | - Jun Imai
- Hashima Laboratory, Nihon Bioresearch Inc, Gifu, Japan
| | | | - Hitomi Soumiya
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Gifu, Japan
| | - Hidefumi Fukumitsu
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Gifu, Japan
- * E-mail:
| |
Collapse
|
6
|
Marballi K, MacDonald JL. Proteomic and transcriptional changes associated with MeCP2 dysfunction reveal nodes for therapeutic intervention in Rett syndrome. Neurochem Int 2021; 148:105076. [PMID: 34048843 PMCID: PMC8286335 DOI: 10.1016/j.neuint.2021.105076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 04/13/2021] [Accepted: 05/17/2021] [Indexed: 12/28/2022]
Abstract
Mutations in the methyl-CpG binding protein 2 (MECP2) gene cause Rett syndrome (RTT), an X-linked neurodevelopmental disorder predominantly impacting females. MECP2 is an epigenetic transcriptional regulator acting mainly to repress gene expression, though it plays multiple gene regulatory roles and has distinct molecular targets across different cell types and specific developmental stages. In this review, we summarize MECP2 loss-of-function associated transcriptome and proteome disruptions, delving deeper into the latter which have been comparatively severely understudied. These disruptions converge on multiple biochemical and cellular pathways, including those involved in synaptic function and neurodevelopment, NF-κB signaling and inflammation, and the vitamin D pathway. RTT is a complex neurological disorder characterized by myriad physiological disruptions, in both the central nervous system and peripheral systems. Thus, treating RTT will likely require a combinatorial approach, targeting multiple nodes within the interactomes of these cellular pathways. To this end, we discuss the use of dietary supplements and factors, namely, vitamin D and polyunsaturated fatty acids (PUFAs), as possible partial therapeutic agents given their demonstrated benefit in RTT and their ability to restore homeostasis to multiple disrupted cellular pathways simultaneously. Further unravelling the complex molecular alterations induced by MECP2 loss-of-function, and contextualizing them at the level of proteome homeostasis, will identify new therapeutic avenues for this complex disorder.
Collapse
Affiliation(s)
- Ketan Marballi
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY, USA
| | - Jessica L MacDonald
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY, USA.
| |
Collapse
|
7
|
Vásquez‐Garibay E, Larrosa‐Haro A, Guzmán‐Mercado E, Muñoz‐Esparza N, García‐Arellano S, Muñoz‐Valle F, Romero‐ Velarde E. Appetite-regulating hormones and anthropometric indicators of infants according to the type of feeding. Food Sci Nutr 2020; 8:993-1000. [PMID: 32148807 PMCID: PMC7020265 DOI: 10.1002/fsn3.1381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/14/2019] [Accepted: 11/05/2019] [Indexed: 12/26/2022] Open
Abstract
It has been accepted that satiety- and appetite-stimulating hormones play a role in the regulation of food intake and body composition during and after the lactation stage. Therefore, the purpose was to demonstrate that serum appetite-regulating hormones in infants differ according to anthropometric indicators and type of feeding. In a nonrandom cohort study, 169 mother-newborn dyads whose pregnancy and birth were attended at the Hospital Civil de Guadalajara were enrolled. According to the type of feeding, infants were classified as full breastfeeding (FBF), partial breastfeeding (PBF), and infants receiving human milk substitutes (HMS). Serum concentrations of ghrelin (pg/ml), leptin (ng/ml), peptide YY (pg/ml), and glucagon-like peptide-1 (GLP-1) (pM) were measured. Anthropometric measurements including weight, length, cephalic, arm circumference, tricipital, and subscapular skinfolds were obtained. Weight/age, weight/height, height/age, and BMI Z-score indexes were estimated. We performed one-way ANOVA, unpaired Student's t test, post hoc Tukey test, and Pearson correlation tests. The ANOVA comparison of the three feeding types showed significant differences in most anthropometric indicators (z-scores), especially between infants receiving FBF versus HMS and particularly on indicators of adiposity; no differences were observed in length and cephalic circumference z-scores at 8th and 16th weeks. Further, significant correlations were found between most of the adiposity indicators with ghrelin, leptin, and GLP-1, especially in infants who received FBF. There were differences in anthropometric and body composition parameters among infants receiving FBF, PBF, and HMS. There were significant correlations between body composition indicators with ghrelin, leptin, and GLP-1 mainly in infants receiving FBF.
Collapse
Affiliation(s)
- Edgar Vásquez‐Garibay
- Instituto de Nutrición HumanaUniversidad de GuadalajaraGuadalajaraMexico
- Nuevo Hospital Civil de Guadalajara Dr. Juan I. MenchacaGuadalajaraMexico
| | | | | | | | - Samuel García‐Arellano
- Instituto de Investigación en Ciencias BiomédicasUniversidad de GuadalajaraGuadalajaraMexico
| | - Francisco Muñoz‐Valle
- Instituto de Investigación en Ciencias BiomédicasUniversidad de GuadalajaraGuadalajaraMexico
| | - Enrique Romero‐ Velarde
- Instituto de Nutrición HumanaUniversidad de GuadalajaraGuadalajaraMexico
- Nuevo Hospital Civil de Guadalajara Dr. Juan I. MenchacaGuadalajaraMexico
| |
Collapse
|
8
|
Abstract
(1) This study describes the good evolution of a 6-year-old girl genetically diagnosed (R106X) with Rett syndrome (RTT), after having been treated with IGF-I, melatonin (MT), blackcurrant extracts (BC) and rehabilitated for 6 months. (2) The patient stopped normal development in the first year of age. The patient showed short stature and weight and fulfilled the main criteria for typical RTT. Despite her young age, there was pubic hair (Tanner II), very high plasma testosterone, and low levels of plasma gonadotrophins. There were no adrenal enzymatic deficits, and abdominal ultrasound studies were normal. The treatment consisted of IGF-I (0.04 mg/kg/day, 5 days/week, subcutaneous (sc)) for 3 months and then 15 days of rest, MT (50 mg/day, orally, without interruption) and neurorehabilitation. A new blood test, after 3 months of treatment, was absolutely normal and the pubic hair disappeared (Tanner I). Then, a new treatment was started with IGF-I, MT, and BC for another 3 months. In this period, the degree of pubertal development increased to Tanner III (pubic level), without a known cause. (3) The treatment followed led to clear improvements in most of the initial abnormalities, perhaps due to the neurotrophic effect of IGF-I, the antioxidant effects of MT and BC, and the cerebral increase in the cyclic glycine-proline (cGP) achieved with administration of BC. (4) A continuous treatment with IGF-I, MT, and BC appears to be useful in RTT.
Collapse
|
9
|
Yuge K, Hara M, Okabe R, Nakamura Y, Okamura H, Nagamitsu S, Yamashita Y, Orimoto K, Kojima M, Matsuishi T. Ghrelin improves dystonia and tremor in patients with Rett syndrome: A pilot study. J Neurol Sci 2017; 377:219-223. [PMID: 28477699 DOI: 10.1016/j.jns.2017.04.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND Dystonia occurs in approximately 60% of patients with Rett syndrome (RTT) and severely impairs their quality of life. However, an effective standard therapy has not been established. In a previous study, ghrelin levels were significantly decreased in patients with RTT, in particular, among patients over 10years old. This prompted speculation that ghrelin may play an important role in RTT. OBJECTIVES Four patients, including two adults, with severe dystonia and tremor, were recruited. METHODS Ghrelin was intravenously administered at a dose of 3μg/kg, once-daily for 3days, followed by once every 3weeks. Objective evaluation was performed, including scoring for different clinical features (SDCF), the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) and the Visual Analog Scale (VAS). RESULTS The SDCF, BFMDRS, autonomic dysfunction and VAS scores were markedly improved in two patients with severe dystonia and head tremor. CONCLUSION Ghrelin may improve extrapyramidal symptoms in patients with RTT.
Collapse
Affiliation(s)
- Kotaro Yuge
- Department of Pediatrics and Child Health, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| | - Munetsugu Hara
- Department of Pediatrics and Child Health, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| | - Rumiko Okabe
- Department of Pediatrics and Child Health, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| | - Yuki Nakamura
- Department of Pediatrics and Child Health, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| | - Hisayoshi Okamura
- Cognitive and Molecular Institute of Brain Diseases, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| | - Shinichiro Nagamitsu
- Department of Pediatrics and Child Health, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| | - Yushiro Yamashita
- Department of Pediatrics and Child Health, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| | - Kenji Orimoto
- Department of General Medicine, Fureai Higashitotuka Hospital, 16-8 Totukaku Kamishinano, Yokohama, Kanagawa 244-0806, Japan
| | - Masayasu Kojima
- Department of Molecular Genetics, Institute of Life Science, Kurume University School of Medicine, Hyakunen-kouen 1-1, Kurume 839-0864, Japan
| | - Toyojiro Matsuishi
- Research Center for Children and Research Center for Rett syndrome, St. Mary's Hospital, 422 Tsubukuhonmachi, Kurume 830-8543, Japan.
| |
Collapse
|
10
|
Watanabe J, Matsumoto M, Kageyama H, Murai N, Sasaki S, Hirako S, Wada N, Arata S, Shioda S. Ghrelin suppresses proliferation of fetal neural progenitor cells, and induces their differentiation into neurons. Peptides 2015; 69:40-6. [PMID: 25828736 DOI: 10.1016/j.peptides.2015.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 03/19/2015] [Indexed: 01/02/2023]
Abstract
Although considerable progress has been made in understanding how the temporal and regional control of neural progenitor cells (NPCs) dictates their fate, their key regulators during neural development are still unknown. Ghrelin, which is isolated from porcine stomach extract, is an endogenous ligand for the growth hormone secretagogue receptor (GHS-R). The widespread expression of ghrelin and GHS-R in the central nervous system during development suggests that ghrelin may be involved in developmental neural growth. However, its role in regulating fetal NPCs is still unclear. In this study, we investigated the effects of ghrelin on primary cultured NPCs derived from fetal mouse telencephalon. The expressions of both ghrelin and its receptor were observed in NPCs using RT-PCR, immunoblotting and immunocytostaining. Interestingly, the exposure of fetal NPCs to ghrelin at concentrations of 10(-7) and 10(-9)M suppressed their proliferation, and caused them to differentiate into neurons and to extend neurites. These results strongly suggest that ghrelin plays an autocrine modulatory role in fetal neural development.
Collapse
Affiliation(s)
- Jun Watanabe
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Center for Biotechnology, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Minako Matsumoto
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Haruaki Kageyama
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Faculty of Health Care, Kiryu University, Midori City, Gunma 379-2392, Japan
| | - Norimitsu Murai
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Shun Sasaki
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Satoshi Hirako
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Nobuhiro Wada
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Satoru Arata
- Center for Biotechnology, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Seiji Shioda
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| |
Collapse
|