1
|
Karimi N, Ghasemi A, Panahi A, Ziaadini B, Nafissi S. CHRNE-related congenital myasthenic syndrome in Iran: Clinical and molecular insights. Neuromuscul Disord 2025; 46:105234. [PMID: 39550999 DOI: 10.1016/j.nmd.2024.105234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/03/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024]
Abstract
Variants in the CHRNE gene can lead to a condition called congenital myasthenic syndrome (CMS), which affects the neuromuscular junction (NMJ). CHRNE mutations are the most common cause of CMS. Seventy-seven patients with a possible diagnosis of CMS were referred to the neuromuscular clinic of Shariati Hospital affiliated with the Tehran University of Medical Sciences. We performed whole-exome sequencing (WES) to determine the underlying defect in a group of individuals with a possible diagnosis of CMS. Clinical features and morphological and molecular data on 33 patients with mutations in CHRNE were described. Age of onset, age at diagnosis, consanguinity, family history, motor milestone delay, ophthalmoparesis, generalized fatigue, dysphagia, neurophysiologic findings, and response to treatment of the patients were assessed. Nineteen CHRNE variants including 10 novel ones were identified. The most common mutations were c.1327del; (p.Glu443LysfsTer64) in four different families and c.1252-1267dup; (p.Cys423SerfsTer38) in three families. Clinical onset was mostly at birth or under one year with bilateral fatigable ptosis, ophthalmoplegia, bulbar weakness, and proximal muscle weakness. All patients were treated with pyridostigmine ± salbutamol, which resulted in improvement of motor function, dysphagia, and breathing.
Collapse
Affiliation(s)
- Narges Karimi
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Aida Ghasemi
- Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Panahi
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Bentolhoda Ziaadini
- Neurology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahriar Nafissi
- Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Ghasemi A, Hadei SJ, KamaliZonouzi S, Shahrokhi A, Najmabadi H, Nafissi S. Clinical and genetic diversity in Iranian individuals with RAPSN-related congenital myasthenic syndrome. Neurogenetics 2024; 26:9. [PMID: 39589458 DOI: 10.1007/s10048-024-00787-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/15/2024] [Indexed: 11/27/2024]
Abstract
Congenital myasthenic syndromes (CMSs) are genetic disorders affecting motor function with variable symptoms. RAPSN-related CMS, caused by mutations in the RAPSN gene, leads to muscle weakness. Accurate diagnosis is essential for proper management. This study aims to analyze six Iranian families affected by RAPSN-CMS, focusing on clinical manifestations, genetic variants, treatment response, and outcomes. Clinical assessments, genetic analysis, and whole-exome sequencing were performed on the six families to identify RAPSN gene mutations. The study examined symptoms, disease severity, age of onset, treatment response, and outcomes. Treatment with pyridostigmine and salbutamol was given to assess its effectiveness. Three homozygous known variants in RAPSN gene were identified: c.491G > A in three families, c.264 C > A in two families, and c.-210 A > G in one family. Clinical assessments showed diversity in symptoms and treatment responses. Pyridostigmine and salbutamol treatment improved symptoms and quality of life. This study highlights the significance of molecular diagnosis for RAPSN-related congenital myasthenic syndromes (CMS) in Iran, marking the first comprehensive genetic analysis in the region. The identification of specific pathogenic variants underscores the unique genetic landscape of local patients. Furthermore, our long-term follow-up revealed variable treatment responses, emphasizing the need for personalized care strategies. The clinical variability among patients with identical mutations necessitates a multidisciplinary approach for effective management. By enhancing genetic awareness and refining follow-up methods, we aim to improve diagnosis accuracy and interventions, fostering better outcomes for affected families in the Iranian population.
Collapse
Affiliation(s)
- Aida Ghasemi
- Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Jalaleddin Hadei
- Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Neurology Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara KamaliZonouzi
- Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amene Shahrokhi
- Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Shahriar Nafissi
- Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Neurology Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Kang J, Wei S, Jia Z, Ma Y, Chen H, Sun C, Xu J, Tao J, Dong Y, Lv W, Tian H, Guo X, Bi S, Zhang C, Jiang Y, Lv H, Zhang M. Effects of genetic variation on the structure of RNA and protein. Proteomics 2024; 24:e2300235. [PMID: 38197532 DOI: 10.1002/pmic.202300235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024]
Abstract
Changes in the structure of RNA and protein, have an important impact on biological functions and are even important determinants of disease pathogenesis and treatment. Some genetic variations, including copy number variation, single nucleotide variation, and so on, can lead to changes in biological function and increased susceptibility to certain diseases by changing the structure of RNA or protein. With the development of structural biology and sequencing technology, a large amount of RNA and protein structure data and genetic variation data resources has emerged to be used to explain biological processes. Here, we reviewed the effects of genetic variation on the structure of RNAs and proteins, and investigated their impact on several diseases. An online resource (http://www.onethird-lab.com/gems/) to support convenient retrieval of common tools is also built. Finally, the challenges and future development of the effects of genetic variation on RNA and protein were discussed.
Collapse
Affiliation(s)
- Jingxuan Kang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- The Epigenome-Wide Association Study Project, Harbin, China
| | - Siyu Wei
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- The Epigenome-Wide Association Study Project, Harbin, China
| | - Zhe Jia
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- The Epigenome-Wide Association Study Project, Harbin, China
| | - Yingnan Ma
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- The Epigenome-Wide Association Study Project, Harbin, China
| | - Haiyan Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- The Epigenome-Wide Association Study Project, Harbin, China
| | - Chen Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- The Epigenome-Wide Association Study Project, Harbin, China
| | - Jing Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- The Epigenome-Wide Association Study Project, Harbin, China
| | - Junxian Tao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- The Epigenome-Wide Association Study Project, Harbin, China
| | - Yu Dong
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- The Epigenome-Wide Association Study Project, Harbin, China
| | - Wenhua Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hongsheng Tian
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xuying Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shuo Bi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Chen Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yongshuai Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- The Epigenome-Wide Association Study Project, Harbin, China
| | - Hongchao Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- The Epigenome-Wide Association Study Project, Harbin, China
| | - Mingming Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- The Epigenome-Wide Association Study Project, Harbin, China
| |
Collapse
|
4
|
Ohno K, Ohkawara B, Shen XM, Selcen D, Engel AG. Clinical and Pathologic Features of Congenital Myasthenic Syndromes Caused by 35 Genes-A Comprehensive Review. Int J Mol Sci 2023; 24:ijms24043730. [PMID: 36835142 PMCID: PMC9961056 DOI: 10.3390/ijms24043730] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Congenital myasthenic syndromes (CMS) are a heterogeneous group of disorders characterized by impaired neuromuscular signal transmission due to germline pathogenic variants in genes expressed at the neuromuscular junction (NMJ). A total of 35 genes have been reported in CMS (AGRN, ALG14, ALG2, CHAT, CHD8, CHRNA1, CHRNB1, CHRND, CHRNE, CHRNG, COL13A1, COLQ, DOK7, DPAGT1, GFPT1, GMPPB, LAMA5, LAMB2, LRP4, MUSK, MYO9A, PLEC, PREPL, PURA, RAPSN, RPH3A, SCN4A, SLC18A3, SLC25A1, SLC5A7, SNAP25, SYT2, TOR1AIP1, UNC13A, VAMP1). The 35 genes can be classified into 14 groups according to the pathomechanical, clinical, and therapeutic features of CMS patients. Measurement of compound muscle action potentials elicited by repetitive nerve stimulation is required to diagnose CMS. Clinical and electrophysiological features are not sufficient to identify a defective molecule, and genetic studies are always required for accurate diagnosis. From a pharmacological point of view, cholinesterase inhibitors are effective in most groups of CMS, but are contraindicated in some groups of CMS. Similarly, ephedrine, salbutamol (albuterol), amifampridine are effective in most but not all groups of CMS. This review extensively covers pathomechanical and clinical features of CMS by citing 442 relevant articles.
Collapse
Affiliation(s)
- Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Correspondence: (K.O.); (A.G.E.)
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Xin-Ming Shen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Duygu Selcen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Andrew G. Engel
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: (K.O.); (A.G.E.)
| |
Collapse
|
5
|
Kramer JJ, Boon HTM, Leijten QH, Ter Laak H, Eshuis L, Kusters B, van Doorn JLM, Kamsteeg EJ, Eymard B, Doorduin J, Voermans NC. Dystrophic Myopathy of the Diaphragm with Recurrent Severe Respiratory Failure is Congenital Myasthenic Syndrome 11. J Neuromuscul Dis 2023; 10:271-277. [PMID: 36591657 PMCID: PMC10041432 DOI: 10.3233/jnd-221542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We here present the case of a patient with a congenital myasthenic syndrome (CMS) due to pathogenic variants in the RAPSN gene. During childhood he experienced recurrent episodes of respiratory failure during respiratory infections. This and other cases were reported as isolated dystrophy of the diaphragmatic musculature. In adulthood, whole exome sequencing revealed two heterozygous pathogenic variants in the RAPSN gene. This led to the revision of the diagnosis to rapsyn CMS11 (OMIM:616326, MONDO:0014588). EMG, muscle ultrasound and the revision of muscle biopsies taken in childhood support this diagnosis. After the revision of the diagnosis, treatment with pyridostigmine was started. This resulted in a reduction of fatigability and an improvement in functional abilities and quality of life.
Collapse
Affiliation(s)
- J J Kramer
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - H T M Boon
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | - Henk Ter Laak
- Department of Pathology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - L Eshuis
- Department of Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - B Kusters
- Department of Pathology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - J L M van Doorn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - E J Kamsteeg
- Department of Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - B Eymard
- Institute de Myologie, Paris, France
| | - J Doorduin
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - N C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|