1
|
Peña-Casanova J, Sánchez-Benavides G, Sigg-Alonso J. Updating functional brain units: Insights far beyond Luria. Cortex 2024; 174:19-69. [PMID: 38492440 DOI: 10.1016/j.cortex.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/15/2024] [Accepted: 02/15/2024] [Indexed: 03/18/2024]
Abstract
This paper reviews Luria's model of the three functional units of the brain. To meet this objective, several issues were reviewed: the theory of functional systems and the contributions of phylogenesis and embryogenesis to the brain's functional organization. This review revealed several facts. In the first place, the relationship/integration of basic homeostatic needs with complex forms of behavior. Secondly, the multi-scale hierarchical and distributed organization of the brain and interactions between cells and systems. Thirdly, the phylogenetic role of exaptation, especially in basal ganglia and cerebellum expansion. Finally, the tripartite embryogenetic organization of the brain: rhinic, limbic/paralimbic, and supralimbic zones. Obviously, these principles of brain organization are in contradiction with attempts to establish separate functional brain units. The proposed new model is made up of two large integrated complexes: a primordial-limbic complex (Luria's Unit I) and a telencephalic-cortical complex (Luria's Units II and III). As a result, five functional units were delineated: Unit I. Primordial or preferential (brainstem), for life-support, behavioral modulation, and waking regulation; Unit II. Limbic and paralimbic systems, for emotions and hedonic evaluation (danger and relevance detection and contribution to reward/motivational processing) and the creation of cognitive maps (contextual memory, navigation, and generativity [imagination]); Unit III. Telencephalic-cortical, for sensorimotor and cognitive processing (gnosis, praxis, language, calculation, etc.), semantic and episodic (contextual) memory processing, and multimodal conscious agency; Unit IV. Basal ganglia systems, for behavior selection and reinforcement (reward-oriented behavior); Unit V. Cerebellar systems, for the prediction/anticipation (orthometric supervision) of the outcome of an action. The proposed brain units are nothing more than abstractions within the brain's simultaneous and distributed physiological processes. As function transcends anatomy, the model necessarily involves transition and overlap between structures. Beyond the classic approaches, this review includes information on recent systemic perspectives on functional brain organization. The limitations of this review are discussed.
Collapse
Affiliation(s)
- Jordi Peña-Casanova
- Integrative Pharmacology and Systems Neuroscience Research Group, Neuroscience Program, Hospital del Mar Medical Research Institute, Barcelona, Spain; Department of Psychiatry and Legal Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain; Test Barcelona Services, Teià, Barcelona, Spain.
| | | | - Jorge Sigg-Alonso
- Department of Behavioral and Cognitive Neurobiology, Institute of Neurobiology, National Autonomous University of México (UNAM), Queretaro, Mexico
| |
Collapse
|
2
|
Dahchour A, Ward RJ. Changes in serotonin neurotransmission as assayed by microdialysis after acute, intermittent or chronic ethanol administration and withdrawal. Fundam Clin Pharmacol 2024; 38:42-59. [PMID: 37712258 DOI: 10.1111/fcp.12949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 07/08/2023] [Accepted: 08/07/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND The serotonergic neurotransmitter system is involved in many ethanol-induced changes, including many behavioural alterations, as well as contributing to alcohol dependence and its withdrawal. AIMS This review has evaluated microdialysis studies where alterations in the serotonin system, that is, serotonin, 5-HT, or its metabolite 5-hydroxyindoleacetic acid, 5-HIAA, have been reported during different ethanol intoxication states, as well as in animals showing alcohol preference or not. Changes in 5-HT receptors and the 5-HT transporter are briefly reviewed to comprehend the significance of changes in microdialysate 5-HT concentrations. MATERIALS AND METHODS Changes in 5-HT content following acute, chronic and during ethanol withdrawal states are evaluated. In addition, the serotoninergic system was assessed in animals that have been genetically selected for alcohol preference to ascertain whether changes in this monoamine microdialysate content may contribute to alcohol preference. RESULTS AND DISCUSSION Changes occurred in 5-HT signalling in the limbic brain regions, increasing after acute ethanol administration in specific brain regions, particularly at higher doses, while chronic alcohol exposure essentially decreased serotonergic transmission. Such changes may play a pivotal role in emotion-driven craving and relapse. Depending on the dosage, mode of administration and consumption rate, ethanol affects specific brain regions in different ways, enhancing or reducing 5-HT microdialysate content, thereby inducing behavioural and cognitive functions and enhancing ethanol consumption. CONCLUSION Microdialysis studies demonstrated that ethanol induces several alterations in 5-HT content as well as its metabolites, 5-HIAA and 5-HTOL, not only in its release from a specific brain region but also in the modifications of its different receptor subtypes and its transporter.
Collapse
Affiliation(s)
- Abdelkader Dahchour
- Clinical Neurosciences Laboratory, Faculty of Medicine and Pharmacy. Department of Biology, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Roberta J Ward
- Centre for Neuroinflammation & Neurodegeneration, Division of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| |
Collapse
|
3
|
Hori Y, Mimura K, Nagai Y, Hori Y, Kumata K, Zhang MR, Suhara T, Higuchi M, Minamimoto T. Reduced serotonergic transmission alters sensitivity to cost and reward via 5-HT1A and 5-HT1B receptors in monkeys. PLoS Biol 2024; 22:e3002445. [PMID: 38163325 PMCID: PMC10758260 DOI: 10.1371/journal.pbio.3002445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024] Open
Abstract
Serotonin (5-HT) deficiency is a core biological pathology underlying depression and other psychiatric disorders whose key symptoms include decreased motivation. However, the exact role of 5-HT in motivation remains controversial and elusive. Here, we pharmacologically manipulated the 5-HT system in macaque monkeys and quantified the effects on motivation for goal-directed actions in terms of incentives and costs. Reversible inhibition of 5-HT synthesis increased errors and reaction times on goal-directed tasks, indicating reduced motivation. Analysis found incentive-dependent and cost-dependent components of this reduction. To identify the receptor subtypes that mediate cost and incentive, we systemically administered antagonists specific to 4 major 5-HT receptor subtypes: 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4. Positron emission tomography (PET) visualized the unique distribution of each subtype in limbic brain regions and determined the systemic dosage for antagonists that would achieve approximately 30% occupancy. Only blockade of 5-HT1A decreased motivation through changes in both expected cost and incentive; sensitivity to future workload and time delay to reward increased (cost) and reward value decreased (incentive). Blocking the 5-HT1B receptor also reduced motivation through decreased incentive, although it did not affect expected cost. These results suggest that 5-HT deficiency disrupts 2 processes, the subjective valuation of costs and rewards, via 5-HT1A and 5-HT1B receptors, thus leading to reduced motivation.
Collapse
Affiliation(s)
- Yukiko Hori
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Koki Mimura
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
- Research Center for Medical and Health Data Science, The Institute of Statistical Mathematics, Tokyo, Japan
| | - Yuji Nagai
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yuki Hori
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Katsushi Kumata
- Department of Advanced Nuclear Medicine Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Tetsuya Suhara
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Takafumi Minamimoto
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
4
|
In vivo correlation of serotonin transporter and 1B receptor availability in the human brain: a PET study. Neuropsychopharmacology 2022; 47:1863-1868. [PMID: 35821068 PMCID: PMC9372190 DOI: 10.1038/s41386-022-01369-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022]
Abstract
Synaptic serotonin levels in the brain are regulated by active transport into the bouton by the serotonin transporter, and by autoreceptors, such as the inhibitory serotonin (5-HT) 1B receptor which, when activated, decreases serotonin release. Animal studies have shown a regulatory link between the two proteins. Evidence of such coupling could translate to an untapped therapeutic potential in augmenting the effect of selective serotonin reuptake inhibitors through pharmacological modulation of 5-HT1B receptors. Here we will for the first time in vivo examine the relationship between 5-HT1B receptors and serotonin transporters in the living human brain. Seventeen healthy individuals were examined with PET twice, using the radioligands [11C]AZ10419369 and [11C]MADAM for quantification of the 5-HT1B receptor and the 5-HT transporter, respectively. The binding potential was calculated for a set of brain regions, and the correlations between the binding estimates of the two radioligands were studied. [11C]AZ10419369 and [11C]MADAM binding was positively correlated in all examined brain regions. In most cortical regions the correlation was strong, e.g., frontal cortex, r(15) = 0.64, p = 0.01 and parietal cortex, r(15) = 0.8, p = 0.0002 while in most subcortical regions, negligible correlations was observed. Though the correlation estimates in cortex should be interpreted with caution due to poor signal to noise ratio of [11C]MADAM binding in these regions, it suggests a link between two key proteins involved in the regulation of synaptic serotonin levels. Our results indicate a need for further studies to address the functional importance of 5-HT1B receptors in treatment with drugs that inhibit serotonin reuptake.
Collapse
|
5
|
Yepez JE, Juárez J. Modafinil acquires reinforcing effects when combined with citalopram. Pharmacol Biochem Behav 2022; 217:173407. [DOI: 10.1016/j.pbb.2022.173407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
|
6
|
Scott SN, Garcia R, Powell GL, Doyle SM, Ruscitti B, Le T, Esquer A, Blattner KM, Blass BE, Neisewander JL. 5-HT 1B receptor agonist attenuates cocaine self-administration after protracted abstinence and relapse in rats. J Psychopharmacol 2021; 35:1216-1225. [PMID: 34049460 DOI: 10.1177/02698811211019279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The 5-HT1B receptor (5-HT1BR) agonist, CP94253, enhances cocaine intake during maintenance of self-administration (SA) but attenuates intake after 21 days of forced abstinence in male rats. AIMS We examined whether CP94253 attenuates cocaine intake in female rats after a period of abstinence, and if these attenuating effects persist or revert to enhancing cocaine intake during resumption (i.e. relapse) of daily cocaine SA. METHODS Male and female rats trained to lever press on a fixed ratio 5 schedule of cocaine reinforcement underwent ⩾21 days of forced abstinence. They were then tested for the effects of CP94253 (5.6 mg/kg, SC) or vehicle on cocaine SA. During the test session, rats had 1-h access to the training dose of cocaine (0.75 mg/kg, IV) followed by 1-h access to a lower cocaine dose (0.075 mg/kg, IV). Rats then resumed cocaine SA for 15 days to mimic relapse and were retested as done previously. Subsequently, rats underwent abstinence again (21-60 days) and were tested for CP94253 effects on locomotion and cue reactivity (i.e. responding for light/tone cues previously paired with cocaine infusions). RESULTS Regardless of sex, CP94253 decreased cocaine intake after abstinence and during resumption of SA and decreased cue reactivity while having no effect on locomotion. CONCLUSIONS CP94253 decreases cocaine intake and cocaine seeking in both males and females even after resumption of cocaine SA. These findings suggest that the inhibitory effects of CP94253 observed after abstinence are long-lasting, and therefore, 5-HT1BR agonists may have clinical efficacy as anti-relapse medications for cocaine use disorders.
Collapse
Affiliation(s)
- Samantha N Scott
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Raul Garcia
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Gregory L Powell
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Sophia M Doyle
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Brielle Ruscitti
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Tien Le
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.,School of Biological Systems and Health Engineering, Arizona State University, Tempe, AZ, USA
| | - Aracely Esquer
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Kevin M Blattner
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Benjamin E Blass
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA, USA
| | | |
Collapse
|
7
|
De Deurwaerdère P, Chagraoui A, Di Giovanni G. Serotonin/dopamine interaction: Electrophysiological and neurochemical evidence. PROGRESS IN BRAIN RESEARCH 2021; 261:161-264. [PMID: 33785130 DOI: 10.1016/bs.pbr.2021.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interaction between serotonin (5-HT) and dopamine (DA) in the central nervous system (CNS) plays an important role in the adaptive properties of living animals to their environment. These are two modulatory, divergent systems shaping and regulating in a widespread manner the activity of neurobiological networks and their interaction. The concept of one interaction linking these two systems is rather elusive when looking at the mechanisms triggered by these two systems across the CNS. The great variety of their interacting mechanisms is in part due to the diversity of their neuronal origin, the density of their fibers in a given CNS region, the distinct expression of their numerous receptors in the CNS, the heterogeneity of their intracellular signaling pathway that depend on the cellular type expressing their receptors, and the state of activity of neurobiological networks, conditioning the outcome of their mutual influences. Thus, originally conceptualized as inhibition of 5-HT on DA neuron activity and DA neurotransmission, this interaction is nowadays considered as a multifaceted, mutual influence of these two systems in the regulation of CNS functions. These new ways of understanding this interaction are of utmost importance to envision the consequences of their dysfunctions underlined in several CNS diseases. It is also essential to conceive the mechanism of action of psychotropic drugs directly acting on their function including antipsychotic, antidepressant, antiparkinsonian, and drug of abuse together with the development of therapeutic strategies of Alzheimer's diseases, epilepsy, obsessional compulsive disorders. The 5-HT/DA interaction has a long history from the serendipitous discovery of antidepressants and antipsychotics to the future, rationalized treatments of CNS disorders.
Collapse
Affiliation(s)
- Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France.
| | - Abdeslam Chagraoui
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie University, UNIROUEN, INSERM U1239, Rouen, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
8
|
Gao M, Der-Ghazarian TS, Li S, Qiu S, Neisewander JL, Wu J. Dual Effect of 5-HT 1B/1D Receptors on Dopamine Neurons in Ventral Tegmental Area: Implication for the Functional Switch After Chronic Cocaine Exposure. Biol Psychiatry 2020; 88:922-934. [PMID: 32172944 DOI: 10.1016/j.biopsych.2020.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/19/2019] [Accepted: 01/10/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Serotonin (5-HT) 1B/1D receptor (5-HT1B/1DR) agonists undergo an abstinence-induced switch in their effects on cocaine-related behaviors, which may involve changes in modulation of dopamine (DA) neurons in the ventral tegmental area (VTA). However, it is unclear how 5-HT1B/1DRs affect VTA DA neuronal function and whether modulation of these neurons mediates the abstinence-induced switch after chronic cocaine exposure. METHODS We examined the ability of 5-HT1B/1DRs to modulate D2 autoreceptors (D2ARs) and synaptic transmission in the VTA by slice recording and single unit recording in vivo in naïve mice and in mice with chronic cocaine treatment. RESULTS We report a bidirectional modulation of VTA DA neuronal firing through the interaction of VTA 5-HT1B/1DRs and D2ARs. In both VTA slices and the VTA of anesthetized mice, the 5-HT1B/1DR agonist CP94253 decreased DA neuronal firing rate and evoked excitatory postsynaptic currents to DA neurons in slice. Paradoxically, CP94253 decreased quinpirole-induced inhibition of DA neurons by reducing D2AR-mediated G protein-gated inwardly rectifying potassium current. This manifested decreased GABAA (gamma-aminobutyric acid A) receptor-mediated evoked inhibitory postsynaptic currents in slice, resulting in disinhibition of DA neurons, in opposition to the 5-HT1B/1DR-induced inhibition. This dual effect was verified in chronic cocaine-treated and mild stress-treated, male mice on days 1 and 20 posttreatment. CONCLUSIONS This study revealed dual effects of CP94253 on VTA DA neurons that are dependent on D2AR sensitivity, with anti-inhibition under normal D2AR sensitivity and inhibition under low D2AR sensitivity. These dual effects may underlie the ability of CP94253 to both enhance and inhibit cocaine-induced behaviors.
Collapse
Affiliation(s)
- Ming Gao
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ.
| | | | - Shuangtao Li
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ; Shantou University Medical College, Guangdong, Shantou, China
| | - Shenfeng Qiu
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ
| | | | - Jie Wu
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ; Shantou University Medical College, Guangdong, Shantou, China.
| |
Collapse
|
9
|
Administration of low doses of the 5-HT1A receptor agonist 8-OH-DPAT attenuates the discriminative signal of amphetamine in the conditioned taste aversion procedure. Pharmacol Biochem Behav 2020; 193:172932. [DOI: 10.1016/j.pbb.2020.172932] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/25/2020] [Accepted: 04/13/2020] [Indexed: 11/22/2022]
|
10
|
Alger SJ, Kelm-Nelson CA, Stevenson SA, Juang C, Gammie SC, Riters LV. Complex patterns of dopamine-related gene expression in the ventral tegmental area of male zebra finches relate to dyadic interactions with long-term female partners. GENES BRAIN AND BEHAVIOR 2019; 19:e12619. [PMID: 31634415 DOI: 10.1111/gbb.12619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/27/2019] [Accepted: 10/14/2019] [Indexed: 12/14/2022]
Abstract
Dopaminergic projections from the ventral tegmental area (VTA) to multiple efferent targets are implicated in pair bonding, yet the role of the VTA in the maintenance of long-term pair bonds is not well characterized. Complex interactions between numerous neuromodulators modify activity in the VTA, suggesting that individual differences in patterns of gene expression in this region may explain individual differences in long-term social interactions in bonded pairs. To test this hypothesis we used RNA-seq to measure expression of over 8000 annotated genes in male zebra finches in established male-female pairs. Weighted gene co-expression network analysis identified a gene module that contained numerous dopamine-related genes with TH found to be the most connected gene of the module. Genes in this module related to male agonistic behaviors as well as bonding-related behaviors produced by female partners. Unsupervised learning approaches identified two groups of males that differed with respect to expression of numerous genes. Enrichment analyses showed that many dopamine-related genes and modulators differed between these groups, including dopamine receptors, synthetic and degradative enzymes, the avian dopamine transporter and several GABA- and glutamate-related genes. Many of the bonding-related behaviors closely associated with VTA gene expression in the two male groups were produced by the male's partner, rather than the male himself. Collectively, results highlight numerous candidate genes in the VTA that can be explored in future studies and raise the possibility that the molecular/genetic organization of the VTA may be strongly shaped by a social partner and/or the strength of the pair bond.
Collapse
Affiliation(s)
- Sarah J Alger
- Department of Biology, University of Wisconsin-Stevens Point, Stevens Point, Wisconsin
| | - Cynthia A Kelm-Nelson
- Department of Surgery, Division of Otolaryngology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Sharon A Stevenson
- Department of Surgery, Division of Otolaryngology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Charity Juang
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Stephen C Gammie
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Lauren V Riters
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
11
|
Zhang X, Geng X, Sun N, Li S, Li J, Wang S, Wang Q. There is no association between rs6296 and alcoholism: a meta-analysis. J Ethn Subst Abuse 2019; 20:366-378. [PMID: 31510870 DOI: 10.1080/15332640.2019.1657543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Previous studies have reported controversial results about the association between rs6296 and alcoholism. Thus, a meta-analysis was performed to further explore this association. A comprehensive search was conducted to identify relevant case-control or cohort studies (up to December 1, 2017). A fixed- or random-effect model was selected as a pooling method depending on the heterogeneity among studies. The heterogeneity was measured by Q test and I2 statistic. The Harbord and Peters test was used to estimate publication bias. Fifteen English articles with 16 outcomes and 5,429 participants were included in this meta-analysis. A fixed-effect model was chosen, and the pooled result showed that rs6296 was not related to alcoholism (z = 1.93, p = .053). The Harbord and Peters test showed that there was no publication bias. This meta-analysis indicated that rs6296 may be not be significantly associated with alcoholism, which needs to be further confirmed by future research.
Collapse
Affiliation(s)
- Xueli Zhang
- Department of Histology and Embryology, Weifang Medical University, Shandong, China
| | - Xuefeng Geng
- Department of Epidemiology, Weifang Medical University, Shandong, China
| | - Na Sun
- Department of Health Statistics, Weifang Medical University, Shandong, China
| | - Suyun Li
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Shandong, China
| | - Jing Li
- Department of Environmental Health, Weifang Medical University, Shandong, China
| | - Suzhen Wang
- Department of Health Statistics, Weifang Medical University, Shandong, China
| | - Qiang Wang
- Department of Epidemiology, Weifang Medical University, Shandong, China
| |
Collapse
|
12
|
Der-Ghazarian TS, Charmchi D, Noudali SN, Scott SN, Holter MC, Newbern JM, Neisewander JL. Neural Circuits Associated with 5-HT 1B Receptor Agonist Inhibition of Methamphetamine Seeking in the Conditioned Place Preference Model. ACS Chem Neurosci 2019; 10:3271-3283. [PMID: 31042352 DOI: 10.1021/acschemneuro.8b00709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
5-HT1B receptors (5-HT1BRs) modulate psychostimulant reward and incentive motivation in rodents. Here we investigated the effects of the 5-HT1BR agonist CP94253 (10 mg/kg, IP) on the acquisition and expression of methamphetamine (Meth) conditioned place preference (CPP) in C57BL/6 male mice. We subsequently examined the potential brain regions involved in CP94253 effects using FOS as a marker of neural activity. In the acquisition experiment, mice received the agonist 30 min before each of the Meth injections given during conditioning. In the expression experiment, mice that had acquired Meth-CPP were given either saline or CP94253 and were tested for CPP 30 min later. We found that CP94253 attenuated the expression of Meth-CPP, but had no effect on acquisition. Mice expressing Meth-CPP had elevated numbers of FOS+ cells in the ventral tegmental area (VTA) and basolateral amygdala (BlA) and reduced FOS+ cells in the central amygdala (CeA) compared to saline controls. CP94253 given before the expression test, but not acutely in drug-naive mice, enhanced FOS+ cells in the VTA, the nucleus accumbens (NAc) shell and core, and the dorsomedial striatum and reversed the Meth-conditioned changes in FOS in the BlA and CeA. Approximately 50-70% of FOS+ cells in the NAc and VTA were GABAergic regardless of group. By contrast, we did not observe FOS-labeling in dopamine neurons in the VTA. The findings suggest that CP94253 attenuates the motivational effects of the Meth-associated environment and highlight the amygdala, VTA, NAc, and dorsomedial striatum as potential regions involved in this effect.
Collapse
Affiliation(s)
| | - Delaram Charmchi
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Sean N. Noudali
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Samantha N. Scott
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Michael C. Holter
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Jason M. Newbern
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Janet L. Neisewander
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
13
|
The 5-HT 1B receptor - a potential target for antidepressant treatment. Psychopharmacology (Berl) 2018; 235:1317-1334. [PMID: 29546551 PMCID: PMC5919989 DOI: 10.1007/s00213-018-4872-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/26/2018] [Indexed: 11/23/2022]
Abstract
Major depressive disorder (MDD) is the leading cause of disability worldwide. The serotonin hypothesis may be the model of MDD pathophysiology with the most support. The majority of antidepressants enhance synaptic serotonin levels quickly, while it usually takes weeks to discern MDD treatment effect. It has been hypothesized that the time lag between serotonin increase and reduction of MDD symptoms is due to downregulation of inhibitory receptors such as the serotonin 1B receptor (5-HT1BR). The research on 5-HT1BR has previously been hampered by a lack of selective ligands for the receptor. The last extensive review of 5-HT1BR in the pathophysiology of depression was published 2009, and based mainly on findings from animal studies. Since then, selective radioligands for in vivo quantification of brain 5-HT1BR binding with positron emission tomography has been developed, providing new knowledge on the role of 5-HT1BR in MDD and its treatment. The main focus of this review is the role of 5-HT1BR in relation to MDD and its treatment, although studies of 5-HT1BR in obsessive-compulsive disorder, alcohol dependence, and cocaine dependence are also reviewed. The evidence outlined range from animal models of disease, effects of 5-HT1B receptor agonists and antagonists, case-control studies of 5-HT1B receptor binding postmortem and in vivo, with positron emission tomography, to clinical studies of 5-HT1B receptor effects of established treatments for MDD. Low 5-HT1BR binding in limbic regions has been found in MDD patients. When 5-HT1BR ligands are administered to animals, 5-HT1BR agonists most consistently display antidepressant-like properties, though it is not yet clear how 5-HT1BR is best approached for optimal MDD treatment.
Collapse
|
14
|
Korte SM, Prins J, Van den Bergh FS, Oosting RS, Dupree R, Korte-Bouws GA, Westphal KG, Olivier B, Denys DA, Garland A, Güntürkün O. The 5-HT1A/1B-receptor agonist eltoprazine increases both catecholamine release in the prefrontal cortex and dopamine release in the nucleus accumbens and decreases motivation for reward and “waiting” impulsivity, but increases “stopping” impulsivity. Eur J Pharmacol 2017; 794:257-269. [DOI: 10.1016/j.ejphar.2016.11.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/03/2016] [Accepted: 11/16/2016] [Indexed: 10/20/2022]
|
15
|
Pratt WE, Clissold KA, Lin P, Cain AE, Ciesinski AF, Hopkins TR, Ilesanmi AO, Kelly EA, Pierce-Messick Z, Powell DS, Rosner IA. A systematic investigation of the differential roles for ventral tegmentum serotonin 1- and 2-type receptors on food intake in the rat. Brain Res 2016; 1648:54-68. [PMID: 27431937 PMCID: PMC5018453 DOI: 10.1016/j.brainres.2016.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 10/21/2022]
Abstract
Central serotonin (5-HT) pathways are known to influence feeding and other ingestive behaviors. Although the ventral tegmentum is important for promoting the seeking and consumption of food and drugs of abuse, the roles of 5-HT receptor subtypes in this region on food intake have yet to be comprehensively examined. In these experiments, food restricted rats were given 2-h access to rat chow; separate groups of non-restricted animals had similar access to a sweetened fat diet. Feeding and locomotor activity were monitored following ventral tegmentum stimulation or blockade of 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2B, or 5-HT2C receptors. 5-HT1A receptor stimulation transiently inhibited rearing behavior and chow intake in food-restricted rats, and had a biphasic effect on non-restricted rats offered the palatable diet. 5-HT1B receptor agonism transiently inhibited feeding in restricted animals, but did not affect intake of non-restricted rats. In contrast, 5-HT1B receptor antagonism decreased palatable feeding. Although stimulation of ventral tegmental 5-HT2B receptors with BW723C86 did not affect hunger-driven food intake, it significantly affected palatable feeding, with a trend for an increasing intake at 2.0µg/side but not at 5.0µg/side. Antagonism of the same receptor modestly but significantly inhibited feeding of the palatable diet at 5.0µg/side ketanserin. Neither stimulation nor blockade of 5-HT2A or 5-HT2C receptors caused prolonged effects on intake or locomotion. These data suggest that serotonin's effects on feeding within the ventral tegmentum depend upon the specific receptor targeted, as well as whether intake is motivated by food restriction or the palatable nature of the offered diet.
Collapse
Affiliation(s)
- Wayne E Pratt
- Department of Psychology, Wake Forest University, Winston-Salem, NC, United States.
| | - Kara A Clissold
- Department of Psychology, Wake Forest University, Winston-Salem, NC, United States
| | - Peagan Lin
- Department of Psychology, Wake Forest University, Winston-Salem, NC, United States
| | - Amanda E Cain
- Department of Psychology, Wake Forest University, Winston-Salem, NC, United States
| | - Alexa F Ciesinski
- Department of Psychology, Wake Forest University, Winston-Salem, NC, United States
| | - Thomas R Hopkins
- Department of Psychology, Wake Forest University, Winston-Salem, NC, United States
| | - Adeolu O Ilesanmi
- Department of Psychology, Wake Forest University, Winston-Salem, NC, United States
| | - Erin A Kelly
- Department of Psychology, Wake Forest University, Winston-Salem, NC, United States
| | | | - Daniel S Powell
- Department of Psychology, Wake Forest University, Winston-Salem, NC, United States
| | - Ian A Rosner
- Department of Psychology, Wake Forest University, Winston-Salem, NC, United States
| |
Collapse
|
16
|
Deehan GA, Knight CP, Waeiss RA, Engleman EA, Toalston JE, McBride WJ, Hauser SR, Rodd ZA. Peripheral Administration of Ethanol Results in a Correlated Increase in Dopamine and Serotonin Within the Posterior Ventral Tegmental Area. Alcohol Alcohol 2016; 51:535-40. [PMID: 27307055 DOI: 10.1093/alcalc/agw037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/23/2016] [Indexed: 11/14/2022] Open
Abstract
AIMS Two critical neurotransmitter systems regulating ethanol (EtOH) reward are serotonin (5-HT) and dopamine (DA). Within the posterior ventral tegmental area (pVTA), 5-HT receptors have been shown to regulate DA neuronal activity. Increased pVTA neuronal activity has been linked to drug reinforcement. The current experiment sought to determine the effect of EtOH on 5-HT and DA levels within the pVTA. METHODS Wistar rats were implanted with cannula aimed at the pVTA. Neurochemical levels were determined using standard microdialysis procedures with concentric probes. Rats were randomly assigned to one of the five groups (n = 41; 7-9 per group) that were treated with 0-3.0 g/kg EtOH (intraperitoneally). RESULTS Ethanol produced increased extracellular DA levels in the pVTA that resembled an inverted U-shape dose-response curve with peak levels (~200% of baseline) at the 2.25 g/kg dose. The increase in DA levels was observed for an extended period of time (~100 minutes). The effects of EtOH on extracellular 5-HT levels in the pVTA also resembled an inverted U-shape dose-response curve. However, increased 5-HT levels were only observed during the initial post-injection sample. The increases in extracellular DA and 5-HT levels were significantly correlated. CONCLUSION The data indicate intraperitoneal EtOH administration stimulated the release of both 5-HT and DA within the pVTA, the levels of which were significantly correlated. Overall, the current findings suggest that the ability of EtOH to stimulate DA activity within the mesolimbic system may be modulated by increases in 5-HT release within the pVTA. SHORT SUMMARY Two critical neurotransmitter systems regulating ethanol reward are serotonin and dopamine. The current experiment determined that intraperitoneal ethanol administration increased serotonin and dopamine levels within the pVTA (levels were significantly correlated). The current findings suggest the ability of EtOH to stimulate serotonin and dopamine activity within the mesolimbic system.
Collapse
Affiliation(s)
- Gerald A Deehan
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Christopher P Knight
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - R Aaron Waeiss
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Eric A Engleman
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jamie E Toalston
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - William J McBride
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sheketha R Hauser
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Zachary A Rodd
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
17
|
Thanos PK, Malave L, Delis F, Mangine P, Kane K, Grunseich A, Vitale M, Greengard P, Volkow ND. Knockout ofp11attenuates the acquisition and reinstatement of cocaine conditioned place preference in male but not in female mice. Synapse 2016; 70:293-301. [DOI: 10.1002/syn.21904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions; Research Institute on Addictions, University at Buffalo; Buffalo New York
| | - Lauren Malave
- Department of Biology; City College of New York; New York New York
| | - Foteini Delis
- Department of Pharmacology, School of Medicine; University of Ioannina; Ioannina Greece
| | - Paul Mangine
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions; Research Institute on Addictions, University at Buffalo; Buffalo New York
| | - Katie Kane
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions; Research Institute on Addictions, University at Buffalo; Buffalo New York
| | - Adam Grunseich
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions; Research Institute on Addictions, University at Buffalo; Buffalo New York
| | - Melissa Vitale
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions; Research Institute on Addictions, University at Buffalo; Buffalo New York
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience; the Rockefeller University; New York New York
| | - Nora D. Volkow
- Laboratory of Neuroimaging; National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health; Bethesda Maryland
| |
Collapse
|
18
|
Aronsen D, Bukholt N, Schenk S. Repeated administration of the 5-HT₁B/₁A agonist, RU 24969, facilitates the acquisition of MDMA self-administration: role of 5-HT₁A and 5-HT₁B receptor mechanisms. Psychopharmacology (Berl) 2016; 233:1339-47. [PMID: 26856853 DOI: 10.1007/s00213-016-4225-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/27/2016] [Indexed: 01/17/2023]
Abstract
RATIONALE 3,4 Methylenedioxymethamphetamine (MDMA) preferentially stimulates the release of serotonin (5-HT) that subsequently produces behavioral responses by activation of post-synaptic receptor mechanisms. The 5-HT1A and 5-HT1B receptors are both well localized to regulate dopamine (DA) release, and have been implicated in modulating the reinforcing effects of many drugs of abuse, but a role in acquisition of self-administration has not been determined. OBJECTIVES This study was designed to determine the effect of pharmacological manipulation of 5-HT1A and 5-HT1B receptor mechanisms on the acquisition of MDMA self-administration. METHODS The 5-HT1B/1A receptor agonist, RU 24969 (0.0 or 3.0 mg/kg, bid), was administered for 3 days in order to down-regulate both 5-HT1A and 5-HT1B receptors. Following the pretreatment phase, latency to acquisition of MDMA self-administration was measured. RESULTS Repeated administration of RU 24969 significantly decreased the latency to acquisition and increased the proportion of animals that acquired MDMA self-administration. Dose-effect curves for the 5-HT1A-mediated hyperactivity produced by the 5-HT1A agonist, 8-OH-DPAT, and the 5-HT1B-mediated adipsic response produced by RU 24969 were shifted rightward, suggesting a desensitization of 5-HT1A and 5-HT1B receptor mechanisms. CONCLUSIONS These data suggest that the initial reinforcing effects of MDMA are modulated by 5-HT1A and/or 5-HT1B receptor mechanisms. The potential impact of these changes on the DAergic response relevant to self-administration and a possible role in conditioned reinforcement pertaining to acquisition of self-administration are discussed.
Collapse
Affiliation(s)
- Dane Aronsen
- School of Psychology, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Natasha Bukholt
- School of Psychology, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Susan Schenk
- School of Psychology, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.
| |
Collapse
|
19
|
Inaba A, Komori Y, Muroi Y, Kinoshita K, Ishii T. Neuropeptide Y signaling in the dorsal raphe nucleus inhibits male sexual behavior in mice. Neuroscience 2016; 320:140-8. [DOI: 10.1016/j.neuroscience.2016.01.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/28/2016] [Accepted: 01/30/2016] [Indexed: 12/22/2022]
|
20
|
De Deurwaerdère P, Di Giovanni G. Serotonergic modulation of the activity of mesencephalic dopaminergic systems: Therapeutic implications. Prog Neurobiol 2016; 151:175-236. [PMID: 27013075 DOI: 10.1016/j.pneurobio.2016.03.004] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/13/2016] [Accepted: 03/14/2016] [Indexed: 12/14/2022]
Abstract
Since their discovery in the mammalian brain, it has been apparent that serotonin (5-HT) and dopamine (DA) interactions play a key role in normal and abnormal behavior. Therefore, disclosure of this interaction could reveal important insights into the pathogenesis of various neuropsychiatric diseases including schizophrenia, depression and drug addiction or neurological conditions such as Parkinson's disease and Tourette's syndrome. Unfortunately, this interaction remains difficult to study for many reasons, including the rich and widespread innervations of 5-HT and DA in the brain, the plethora of 5-HT receptors and the release of co-transmitters by 5-HT and DA neurons. The purpose of this review is to present electrophysiological and biochemical data showing that endogenous 5-HT and pharmacological 5-HT ligands modify the mesencephalic DA systems' activity. 5-HT receptors may control DA neuron activity in a state-dependent and region-dependent manner. 5-HT controls the activity of DA neurons in a phasic and excitatory manner, except for the control exerted by 5-HT2C receptors which appears to also be tonically and/or constitutively inhibitory. The functional interaction between the two monoamines will also be discussed in view of the mechanism of action of antidepressants, antipsychotics, anti-Parkinsonians and drugs of abuse.
Collapse
Affiliation(s)
- Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5293, 33076 Bordeaux Cedex, France.
| | - Giuseppe Di Giovanni
- Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
21
|
Di Giovanni G, De Deurwaerdère P. New therapeutic opportunities for 5-HT2C receptor ligands in neuropsychiatric disorders. Pharmacol Ther 2015; 157:125-62. [PMID: 26617215 DOI: 10.1016/j.pharmthera.2015.11.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The 5-HT2C receptor (R) displays a widespread distribution in the CNS and is involved in the action of 5-HT in all brain areas. Knowledge of its functional role in the CNS pathophysiology has been impaired for many years due to the lack of drugs capable of discriminating among 5-HT2R subtypes, and to a lesser extent to the 5-HT1B, 5-HT5, 5-HT6 and 5-HT7Rs. The situation has changed since the mid-90s due to the increased availability of new and selective synthesized compounds, the creation of 5-HT2C knock out mice, and the progress made in molecular biology. Many pharmacological classes of drugs including antipsychotics, antidepressants and anxiolytics display affinities toward 5-HT2CRs and new 5-HT2C ligands have been developed for various neuropsychiatric disorders. The 5-HT2CR is presumed to mediate tonic/constitutive and phasic controls on the activity of different central neurobiological networks. Preclinical data illustrate this complexity to a point that pharmaceutical companies developed either agonists or antagonists for the same disease. In order to better comprehend this complexity, this review will briefly describe the molecular pharmacology of 5-HT2CRs, as well as their cellular impacts in general, before addressing its central distribution in the mammalian brain. Thereafter, we review the preclinical efficacy of 5-HT2C ligands in numerous behavioral tests modeling human diseases, highlighting the multiple and competing actions of the 5-HT2CRs in neurobiological networks and monoaminergic systems. Notably, we will focus this evidence in the context of the physiopathology of psychiatric and neurological disorders including Parkinson's disease, levodopa-induced dyskinesia, and epilepsy.
Collapse
Affiliation(s)
- Giuseppe Di Giovanni
- Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK.
| | - Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5293) 33076 Bordeaux Cedex, France.
| |
Collapse
|
22
|
Rubio-Casillas A, Rodríguez-Quintero C, Rodríguez-Manzo G, Fernández-Guasti A. Unraveling the modulatory actions of serotonin on male rat sexual responses. Neurosci Biobehav Rev 2015; 55:234-46. [DOI: 10.1016/j.neubiorev.2015.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 03/25/2015] [Accepted: 05/04/2015] [Indexed: 12/29/2022]
|
23
|
Miszkiel J, Przegaliński E. Effects of serotonin (5-HT)1B receptor ligands on amphetamine-seeking behavior in rats. Pharmacol Rep 2014; 65:813-22. [PMID: 24145075 DOI: 10.1016/s1734-1140(13)71062-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/06/2013] [Indexed: 11/25/2022]
Abstract
BACKGROUND Numerous studies have indicated that serotonin (5-HT)1B receptor ligands affect the behavioral effects of psychostimulants (cocaine, amphetamine), including the reinforcing activities of these drugs. METHODS To substantiate a role for those receptors in incentive motivation for amphetamine, we used the extinction/reinstatement model to examine the effects of the 5-HT1B receptor ligands on the reinstatement of extinguished amphetamine-seeking behavior. Rats trained to self-administer amphetamine (0.06 mg/kg/infusion) subsequently underwent the extinction procedure. These rats were then tested for the amphetamine-primed or amphetamine-associated cue-induced reinstatement of extinguished amphetamine-seeking behavior. RESULTS The 5-HT1B receptor antagonist SB 216641 (5-7.5 mg/kg) attenuated the amphetamine (1.5 mg/kg)- and the amphetamine-associated cue combined with the threshold dose of amphetamine (0.5 mg/kg)-induced reinstatement of amphetamine-seeking behavior. The 5-HT1B receptor agonist CP 94253 (1.25-5 mg/kg) also inhibited the amphetamine-seeking behavior induced by amphetamine (1.5 mg/kg) but not by the cue combined with the threshold dose of amphetamine. The inhibitory effect of CP94253 on amphetamine-seeking behavior remained unaffected by the 5-HT1B receptor antagonist. CONCLUSION Our results indicate that tonic activation of 5-HT1B receptors is involved in amphetamine- and cue-induced reinstatement of amphetamine-seeking behavior and that the inhibitory effects of 5-HT1B receptor antagonists on these phenomena are directly related to the motivational aspects of amphetamine abuse. The inhibitory effect of CP 94253 on amphetamine-seeking behavior seems to be unrelated to 5-HT1B receptor activation and may result from a general reduction of motivation.
Collapse
Affiliation(s)
- Joanna Miszkiel
- Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland.
| | | |
Collapse
|
24
|
Nair SG, Furay AR, Liu Y, Neumaier JF. Differential effect of viral overexpression of nucleus accumbens shell 5-HT1B receptors on stress- and cocaine priming-induced reinstatement of cocaine seeking. Pharmacol Biochem Behav 2013; 112:89-95. [PMID: 24075973 DOI: 10.1016/j.pbb.2013.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/03/2013] [Accepted: 09/17/2013] [Indexed: 10/26/2022]
Abstract
5-HT1B receptors are densely expressed on terminals of medium spiny neurons projecting from the nucleus accumbens shell (NAccSh) to the ventral tegmental area, where 5-HT1B receptors modulate GABA release directly, and firing of dopaminergic neurons indirectly. While interactions between NAccSh 5-HT1B receptors and stress have been reported in early stages of psychostimulant-induced neuroadaptations, specifically psychomotor sensitization, the effect of this interaction on later stages of drug seeking is currently unknown. Here, we examined the effect of herpes simplex virus (HSV)-mediated overexpression of NAccSh 5-HT1B receptors on reinstatement of cocaine seeking induced by exposure to stress or a cocaine prime. Rats were trained to self-administer cocaine (0.75 mg/kg/infusion) and the operant response was extinguished. Rats were then injected with viral vector expressing 5-HT1B and green fluorescent protein (GFP) or GFP alone into the NAccSh. The effect of 5-HT1B receptor overexpression was assessed on reinstatement induced by intermittent footshock (0.5 mA for 15 min) or a cocaine prime (10mg/kg, ip). Results indicate that NAccSh 5-HT1B receptor overexpression had no effect on footshock reinstatement while significantly decreasing cocaine priming-induced reinstatement. We also found that NAccSh overexpression of 5-HT1B receptors had no effect on saccharin intake following social defeat stress. These results suggest that the efficacy of pharmacological agents targeting 5-HT1B receptors for the treatment of cocaine relapse will depend largely on the nature of the reinstating stimulus. Taken together with previous results, it appears that NAccSh 5-HT1B receptors influence stress responses in early, but not in the later stages of psychostimulant-induced neuroadaptations.
Collapse
Affiliation(s)
- Sunila G Nair
- Department of Psychiatry and Behavioral Sciences, University of Washington, Harborview Medical Center, Seattle, WA 98104, USA
| | | | | | | |
Collapse
|
25
|
Nakamura K. The role of the dorsal raphé nucleus in reward-seeking behavior. Front Integr Neurosci 2013; 7:60. [PMID: 23986662 PMCID: PMC3753458 DOI: 10.3389/fnint.2013.00060] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 07/30/2013] [Indexed: 12/22/2022] Open
Abstract
Pharmacological experiments have shown that the modulation of brain serotonin levels has a strong impact on value-based decision making. Anatomical and physiological evidence also revealed that the dorsal raphé nucleus (DRN), a major source of serotonin, and the dopamine system receive common inputs from brain regions associated with appetitive and aversive information processing. The serotonin and dopamine systems also have reciprocal functional influences on each other. However, the specific mechanism by which serotonin affects value-based decision making is not clear. To understand the information carried by the DRN for reward-seeking behavior, we measured single neuron activity in the primate DRN during the performance of saccade tasks to obtain different amounts of a reward. We found that DRN neuronal activity was characterized by tonic modulation that was altered by the expected and received reward value. Consistent reward-dependent modulation across different task periods suggested that DRN activity kept track of the reward value throughout a trial. The DRN was also characterized by modulation of its activity in the opposite direction by different neuronal subgroups, one firing strongly for the prediction and receipt of large rewards, with the other firing strongly for small rewards. Conversely, putative dopamine neurons showed positive phasic responses to reward-indicating cues and the receipt of an unexpected reward amount, which supports the reward prediction error signal hypothesis of dopamine. I suggest that the tonic reward monitoring signal of the DRN, possibly together with its interaction with the dopamine system, reports a continuous level of motivation throughout the performance of a task. Such a signal may provide "reward context" information to the targets of DRN projections, where it may be integrated further with incoming motivationally salient information.
Collapse
Affiliation(s)
- Kae Nakamura
- Department of Physiology, Kansai Medical University Hirakata, Japan ; Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency Kawaguchi, Japan
| |
Collapse
|
26
|
Abstract
Evidence indicates that the serotonergic system is important in mediating dependence on and craving for alcohol. Among serotonin receptors, 5-hydroxytryptamine 1B (5-HT1B) receptors have been associated with drug abuse including alcohol. In this review, the neurocircuitry involving 5-HT1B receptors in central reward brain regions related to alcohol intake are discussed in detail. Emphasis has been placed on the pharmacological manipulations of 5-HT1B receptor-mediated alcohol intake. Furthermore, 5-HT1B auto- and hetero-receptors regulate alcohol intake through the regulatory mechanism involving release of 5-HT, gamma-aminobutyric acid (GABA), dopamine, and glutamate is evaluated. Thus, interactions between 5-HT1B receptors and these neurotransmitter systems are suggested to modulate alcohol-drinking behavior. This review on the role of 5-HT1B receptors in neurotransmitter release and consequent alcohol intake provides important information about the potential therapeutic role of 5-HT1B receptors for the treatment of alcohol dependence.
Collapse
Affiliation(s)
- Youssef Sari
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology, Toledo, OH 43614, USA.
| |
Collapse
|
27
|
Protracted withdrawal from cocaine self-administration flips the switch on 5-HT(1B) receptor modulation of cocaine abuse-related behaviors. Biol Psychiatry 2012; 72:396-404. [PMID: 22541946 PMCID: PMC4071622 DOI: 10.1016/j.biopsych.2012.03.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Revised: 03/13/2012] [Accepted: 03/15/2012] [Indexed: 01/20/2023]
Abstract
BACKGROUND The role of serotonin-1B receptors (5-HT(1B)Rs) in modulating cocaine abuse-related behaviors has been controversial due to discrepancies between pharmacological and gene knockout approaches and opposite influences on cocaine self-administration versus cocaine-seeking behavior. We hypothesized that modulation of these behaviors via 5-HT(1B)Rs in the mesolimbic pathway may vary depending on the stage of the addiction cycle. METHODS To test this hypothesis, we examined the effects of increasing 5-HT(1B)R production by microinfusing a viral vector expressing either green fluorescent protein and 5-HT(1B)R or green fluorescent protein alone into the medial nucleus accumbens shell of rats either during maintenance of cocaine self-administration (i.e., active drug use) or during protracted withdrawal. RESULTS 5-HT(1B)R receptor gene transfer during maintenance shifted the dose-response curve for cocaine self-administration upward and to the left and increased breakpoints and cocaine intake on a progressive ratio schedule, consistent with enhanced reinforcing effects of cocaine. In contrast, following 21 days of forced abstinence, 5-HT(1B)R gene transfer attenuated breakpoints and cocaine intake on a progressive ratio schedule of reinforcement, as well as cue- and cocaine-primed reinstatement of cocaine-seeking behavior. CONCLUSIONS This unique pattern of effects suggests that mesolimbic 5-HT(1B)Rs differentially modulate cocaine abuse-related behaviors, with a facilitative influence during periods of active drug use, in striking contrast to an inhibitory influence during protracted withdrawal. These findings suggest that targeting 5-HT(1B)Rs may lead to a novel treatment for cocaine dependence and that the therapeutic efficacy of these treatments may vary depending on the stage of the addiction cycle.
Collapse
|
28
|
The effect of serotonin 5HT1B receptor ligands on amphetamine self-administration in rats. Eur J Pharmacol 2012; 677:111-5. [DOI: 10.1016/j.ejphar.2011.12.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 12/12/2011] [Accepted: 12/18/2011] [Indexed: 11/18/2022]
|
29
|
Joanna M, Małgorzata F, Edmund P. Role of serotonin (5-HT)1B receptors in psychostimulant addiction. Pharmacol Rep 2011; 63:1310-5. [DOI: 10.1016/s1734-1140(11)70695-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 08/01/2011] [Indexed: 11/29/2022]
|
30
|
A neural correlate of predicted and actual reward-value information in monkey pedunculopontine tegmental and dorsal raphe nucleus during saccade tasks. Neural Plast 2011; 2011:579840. [PMID: 22013541 PMCID: PMC3195531 DOI: 10.1155/2011/579840] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Revised: 07/13/2011] [Accepted: 08/04/2011] [Indexed: 11/28/2022] Open
Abstract
Dopamine, acetylcholine, and serotonin, the main modulators of the central nervous system, have been proposed to play important roles in the execution of movement, control of several forms of attentional behavior, and reinforcement learning. While the response pattern of midbrain dopaminergic neurons and its specific role in reinforcement learning have been revealed, the role of the other neuromodulators remains rather elusive. Here, we review our recent studies using extracellular recording from neurons in the pedunculopontine tegmental nucleus, where many cholinergic neurons exist, and the dorsal raphe nucleus, where many serotonergic neurons exist, while monkeys performed eye movement tasks to obtain different reward values. The firing patterns of these neurons are often tonic throughout the task period, while dopaminergic neurons exhibited a phasic activity pattern to the task event. The different modulation patterns, together with the activity of dopaminergic neurons, reveal dynamic information processing between these different neuromodulator systems.
Collapse
|
31
|
Hayes DJ, Greenshaw AJ. 5-HT receptors and reward-related behaviour: a review. Neurosci Biobehav Rev 2011; 35:1419-49. [PMID: 21402098 DOI: 10.1016/j.neubiorev.2011.03.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 03/03/2011] [Accepted: 03/04/2011] [Indexed: 01/07/2023]
Abstract
The brain's serotonin (5-HT) system is key in the regulation of reward-related behaviours, from eating and drinking to sexual activity. The complexity of studying this system is due, in part, to the fact that 5-HT acts at many receptor subtypes throughout the brain. The recent development of drugs with greater selectivity for individual receptor subtypes has allowed for rapid advancements in our understanding of this system. Use of these drugs in combination with animal models entailing selective reward measures (i.e. intracranial self-stimulation, drug self-administration, conditioned place preference) have resulted in a greater understanding of the pharmacology of reward-related processing and behaviour (particularly regarding drugs of abuse). The putative roles of each 5-HT receptor subtype in the pharmacology of reward are outlined and discussed here. It is concluded that the actions of 5-HT in reward are receptor subtype-dependent (and thus should not be generalized) and that all studied subtypes appear to have a unique profile which is determined by content (e.g. receptor function, localization - both throughout the brain and within the synapse) and context (e.g. type of behavioural paradigm, type of drug). Given evidence of altered reward-related processing and serotonergic function in numerous neuropsychiatric disorders, such as depression, schizophrenia, and addiction, a clearer understanding of the role of 5-HT receptor subtypes in this context may lead to improved drug development and therapeutic approaches.
Collapse
Affiliation(s)
- Dave J Hayes
- Centre for Neuroscience, 513 HMRC, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| | | |
Collapse
|
32
|
Furay AR, Neumaier JF, Mullenix AT, Kaiyala KK, Sandygren NK, Hoplight BJ. Overexpression of 5-HT(1B) mRNA in nucleus accumbens shell projection neurons differentially affects microarchitecture of initiation and maintenance of ethanol consumption. Alcohol 2011; 45:19-32. [PMID: 20843634 DOI: 10.1016/j.alcohol.2010.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 07/22/2010] [Accepted: 07/23/2010] [Indexed: 11/15/2022]
Abstract
Serotonin 1B (5-HT(1B)) heteroreceptors on nucleus accumbens shell (NAcSh) projection neurons have been shown to enhance the voluntary consumption of alcohol by rats, presumably by modulating the activity of the mesolimbic reward pathway. The present study examined whether increasing 5-HT(1B) receptors expressed on NAcSh projection neurons by means of virus-mediated gene transfer enhances ethanol consumption during the initiation or maintenance phase of drinking and alters the temporal pattern of drinking behavior. Animals received stereotaxic injections of viral vectors expressing either 5-HT(1B) receptor and green fluorescent protein (GFP) or GFP alone. Home cages equipped with a three-bottle (water and 6 and 12% ethanol) lickometer system recorded animals' drinking behaviors continuously, capturing either initiation or maintenance of drinking behavior patterns. Overexpression of 5-HT(1B) receptors during initiation increased consumption of 12% ethanol during both forced-access and free-choice consumption. There was a shift in drinking pattern for 6% ethanol with an increase in number of drinking bouts per day, although the total number of drinking bouts for 12% ethanol was not different. Finally, increased 5-HT(1B) expression induced more bouts with very high-frequency licking from the ethanol bottle sippers. During the maintenance phase of drinking, there were no differences between groups in total volume of ethanol consumed; however, there was a shift toward drinking bouts of longer duration, especially for 12% ethanol. This suggests that during maintenance drinking, increased 5-HT(1B) receptors facilitate longer drinking bouts of more modest volumes. Taken together, these results indicate that 5-HT(1B) receptors expressed on NAcSh projection neurons facilitate ethanol drinking, with different effects during initiation and maintenance of ethanol-drinking behavior.
Collapse
Affiliation(s)
- Amy R Furay
- Department of Psychiatry, University of Washington, Harborview Medical Center, Seattle, WA 98104, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Sari Y, Johnson VR, Weedman JM. Role of the serotonergic system in alcohol dependence: from animal models to clinics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 98:401-43. [PMID: 21199778 PMCID: PMC3508458 DOI: 10.1016/b978-0-12-385506-0.00010-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alcohol dependence remains among the most common substance abuse problems worldwide, and compulsive alcohol consumption is a significant public health concern. Alcohol is an addictive drug that alters brain function through interactions with multiple neurotransmitter systems. These neurotransmitter systems mediate the reinforcing effects of alcohol. Specifically, the serotonergic system is important in mediating alcohol reward, preference, dependence, and craving. In this review chapter, we first discuss the serotonin system as it relates to alcoholism, and then outline interactions between this system and other neurotransmitter systems. We emphasize the serotonin transporter and its possible role in alcoholism, then present several serotonergic receptors and discuss their contribution to alcoholism, and finally assess the serotonin system as a target for pharmacotherapy, with an emphasis on current and potential treatments.
Collapse
Affiliation(s)
- Youssef Sari
- Department of Pharmacology, Health Science Campus, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio, USA
| | | | | |
Collapse
|
34
|
Schenk S. MDMA ("ecstasy") abuse as an example of dopamine neuroplasticity. Neurosci Biobehav Rev 2010; 35:1203-18. [PMID: 21184779 DOI: 10.1016/j.neubiorev.2010.12.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/12/2010] [Accepted: 12/15/2010] [Indexed: 01/12/2023]
Abstract
A number of reviews have focused on the short- and long-term effects of MDMA and, in particular, on the persistent deficits in serotonin neurotransmission that accompany some exposure regimens. The mechanisms underlying the serotonin deficits and their relevance to various behavioral and cognitive consequences of MDMA use are still being debated. It has become clear, however, that some individuals develop compulsive and uncontrolled drug-taking that is consistent with abuse. For other drugs of abuse, this transition has been attributed to neuroadaptations in central dopamine mechanisms that occur as a function of repeated drug exposure. A question remains as to whether similar neuroadaptations occur as a function of exposure to MDMA and the impact of serotonin neurotoxicity in the transition from use to abuse. This review focuses specifically on this issue by first providing an overview of human studies and then reviewing the animal literature with specific emphasis on paradigms that measure subjective effects of drugs and self-administration as indices of abuse liability. It is suggested that serotonin deficits resulting from repeated exposure to MDMA self-administration lead to a sensitized dopaminergic response to the drug and that this sensitized response renders MDMA comparable to other drugs of abuse.
Collapse
Affiliation(s)
- Susan Schenk
- Victoria University of Wellington, School of Psychology, Kelburn Pde, Easterfield Bldg Rm 702, Wellington, New Zealand.
| |
Collapse
|
35
|
Ferdyn-Drosik M, Nowak P, Bojanek K, Bałasz M, Kasperski J, Skaba D, Muchacki R, Kostrzewa RM. Neonatal DSP-4 treatment impairs 5-HT1B receptor reactivity in adult rats. Behavioral and biochemical studies. Pharmacol Rep 2010; 62:608-20. [DOI: 10.1016/s1734-1140(10)70318-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 11/19/2009] [Indexed: 10/25/2022]
|
36
|
Olijslagers JE, Werkman TR, McCreary AC, Kruse CG, Wadman WJ. Modulation of midbrain dopamine neurotransmission by serotonin, a versatile interaction between neurotransmitters and significance for antipsychotic drug action. Curr Neuropharmacol 2010; 4:59-68. [PMID: 18615139 DOI: 10.2174/157015906775203020] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Revised: 08/23/2005] [Accepted: 09/17/2005] [Indexed: 11/22/2022] Open
Abstract
Schizophrenia has been associated with a dysfunction of brain dopamine (DA). This, so called, DA hypothesis has been refined as new insights into the pathophysiology of schizophrenia have emerged. Currently, dysfunction of prefrontocortical glutamatergic and GABAergic projections and dysfunction of serotonin (5-HT) systems are also thought to play a role in the pathophysiology of schizophrenia. Refinements of the DA hypothesis have lead to the emergence of new pharmacological targets for antipsychotic drug development. It was shown that effective antipsychotic drugs with a low liability for inducing extra-pyramidal side-effects have affinities for a range of neurotransmitter receptors in addition to DA receptors, suggesting that a combination of neurotransmitter receptor affinities may be favorable for treatment outcome.This review focuses on the interaction between DA and 5-HT, as most antipsychotics display affinity for 5-HT receptors. We will discuss DA/5-HT interactions at the level of receptors and G protein-coupled potassium channels and consequences for induction of depolarization blockade with specific attention to DA neurons in the ventral tegmental area (VTA) and the substantia nigra zona compacta (SN), neurons implicated in treatment efficacy and the side-effects of schizophrenia, respectively. Moreover, it has been reported that electrophysiological interactions between DA and 5-HT show subtle, but important, differences between the SN and the VTA which could explain (in part) the effectiveness and lower propensity to induce side-effects of the newer atypical antipsychotic drugs. In that respect the functional implications of DA/5-HT interactions for schizophrenia will be discussed.
Collapse
Affiliation(s)
- J E Olijslagers
- Center for NeuroScience-Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 320, 1098 SM Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
37
|
Chronic passive exposure to aggression decreases D2 and 5-HT1B receptor densities. Physiol Behav 2010; 99:562-70. [DOI: 10.1016/j.physbeh.2010.01.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 01/14/2010] [Accepted: 01/15/2010] [Indexed: 11/22/2022]
|
38
|
Pentkowski NS, Acosta JI, Browning JR, Hamilton EC, Neisewander JL. Stimulation of 5-HT(1B) receptors enhances cocaine reinforcement yet reduces cocaine-seeking behavior. Addict Biol 2009; 14:419-30. [PMID: 19650818 DOI: 10.1111/j.1369-1600.2009.00162.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Paradoxically, stimulation of 5-HT(1B) receptors (5-HT(1B)Rs) enhances sensitivity to the reinforcing effects of cocaine but attenuates incentive motivation for cocaine as measured using the extinction/reinstatement model. We revisited this issue by examining the effects of a 5-HT(1B)R agonist, CP94253, on cocaine reinforcement and cocaine-primed reinstatement, predicting that CP94253 would enhance cocaine-seeking behavior reinstated by a low priming dose, similar to its effect on cocaine reinforcement. Rats were trained to self-administer cocaine (0.75 mg/kg, i.v.) paired with light and tone cues. For reinstatement experiments, they then underwent daily extinction training to reduce cocaine-seeking behavior (operant responses without cocaine reinforcement). Next, they were pre-treated with CP94253 (3-10 mg/kg, s.c.) and either tested for cocaine-primed (10 or 2.5 mg/kg, i.p.) or cue-elicited reinstatement of extinguished cocaine-seeking behavior. For reinforcement, effects of CP94253 (5.6 mg/kg) across a range of self-administered cocaine doses (0-1.5 mg/kg, i.v.) were examined. Cocaine dose-dependently reinstated cocaine-seeking behavior, but contrary to our prediction, CP94253 reduced reinstatement with both priming doses. Similarly, CP94253 reduced cue-elicited reinstatement. In contrast, CP94253 shifted the self-administration dose-effect curve leftward, consistent with enhanced cocaine reinforcement. When saline was substituted for cocaine, CP94253 reduced response rates (i.e. cocaine-seeking behavior). In subsequent control experiments, CP94253 decreased open-arm exploration in an elevated plus-maze suggesting an anxiogenic effect, but had no effect on locomotion or sucrose reinforcement. These results provide strong evidence that stimulation of 5-HT(1B)Rs produces opposite effects on cocaine reinforcement and cocaine-seeking behavior, and further suggest that 5-HT(1B)Rs may be a novel target for developing medications for cocaine dependence.
Collapse
|
39
|
Neumaier JF, McDevitt RA, Polis IY, Parsons LH. Acquisition of and withdrawal from cocaine self-administration regulates 5-HT mRNA expression in rat striatum. J Neurochem 2009; 111:217-27. [PMID: 19659573 DOI: 10.1111/j.1471-4159.2009.06313.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study investigated how different stages of cocaine self-administration in rats affect the expression of two serotonin receptors in dorsal and ventral striatum, the 5-HT(1B) and 5-HT(6) subtypes, which have both been implicated in mediating some aspects of cocaine-related behaviors. In the first experiment, rats were trained to work for saccharin (oral) or cocaine (i.v.) reinforcers. We found that continuous access to cocaine for 23 days did not change the level of 5-HT(1B) mRNA expression compared to control animals receiving saccharin. However, a single cocaine session, given either by self-administration or non-contingently, increased 5-HT(1B) mRNA in dorsal striatum, whereas forced abstinence for two weeks after cocaine reduced 5-HT(1B) mRNA expression in the same subregion. 5-HT(6) mRNA was not changed by any of these treatments. A follow-up experiment investigated the effects of limited versus extended access to cocaine as well as forced abstinence, and we found that 14 days of forced abstinence significantly reduced 5-HT(1B) mRNA throughout the dorsal and ventral striatum compared to no withdrawal. These results suggest that the influence of 5-HT(1B) receptors in striatal projection neurons may be increased during cocaine acquisition and reduced after forced abstinence and may therefore be targets for pharmacological intervention in addiction.
Collapse
Affiliation(s)
- John F Neumaier
- Department of Psychiatry and Behavioral Sciences, Harborview Medical Center, Seattle, Washington, USA.
| | | | | | | |
Collapse
|
40
|
Genud R, Merenlender A, Gispan-Herman I, Maayan R, Weizman A, Yadid G. DHEA lessens depressive-like behavior via GABA-ergic modulation of the mesolimbic system. Neuropsychopharmacology 2009; 34:577-84. [PMID: 18496525 DOI: 10.1038/npp.2008.46] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Alterations in the levels of dehydroepiandrosterone (DHEA) in the brain can allosterically modulate gamma-aminobutyric-acid-type-A (GABA(A)R), N-methyl-D-aspartate (NMDAR), and Sigma-1 (sigma 1R) receptors. In humans, DHEA has antidepressive effects; however, the mechanism is unknown. We examined whether alterations in DHEA also occur in an animal model of depression, the Flinders-sensitive-line (FSL) rats, with the intention of determining the brain site of DHEA action and its antidepressant mechanism. We discovered that DHEA levels were lower in some brain regions involved with depression of FSL rats compared to Sprague-Dawley (SD) controls. Moreover, DHEA (1 mg/kg IP for 14 days)-treated FSL rats were more mobile in the forced swim test than FSL controls. In the NAc and VTA, significant changes were observed in the levels of the delta-subunit of GABA(A), but not of sigma 1R mRNA, in FSL rats compared to SD rats. The delta-subunit controls the sensitivity of the GABA(A)R to the neurosteroid. Indeed, treatment (14 days) of FSL rats with the GABA(A) agonist muscimol (0.5 mg/kg), together with DHEA (a negative modulator of GABA(A)), reversed the effect of DHEA on immobility in the swim test. Perfusion of DHEA sulfate (DHEAS) (3 nM and 30 nM for 14 days) into the VTA and NAc of FSL rats improved their performance in the swim test for at least 3 weeks post-treatment. Our results imply that alterations in DHEA are involved in the pathophysiology of depression and that the antidepressant action of DHEA is mediated via GABA(A)Rs in the NAc and VTA.
Collapse
Affiliation(s)
- Rotem Genud
- The Mina & Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | | | | | | | | | | |
Collapse
|
41
|
Hayes DJ, Graham DA, Greenshaw AJ. Effects of systemic 5-HT(1B) receptor compounds on ventral tegmental area intracranial self-stimulation thresholds in rats. Eur J Pharmacol 2008; 604:74-8. [PMID: 19135047 DOI: 10.1016/j.ejphar.2008.12.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 12/01/2008] [Accepted: 12/11/2008] [Indexed: 11/16/2022]
Abstract
Serotonin 1B (5-HT(1B)) receptors may play a role in regulating motivation and reward-related behaviours. To date, no studies have investigated the effects of the highly selective 5-HT(1B) receptor agonist CP 94253, on the reward model of ventral tegmental area intracranial self-stimulation. The current study investigated the hypothesis that 5-HT(1B) receptors play an inhibitory role in ventral tegmental area ICSS. Using Sprague-Dawley rats, the effects of the selective 5-HT(1B) receptor agonist CP 94253 (0-5.0 mg/kg) and the 5-HT(1B/1D) receptor antagonist GR 127935 (10.0 mg/kg) were investigated in rats trained to respond for ventral tegmental area ICSS; results were compared using rate-frequency threshold analysis. The highest dose of CP 94253 (5.0 mg/kg) tested in ventral tegmental area ICSS produced an increase in rate-frequency thresholds without affecting maximal response rates. This effect was attenuated by GR 127935 which did not show any effects when administered alone. These results suggest that 5-HT(1B) receptors play an inhibitory role in regulating ventral tegmental area ICSS.
Collapse
Affiliation(s)
- Dave J Hayes
- Centre for Neuroscience, 513 HMRC, University of Alberta, Edmonton, AB, Canada T6G 2S2
| | | | | |
Collapse
|
42
|
Weikop P, Yoshitake T, Kehr J. Differential effects of adjunctive methylphenidate and citalopram on extracellular levels of serotonin, noradrenaline and dopamine in the rat brain. Eur Neuropsychopharmacol 2007; 17:658-71. [PMID: 17383162 DOI: 10.1016/j.euroneuro.2007.02.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 01/15/2007] [Accepted: 02/13/2007] [Indexed: 11/18/2022]
Abstract
Several clinical studies have suggested that the combined treatment with methylphenidate and citalopram may accelerate the onset of antidepressant action and induce an improvement even in treatment-refractory patients. In the present study, in vivo microdialysis was used to monitor the extracellular levels of serotonin, noradrenaline and dopamine in the prefrontal cortex, hippocampus, nucleus accumbens and striatum of the rat. Administration of methylphenidate (2.5 mg/kg s.c.) with citalopram (5 mg/kg i.p.) compared to methylphenidate alone caused a marked enhancement of dopamine levels in the prefrontal cortex, n. accumbens and hippocampus, but not in the striatum. Citalopram-induced increase in serotonin levels was strongly enhanced by adjunctive methylphenidate in the hippocampus, but attenuated in the cortex. These findings suggest that the proposed augmentation effects of adjuvant methylphenidate to citalopram are most likely associated with enhanced dopamine transmission in the corticolimbic areas, whereas serotonin and noradrenaline levels show differential and region specific responses.
Collapse
Affiliation(s)
- Pia Weikop
- NeuroSearch A/S, 93 Pederstrupvej, DK-2750 Ballerup, Denmark.
| | | | | |
Collapse
|
43
|
Goodman A. Neurobiology of addiction. An integrative review. Biochem Pharmacol 2007; 75:266-322. [PMID: 17764663 DOI: 10.1016/j.bcp.2007.07.030] [Citation(s) in RCA: 224] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 07/22/2007] [Accepted: 07/23/2007] [Indexed: 02/08/2023]
Abstract
Evidence that psychoactive substance use disorders, bulimia nervosa, pathological gambling, and sexual addiction share an underlying biopsychological process is summarized. Definitions are offered for addiction and addictive process, the latter being the proposed designation for the underlying biopsychological process that addictive disorders are hypothesized to share. The addictive process is introduced as an interaction of impairments in three functional systems: motivation-reward, affect regulation, and behavioral inhibition. An integrative review of the literature that addresses the neurobiology of addiction is then presented, organized according to the three functional systems that constitute the addictive process. The review is directed toward identifying candidate neurochemical substrates for the impairments in motivation-reward, affect regulation, and behavioral inhibition that could contribute to an addictive process.
Collapse
Affiliation(s)
- Aviel Goodman
- Minnesota Institute of Psychiatry, 1347 Summit Avenue, St. Paul, MN 55105, USA.
| |
Collapse
|
44
|
Amato JL, Bankson MG, Yamamoto BK. Prior exposure to chronic stress and MDMA potentiates mesoaccumbens dopamine release mediated by the 5-HT(1B) receptor. Neuropsychopharmacology 2007; 32:946-54. [PMID: 16885935 DOI: 10.1038/sj.npp.1301174] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
(+) 3,4,-Methylenedioxymethamphetamine (MDMA) is an abused drug that acutely releases serotonin (5-HT) and dopamine (DA) but produces long-term damage to 5-HT terminals. MDMA-induced DA release has been shown to be dampened by 5-HT. Although stress also activates the mesolimbic DA pathway, it is unknown if chronic stress after exposure to neurotoxic doses of MDMA will augment MDMA-induced DA release in the nucleus accumbens shell (NAcc(sh)). Rats were pretreated with MDMA (10 mg/kg x 4, intraperitoneal (i.p.)). After 7 days, rats were subjected to 10 days of chronic unpredictable stress. DA release in the NAcc(sh) and 5-HT in the ventral tegmental area (VTA) were measured after a challenge injection of MDMA (5 mg/kg, i.p.). The combination of pretreatment with MDMA+stress decreased basal concentrations of 5-HT in the VTA and DA in the NAcc(sh) and enhanced MDMA-stimulated DA release in the NAcc(sh). Pretreatment with MDMA or stress alone blunted MDMA-induced 5-HT release in the VTA. The augmentation of MDMA-induced DA release in rats pretreated with MDMA+chronic stress was attenuated by perfusion of the 5-HT(1B) antagonist, GR127935 into the VTA before the MDMA challenge injection. These results suggest that prior exposure to both MDMA and stress can produce a long-term augmentation in mesolimbic DA transmission and enhanced drug abuse vulnerability that is mediated, in part, by the 5-HT(1B) receptor in the VTA.
Collapse
Affiliation(s)
- Jennifer L Amato
- Laboratory of Neurochemistry, Department of Pharmacology, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | |
Collapse
|
45
|
Przegaliński E, Gołda A, Frankowska M, Zaniewska M, Filip M. Effects of serotonin 5-HT1B receptor ligands on the cocaine- and food-maintained self-administration in rats. Eur J Pharmacol 2007; 559:165-72. [PMID: 17291490 DOI: 10.1016/j.ejphar.2006.12.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 12/12/2006] [Accepted: 12/14/2006] [Indexed: 11/19/2022]
Abstract
In order to substantiate the concept that cocaine behavioral effects may be influenced by serotonin (5-HT)1B receptors, male Wistar rats were trained to self-administer cocaine intravenously (0.5 mg/kg/injection), and were systemically pretreated with the selective 5-HT1B receptor antagonist N-[3-[3-(dimethylamine)ethoxy]-4-methoxyphenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)-[1,1'-biphenyl]-4-carboxamide hydrochloride (SB 216641), or with the agonist 5-propoxy-3(1,2,3,6-tetrahydro-4-pyridinyl)-1H-pyrrolo[3,2-b]pyridine hydrochloride (CP 94253) before test session during the maintenance phase. The effects of the 5-HT1B receptor ligands on a control reinforcer (food)-induced self-administration and on basal locomotor activity were also assessed. SB 216641 (2.5-7.5 mg/kg) was inactive in altering the cocaine (0.5 mg/kg/injection)-maintained responding and at the highest dose (7.5 mg/kg) it did not alter the self-administration of a cocaine dose on the descending limb of the cocaine (0.125-0.5 mg/kg/injection) dose-effect function. On the other hand, CP 94253 (2.5-7.5 mg/kg) attenuated the cocaine (0.5 mg/kg/injection)-maintained responding with a significant inhibitory effect seen at 7.5 mg/kg, while its doses of 2.5-5 mg/kg potently reduced the self-administration of cocaine (0.125-0.25 mg/kg/injection), in a manner similar to the effect produced by increasing the unit dose of cocaine. The inhibitory effects of CP 94253 (5 mg/kg) on the cocaine (0.125 or 0.25 mg/kg/injection) self-administration were blocked by SB 216641 (7.5 mg/kg). Food reinforcing potential was not altered when either SB 216641 or CP 94253 was given in a dose range between 2.5-7.5 mg/kg. Moreover, none of the 5-HT1B receptor ligands altered horizontal locomotor activity while CP 9253 significantly reduced vertical activity. Our present findings extend previous observations that tonic activation of 5-HT1B receptors is not required for cocaine reinforcement while pharmacological stimulation of 5-HT1B receptors enhances such a property of the psychostimulant. Furthermore, we demonstrated that 5-HT1B receptor agonist-induced enhancement of cocaine reward was independent of an alteration in natural reinforcement.
Collapse
Affiliation(s)
- Edmund Przegaliński
- Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, 12 Smetna, Poland
| | | | | | | | | |
Collapse
|
46
|
Kaneko Y, Kashiwa A, Ito T, Ishii S, Umino A, Nishikawa T. Selective serotonin reuptake inhibitors, fluoxetine and paroxetine, attenuate the expression of the established behavioral sensitization induced by methamphetamine. Neuropsychopharmacology 2007; 32:658-64. [PMID: 16738540 DOI: 10.1038/sj.npp.1301111] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To obtain an insight into the development of a new pharmacotherapy that prevents the treatment-resistant relapse of psychostimulant-induced psychosis and schizophrenia, we have investigated in the mouse the effects of selective serotonin reuptake inhibitors (SSRI), fluoxetine (FLX) and paroxetine (PRX), on the established sensitization induced by methamphetamine (MAP), a model of the relapse of these psychoses, because the modifications of the brain serotonergic transmission have been reported to antagonize the sensitization phenomenon. In agreement with previous reports, repeated MAP treatment (1.0 mg/kg a day, subcutaneously (s.c.)) for 10 days induced a long-lasting enhancement of the increasing effects of a challenge dose of MAP (0.24 mg/kg, s.c.) on motor activity on day 12 or 29 of withdrawal. The daily injection of FLX (10 mg/kg, s.c.) or PRX (8 mg/kg, s.c.) from 12 to 16 days of withdrawal of repeated MAP administration markedly attenuated the ability of the MAP pretreatment to augment the motor responses to the challenge dose of the stimulant 13 days after the SSRI injection. The repeated treatment with FLX or PRX alone failed to affect the motor stimulation following the challenge of saline and MAP 13 days later. These results suggest that the intermittent and repetitive elevation of serotonergic tone may inhibit the expression of the motor sensitization induced by pretreatment with MAP. It is proposed that clinically available serotonin reuptake inhibitors could be useful for preventing the recurrence of hallucinatory-paranoid state in drug-induced psychosis and schizophrenia.
Collapse
Affiliation(s)
- Yujiro Kaneko
- 1Section of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Yushima, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Hoplight BJ, Vincow ES, Neumaier JF. Cocaine increases 5-HT1B mRNA in rat nucleus accumbens shell neurons. Neuropharmacology 2007; 52:444-9. [PMID: 17059838 DOI: 10.1016/j.neuropharm.2006.08.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 08/15/2006] [Accepted: 08/21/2006] [Indexed: 10/24/2022]
Abstract
Serotonin 5-HT(1B) receptors modulate behavioral responses to cocaine, but the effects of cocaine on endogenous 5-HT(1B) receptor expression are not known. Therefore, we examined the effect of binge cocaine administration on 5-HT1B mRNA expression in rat brain. We found that chronic, but not acute, binge cocaine exposure increased 5-HT(1B) mRNA by approximately 80% in nucleus accumbens shell and dorsal striatum. Surprisingly, 5-HT(1B) mRNA was increased in nucleus accumbens shell after chronic vehicle treatment as well, but this effect was driven by animals that were housed with cocaine-treated animals. Thus, 5-HT(1B) mRNA is upregulated by repeated exposure to cocaine and perhaps by social stress as well; both of these factors are relevant to the risk for relapse in cocaine addiction.
Collapse
Affiliation(s)
- B J Hoplight
- Departments of Psychiatry and Behavioral Sciences, Harborview Medical Center, University of Washington, Box 359911, 325 Ninth Avenue, Seattle, WA 98104-2499, USA
| | | | | |
Collapse
|
48
|
Abstract
Dopamine (DA)-containing neurons involved in the regulation of sleep and waking (W) arise in the ventral tegmental area (VTA) and the substantia nigra pars compacta (SNc). The VTA and SNc cells have efferent and afferent connections with the dorsal raphe nucleus (DRN), the pedunculopontine and laterodorsal tegmental nuclei (PPT/LDT), the locus coeruleus (LC), the lateral and posterior hypothalamus (LH), the basal forebrain (BFB), and the thalamus. Molecular cloning techniques have enabled the characterization of two distinct groups of DA receptors, D(1)-like and D(2)-like receptors. The D(1) subfamily includes the D(1) and D(5) receptors, whereas the D(2) subfamily comprises the D(2), D(3), and D(4) receptors. Systemic administration of a selective D(1) receptor agonist induces behavioral arousal, together with an increase of W and a reduction of slow wave sleep (SWS) and REM sleep (REMS). Systemic injection of a DA D(2) receptor agonist induces biphasic effects, such that low doses reduce W and increase SWS and REMS (predominant activation of the D(2) autoreceptor), whereas large doses induce the opposite effect (predominant facilitation of the D(2) postsynaptic receptor). Compounds with DA D(1) or D(2) receptor blocking properties augment non-REMS and reduce W. Preliminary findings tend to indicate that the administration of a DA D(3)-preferring agonist induces somnolence and sleep in laboratory animals and man. DA neurons in the VTA and the SNc do not change their mean firing rate across the sleep-wake cycle. It has been proposed that DA cells in the midbrain show a change in temporal pattern rather than firing rate during the sleep-wake cycle. The available evidence tends to indicate that during W there occurs an increase of burst firing activity of DA neurons, and an enhanced release of DA in the VTA, the nucleus accumbens (NAc), and a number of forebrain structures. A series of structures relevant for the regulation of the behavioral state, including the DRN, LDT/PPT, LC, and LH, could be partly responsible for the changes in the temporal pattern of activity of DA neurons.
Collapse
Affiliation(s)
- Jaime M Monti
- Department of Pharmacology and Therapeutics, Clinics Hospital, 2833/602 Zudañez Street, Montevideo 11300, Uruguay.
| | | |
Collapse
|
49
|
O'Dell LE, Manzardo AM, Polis I, Stouffer DG, Parsons LH. Biphasic alterations in Serotonin-1B (5-HT1B) receptor function during abstinence from extended cocaine self-administration. J Neurochem 2006; 99:1363-76. [PMID: 17074068 DOI: 10.1111/j.1471-4159.2006.04163.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alterations in 5-HT1B receptor function during cocaine abstinence were evaluated in rats given either limited- or extended access (LA and EA, respectively) to cocaine self-administration. The locomotor response to the 5-HT1B/1A agonist RU24969 was significantly reduced in cocaine-experienced animals relative to cocaine-naïve controls following 6 h of abstinence but became sensitized over the subsequent 14 days of abstinence. Both the early phase subsensitivity and later phase supersensivity to RU 24969-induced activity were greater in EA versus LA animals. Intra-nucleus accumbens administration of the 5-HT1B agonist CP 93, 129 produced significantly greater increases in dialysate dopamine levels in EA versus control animals following 14 days of abstinence. However, there was no difference between EA and cocaine-naïve control animals in the augmentation of cocaine-induced increases in nucleus accumbens DA produced by intra-VTA CP 93, 129. Collectively these findings demonstrate that 5-HT1B receptor function is persistently altered by cocaine self-administration.
Collapse
Affiliation(s)
- Laura E O'Dell
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas, USA
| | | | | | | | | |
Collapse
|
50
|
Alex KD, Pehek EA. Pharmacologic mechanisms of serotonergic regulation of dopamine neurotransmission. Pharmacol Ther 2006; 113:296-320. [PMID: 17049611 PMCID: PMC2562467 DOI: 10.1016/j.pharmthera.2006.08.004] [Citation(s) in RCA: 449] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Accepted: 08/24/2006] [Indexed: 01/19/2023]
Abstract
The neurotransmitter dopamine (DA) has a long association with normal functions such as motor control, cognition, and reward, as well as a number of syndromes including drug abuse, schizophrenia, and Parkinson's disease. Studies show that serotonin (5-HT) acts through several 5-HT receptors in the brain to modulate DA neurons in all 3 major dopaminergic pathways. There are at least fourteen 5-HT receptor subtypes, many of which have been shown to play some role in mediating 5-HT/DA interactions. Several subtypes, including the 5-HT1A, 5-HT1B, 5-HT2A, 5-HT3 and 5-HT4 receptors, act to facilitate DA release, while the 5-HT2C receptor mediates an inhibitory effect of 5-HT on DA release. Most 5-HT receptor subtypes only modulate DA release when 5-HT and/or DA neurons are stimulated, but the 5-HT2C receptor, characterized by high levels of constitutive activity, inhibits tonic as well as evoked DA release. This review summarizes the anatomical evidence for the presence of each 5-HT receptor subtype in dopaminergic regions of the brain and the neuropharmacological evidence demonstrating regulation of each DA pathway. The relevance of 5-HT receptor modulation of DA systems to the development of therapeutics used to treat schizophrenia, depression, and drug abuse is discussed. Lastly, areas are highlighted in which future research would be maximally beneficial to the treatment of these disorders.
Collapse
Affiliation(s)
- K D Alex
- Department of Neurosciences, Case Western Reserve School of Medicine, Cleveland, OH 44106, USA
| | | |
Collapse
|