1
|
van der Heide CJ, Meyer KJ, Hedberg-Buenz A, Pellack D, Pomernackas N, Mercer HE, Anderson MG. Quantification and image-derived phenotyping of retinal ganglion cell nuclei in the nee mouse model of congenital glaucoma. Exp Eye Res 2021; 212:108774. [PMID: 34597676 PMCID: PMC8608716 DOI: 10.1016/j.exer.2021.108774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/31/2022]
Abstract
The nee mouse model exhibits characteristic features of congenital glaucoma, a common cause of childhood blindness. The current study of nee mice had two components. First, the time course of neurodegeneration in nee retinal flat-mounts was studied over time using a retinal ganglion cell (RGC)-marker, BRN3A; a pan-nuclear marker, TO-PRO-3; and H&E staining. Based on segmentation of nuclei using ImageJ and RetFM-J, this analysis identified a rapid loss of BRN3A+ nuclei from 4 to 15 weeks of age, with the first statistically significant difference in average density compared to age-matched controls detected in 8-week-old cohorts (49% reduction in nee). Consistent with a model of glaucoma, no reductions in BRN3A- nuclei were detected, but the combined analysis indicated that some RGCs lost BRN3A marker expression prior to actual cell loss. These results have a practical application in the design of experiments using nee mice to study mechanisms or potential therapies for congenital glaucoma. The second component of the study pertains to a discovery-based analysis of the large amount of image data with 748,782 segmented retinal nuclei. Using the automatedly collected region of interest feature data captured by ImageJ, we tested whether RGC density of glaucomatous mice was significantly correlated to average nuclear area, perimeter, Feret diameter, or MinFeret diameter. These results pointed to two events influencing nuclear size. For variations in RGC density above approximately 3000 nuclei/mm2 apparent spreading was observed, in which BRN3A- nuclei-regardless of genotype-became slightly larger as RGC density decreased. This same spreading occurred in BRN3A+ nuclei of wild-type mice. For variation in RGC density below 3000 nuclei/mm2, which only occurred in glaucomatous nee mutants, BRN3A+ nuclei became smaller as disease was progressively severe. These observations have relevance to defining RGCs of relatively higher sensitivity to glaucomatous cell death and the nuclear dynamics occurring during their demise.
Collapse
Affiliation(s)
- Carly J van der Heide
- Department of Molecular Physiology and Biophysics, University of Iowa, 51 Newton Rd., Iowa City, IA, 52242, USA.
| | - Kacie J Meyer
- Department of Molecular Physiology and Biophysics, University of Iowa, 51 Newton Rd., Iowa City, IA, 52242, USA.
| | - Adam Hedberg-Buenz
- Department of Molecular Physiology and Biophysics, University of Iowa, 51 Newton Rd., Iowa City, IA, 52242, USA; VA Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, 601 Hwy 6 West (151), Iowa City, IA, 52246, USA.
| | - Danielle Pellack
- Department of Molecular Physiology and Biophysics, University of Iowa, 51 Newton Rd., Iowa City, IA, 52242, USA.
| | - Nicholas Pomernackas
- Department of Molecular Physiology and Biophysics, University of Iowa, 51 Newton Rd., Iowa City, IA, 52242, USA.
| | - Hannah E Mercer
- Department of Molecular Physiology and Biophysics, University of Iowa, 51 Newton Rd., Iowa City, IA, 52242, USA.
| | - Michael G Anderson
- Department of Molecular Physiology and Biophysics, University of Iowa, 51 Newton Rd., Iowa City, IA, 52242, USA; VA Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, 601 Hwy 6 West (151), Iowa City, IA, 52246, USA; Department of Ophthalmology and Visual Sciences, University of Iowa, 200 Hawkins Dr., Iowa City, IA, 52242, USA.
| |
Collapse
|
2
|
Keilhoff G, Titze M, Ebmeyer U. Immuno-histological detection of resistant columnar units and vulnerable networks in the rat retina after asphyxia-induced transient cardiac arrest. Restor Neurol Neurosci 2021; 39:267-289. [PMID: 34334436 DOI: 10.3233/rnn-211174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Stroke-related loss of vision is one of the residual impairments, restricting the quality of life. However, studies of the ocular manifestations of asphyxia cardiac arrest/resuscitation (ACA/R) have reported very heterogeneous results. OBJECTIVE We aimed to evaluate the ACA/R-induced degeneration pattern of the different retinal cell populations in rats using different immuno-histological stainings. METHODS The staining pattern of toluidine blue and the ganglion cell markers β-III-tubulin and NeuN; the calcium-binding protein parvalbumin, indicating ganglion, amacrine, and horizontal cells; calretinin D28k, indicating ganglion and amacrine cells; calbindin, indicating horizontal cells; Chx 10, indicating cone bipolar cells; PKCα, indicating ON-type rod bipolar cells; arrestin, indicating cones; and rhodopsin, a marker of rods, as well as the glial cell markers GFAP (indicating astroglia and Müller cells) and IBA1 (indicating microglia), were evaluated after survival times of 7 and 21 days in an ACA/R rat model. Moreover, quantitative morphological analysis of the optic nerve was performed. The ACA/R specimens were compared with those from sham-operated and completely naïve rats. RESULTS ACA/R-induced effects were: (i) a significant reduction of retinal thickness after long-term survival; (ii) ganglion cell degeneration, including their fiber network in the inner plexiform layer; (iii) degeneration of amacrine and cone bipolar cells; (iv) degeneration of cone photoreceptors; (v) enhanced resistance to ACA/R by rod photoreceptors, ON-type rod bipolar and horizontal cells, possibly caused by the strong upregulation of the calcium-binding proteins calretinin, parvalbumin, and calbindin, counteracting the detrimental calcium overload; (vi) significant activation of Müller cells as further element of retinal anti-stress self-defense mechanisms; and (vii) morphological alterations of the optic nerve in form of deformed fibers. CONCLUSIONS Regardless of the many defects, the surviving neuronal structures seemed to be able to maintain retinal functionality, which can be additionally improved by regenerative processes true to the "use it or lose it" dogma.
Collapse
Affiliation(s)
- Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, Medical Faculty, University of Magdeburg, Magdeburg, Germany
| | - Maximilian Titze
- Institute of Biochemistry and Cell Biology, Medical Faculty, University of Magdeburg, Magdeburg, Germany
| | - Uwe Ebmeyer
- Department of Anesthesiology, Medical Faculty, University of Magdeburg, Magdeburg, Germany
| |
Collapse
|
3
|
Pang IH, Clark AF. Inducible rodent models of glaucoma. Prog Retin Eye Res 2020; 75:100799. [PMID: 31557521 PMCID: PMC7085984 DOI: 10.1016/j.preteyeres.2019.100799] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 11/23/2022]
Abstract
Glaucoma is one of the leading causes of vision impairment worldwide. In order to further understand the molecular pathobiology of this disease and to develop better therapies, clinically relevant animal models are necessary. In recent years, both the rat and mouse have become popular models in glaucoma research. Key reasons are: many important biological similarities shared among rodent eyes and the human eye; development of improved methods to induce glaucoma and to evaluate glaucomatous damage; availability of genetic tools in the mouse; as well as the relatively low cost of rodent studies. Commonly studied rat and mouse glaucoma models include intraocular pressure (IOP)-dependent and pressure-independent models. The pressure-dependent models address the most important risk factor of elevated IOP, whereas the pressure-independent models assess "normal tension" glaucoma and other "non-IOP" related factors associated with glaucomatous damage. The current article provides descriptions of these models, their characterizations, specific techniques to induce glaucoma, mechanisms of injury, advantages, and limitations.
Collapse
Affiliation(s)
- Iok-Hou Pang
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Abbot F Clark
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, USA; Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA.
| |
Collapse
|
4
|
Chen Y, Dinges MM, Green A, Cramer SE, Larive CK, Lytle C. Absorptive transport of amino acids by the rat colon. Am J Physiol Gastrointest Liver Physiol 2020; 318:G189-G202. [PMID: 31760764 PMCID: PMC6985843 DOI: 10.1152/ajpgi.00277.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The capacity of the colon to absorb microbially produced amino acids (AAs) and the underlying mechanisms of AA transport are incompletely defined. We measured the profile of 16 fecal AAs along the rat ceco-colonic axis and compared unidirectional absorptive AA fluxes across mucosal tissues isolated from the rat jejunum, cecum, and proximal colon using an Ussing chamber approach, in conjunction with 1H-NMR and ultra-performance liquid chromatography-mass spectrometry chemical analyses. Passage of stool from cecum to midcolon was associated with segment-specific changes in fecal AA composition and a decrease in total AA content. Simultaneous measurement of up to 16 AA fluxes under native luminal conditions, with correction for endogenous AA release, demonstrated absorptive transfer of AAs across the cecum and proximal colon at rates comparable (30-80%) to those across the jejunum, with significant Na+-dependent and H+-stimulated components. Expression profiling of 30 major AA transporter genes by quantitative PCR revealed comparatively high levels of transcripts for 20 AA transporters in the cecum and/or colon, with the levels of 12 exceeding those in the small intestine. Our results suggest a more detailed model of major apical and basolateral AA transporters in rat colonocytes and provide evidence for a previously unappreciated transfer of AAs across the colonic epithelium that could link the prodigious metabolic capacities of the luminal microbiota, the colonocytes, and the body tissues.NEW & NOTEWORTHY This study provides evidence for a previously unappreciated transfer of microbially generated amino acids across the colonic epithelium under physiological conditions that could link the prodigious metabolic capacities of the luminal microbiota, the colonocytes, and the body tissues. The segment-specific expression of at least 20 amino acid transporter genes along the colon provides a detailed mechanistic basis for uniport, heteroexchange, Na+-cotransport, and H+-cotransport components of colonic amino acid absorption.
Collapse
Affiliation(s)
- Yuxin Chen
- 1Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California
| | - Meredith M. Dinges
- 2Department of Chemistry, University of California, Riverside, California
| | - Andrew Green
- 2Department of Chemistry, University of California, Riverside, California
| | - Scott E. Cramer
- 1Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California
| | - Cynthia K. Larive
- 2Department of Chemistry, University of California, Riverside, California
| | - Christian Lytle
- 1Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California
| |
Collapse
|
5
|
Glaser M, Palmhof M, Schulte D, Schmid H, Stute G, Dick HB, Joachim SC. [Marginal protection of retinal cells by bisperoxovanadium : Appropriate therapy in the model of retinal ischemia?]. Ophthalmologe 2018; 116:152-163. [PMID: 29404677 DOI: 10.1007/s00347-018-0651-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Ischemic processes usually lead to the destruction of retinal cells and therefore play a key role in a multitude of eye diseases. OBJECTIVE The aim of this study was to investigate whether bisperoxovanadium has a potential neuroprotective effect in an ischemia/reperfusion animal model. MATERIAL AND METHODS Initially, ischemia was induced in one eye of an ischemia/reperfusion model and 3 days later, a 14-day medication-based treatment was initiated. Bisperoxovanadium was administered intraperitoneally every 3 days. Subsequently, the number of ganglion cells, the rate of apoptosis, amacrine cells, macroglia, microglia, and their activation state, as well as photoreceptors were determined by histological and immunohistochemical analyses. RESULTS In comparison to the control group, a significant retinal ganglion cell loss, a significant reduction of the inner layers as well as a decrease in photoreceptor and amacrine cell numbers could be determined in the ischemic eyes. In addition, there was an increase in the number of microglia in these animals. The rats treated with bisperoxovanadium did not exhibit a significant neuroprotective effect regarding the number of ganglion cells, the rate of apoptosis, macroglia, amacrine cells, or photoreceptors; however, a low structural degeneration of photoreceptors could be observed as an effect of the treatment. Additionally, fewer microglia and activated microglia were observed after bisperoxovanadium treatment. CONCLUSION Bisperoxovanadium seems to have only a marginal neuroprotective effect on ischemic retinae. It needs to be examined whether earlier therapy onset, higher dose or different route of administration would significantly improve the results or whether this therapeutic approach is unsuitable.
Collapse
Affiliation(s)
- M Glaser
- Experimental Eye Research Institute, Universitäts-Augenklinik, Ruhr-Universität Bochum, In der Schornau 23-25, 44892, Bochum, Deutschland
| | - M Palmhof
- Experimental Eye Research Institute, Universitäts-Augenklinik, Ruhr-Universität Bochum, In der Schornau 23-25, 44892, Bochum, Deutschland
| | - D Schulte
- Experimental Eye Research Institute, Universitäts-Augenklinik, Ruhr-Universität Bochum, In der Schornau 23-25, 44892, Bochum, Deutschland
| | - H Schmid
- Experimental Eye Research Institute, Universitäts-Augenklinik, Ruhr-Universität Bochum, In der Schornau 23-25, 44892, Bochum, Deutschland
| | - G Stute
- Experimental Eye Research Institute, Universitäts-Augenklinik, Ruhr-Universität Bochum, In der Schornau 23-25, 44892, Bochum, Deutschland
| | - H B Dick
- Experimental Eye Research Institute, Universitäts-Augenklinik, Ruhr-Universität Bochum, In der Schornau 23-25, 44892, Bochum, Deutschland
| | - S C Joachim
- Experimental Eye Research Institute, Universitäts-Augenklinik, Ruhr-Universität Bochum, In der Schornau 23-25, 44892, Bochum, Deutschland.
| |
Collapse
|
6
|
Vinpocetine protects inner retinal neurons with functional NMDA glutamate receptors against retinal ischemia. Exp Eye Res 2018; 167:1-13. [DOI: 10.1016/j.exer.2017.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/31/2017] [Accepted: 10/08/2017] [Indexed: 11/21/2022]
|
7
|
Reinehr S, Kuehn S, Casola C, Koch D, Stute G, Grotegut P, Dick HB, Joachim SC. HSP27 immunization reinforces AII amacrine cell and synapse damage induced by S100 in an autoimmune glaucoma model. Cell Tissue Res 2017; 371:237-249. [PMID: 29064077 DOI: 10.1007/s00441-017-2710-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 10/11/2017] [Indexed: 12/11/2022]
Abstract
Previous studies have revealed a loss of retinal ganglion cells (RGCs) and optic nerve fibers after immunization with the S100B protein. Addition of heat shock protein 27 (HSP27) also leads to a decrease of RGCs. Our present aim has been to analyze various retinal cell types after immunization with S100B or S100B + HSP27 (S100 + HSP). After 28 days, retinas were processed for immunohistology and Western blot. RGCs, immunostained for NeuN, were significantly decreased in the S100 and the S100 + HSP groups. Significantly fewer ChAT+ cells were noted in both groups, whereas parvalbumin+ cells were only affected in the S100 + HSP group. Western blot results also revealed fewer ChAT signals in both immunized groups. No changes were noted with regard to PKCα+ rod bipolar cells, whereas a significant loss of recoverin+ cone bipolar cells was observed in both groups via immunohistology and Western blot. The presynaptic marker Bassoon and the postsynaptic marker PSD95 were significantly reduced in the S100 + HSP group. Opsin+ and rhodopsin+ photoreceptors revealed no changes in either group. Thus, the inner retinal layers are affected by immunization. However, the combination of S100 and HSP27 has a stronger additive effect on the retinal synapses and AII amacrine cells.
Collapse
Affiliation(s)
- Sabrina Reinehr
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Sandra Kuehn
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Christina Casola
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Dennis Koch
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Gesa Stute
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Pia Grotegut
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - H Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany.
| |
Collapse
|
8
|
Renner M, Stute G, Alzureiqi M, Reinhard J, Wiemann S, Schmid H, Faissner A, Dick HB, Joachim SC. Optic Nerve Degeneration after Retinal Ischemia/Reperfusion in a Rodent Model. Front Cell Neurosci 2017; 11:254. [PMID: 28878627 PMCID: PMC5572359 DOI: 10.3389/fncel.2017.00254] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/08/2017] [Indexed: 01/11/2023] Open
Abstract
Retinal ischemia is a common pathomechanism in many ocular disorders such as age-related macular degeneration (AMD), diabetic retinopathy, glaucoma or retinal vascular occlusion. Several studies demonstrated that ischemia/reperfusion (I/R) leads to morphological and functional changes of different retinal cell types. However, little is known about the ischemic effects on the optic nerve. The goal of this study was to evaluate these effects. Ischemia was induced by raising the intraocular pressure (IOP) in one eye of rats to 140 mmHg for 1 h followed by natural reperfusion. After 21 days, histological as well as quantitative real-time PCR (qRT-PCR) analyses of optic nerves were performed. Ischemic optic nerves showed an infiltration of cells and also degeneration with signs of demyelination. Furthermore, a migration and an activation of microglia could be observed histologically as well as on mRNA level. In regard to macroglia, a trend toward gliosis could be noted after ischemia induction by vimentin staining. Additionally, an up-regulation of glial fibrillary acidic protein (GFAP) mRNA was found in ischemic optic nerves. Counting of oligodendrocyte transcription factor 2 positive (Olig2+) cells revealed a decrease of oligodendrocytes in the ischemic group. Also, myelin basic protein (MBP) and myelin oligodendrocyte glycoprotein (MOG) mRNA expression was down-regulated after induction of I/R. On immunohistological level, a decrease of MOG was detectable in ischemic optic nerves as well. In addition, SMI-32 stained neurofilaments of longitudinal optic nerve sections showed a strong structural damage of the ischemic optic nerves in comparison to controls. Consequently, retinal ischemia impacts optic nerve degeneration. These findings could help to better understand the course of destruction in the optic nerve after an ischemic insult. Especially for therapeutic studies, the optic nerve is important because of its susceptibility to be damaged as a result to retinal ischemic injury and also its connecting function between the eye and the brain. So, future drug screenings should target not only the retina, but also the functionality and structure of the optic nerve. In the future, these results could lead to the development of new therapeutic strategies for treatment of ischemic injury.
Collapse
Affiliation(s)
- Marina Renner
- Experimental Eye Research, University Eye Hospital, Ruhr-University BochumBochum, Germany
| | - Gesa Stute
- Experimental Eye Research, University Eye Hospital, Ruhr-University BochumBochum, Germany
| | - Mohammad Alzureiqi
- Experimental Eye Research, University Eye Hospital, Ruhr-University BochumBochum, Germany
| | - Jacqueline Reinhard
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University BochumBochum, Germany
| | - Susanne Wiemann
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University BochumBochum, Germany
| | - Heiko Schmid
- Experimental Eye Research, University Eye Hospital, Ruhr-University BochumBochum, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University BochumBochum, Germany
| | - H Burkhard Dick
- Experimental Eye Research, University Eye Hospital, Ruhr-University BochumBochum, Germany
| | - Stephanie C Joachim
- Experimental Eye Research, University Eye Hospital, Ruhr-University BochumBochum, Germany
| |
Collapse
|
9
|
Joachim SC, Renner M, Reinhard J, Theiss C, May C, Lohmann S, Reinehr S, Stute G, Faissner A, Marcus K, Dick HB. Protective effects on the retina after ranibizumab treatment in an ischemia model. PLoS One 2017; 12:e0182407. [PMID: 28800629 PMCID: PMC5553852 DOI: 10.1371/journal.pone.0182407] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/18/2017] [Indexed: 12/13/2022] Open
Abstract
Retinal ischemia is common in eye disorders, like diabetic retinopathy or retinal vascular occlusion. The goal of this study was to evaluate the potential protective effects of an intravitreally injected vascular endothelial growth factor (VEGF) inhibitor (ranibizumab) on retinal cells in an ischemia animal model via immunohistochemistry (IF) and quantitative real-time PCR (PCR). A positive binding of ranibizumab to rat VEGF-A was confirmed via dot blot. One eye underwent ischemia and a subgroup received ranibizumab. A significant VEGF increase was detected in aqueous humor of ischemic eyes (p = 0.032), whereas VEGF levels were low in ranibizumab eyes (p = 0.99). Ischemic retinas showed a significantly lower retinal ganglion cell number (RGC; IF Brn-3a: p<0.001, IF RBPMS: p<0.001; PCR: p = 0.002). The ranibizumab group displayed fewer RGCs (IF Brn-3a: 0.3, IF RBPMS: p<0.001; PCR: p = 0.007), but more than the ischemia group (IF Brn-3a: p = 0.04, IF RBPMS: p = 0.03). Photoreceptor area was decreased after ischemia (IF: p = 0.049; PCR: p = 0.511), while the ranibizumab group (IF: p = 0.947; PCR: p = 0.122) was comparable to controls. In the ischemia (p<0.001) and ranibizumab group (p<0.001) a decrease of ChAT+ amacrine cells was found, which was less prominent in the ranibizumab group. VEGF-receptor 2 (VEGF-R2; IF: p<0.001; PCR: p = 0.021) and macroglia (GFAP; IF: p<0.001; PCR: p<0.001) activation was present in ischemic retinas. The activation was weaker in ranibizumab retinas (VEGF-R2: IF: p = 0.1; PCR: p = 0.03; GFAP: IF: p = 0.1; PCR: p = 0.015). An increase in the number of total (IF: p = 0.003; PCR: p = 0.023) and activated microglia (IF: p<0.001; PCR: p = 0.009) was detected after ischemia. These levels were higher in the ranibizumab group (Iba1: IF: p<0.001; PCR: p = 0.018; CD68: IF: p<0.001; PCR: p = 0.004). Our findings demonstrate that photoreceptors and RGCs are protected by ranibizumab treatment. Only amacrine cells cannot be rescued. They seem to be particularly sensitive to ischemic damage and need maybe an earlier intervention.
Collapse
Affiliation(s)
- Stephanie C. Joachim
- Experimental Eye Research, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23–25, Bochum, Germany
- * E-mail:
| | - Marina Renner
- Experimental Eye Research, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23–25, Bochum, Germany
| | - Jacqueline Reinhard
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitätsstrasse 150, Bochum, Germany
| | - Carsten Theiss
- Department of Cytology, Faculty of Medicine, Ruhr-University Bochum, Universitätsstrasse 150, Bochum, Germany
| | - Caroline May
- Medizinisches Proteom-Center, Ruhr-University Bochum, Universitätsstrasse 150, Bochum, Germany
| | - Stephanie Lohmann
- Experimental Eye Research, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23–25, Bochum, Germany
| | - Sabrina Reinehr
- Experimental Eye Research, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23–25, Bochum, Germany
| | - Gesa Stute
- Experimental Eye Research, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23–25, Bochum, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitätsstrasse 150, Bochum, Germany
| | - Katrin Marcus
- Medizinisches Proteom-Center, Ruhr-University Bochum, Universitätsstrasse 150, Bochum, Germany
| | - H. Burkhard Dick
- Experimental Eye Research, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23–25, Bochum, Germany
| |
Collapse
|
10
|
Spix NJ, Liu LL, Zhang Z, Hohlbein JP, Prigge CL, Chintala S, Ribelayga CP, Zhang DQ. Vulnerability of Dopaminergic Amacrine Cells to Chronic Ischemia in a Mouse Model of Oxygen-Induced Retinopathy. Invest Ophthalmol Vis Sci 2017; 57:3047-57. [PMID: 27281270 PMCID: PMC4913805 DOI: 10.1167/iovs.16-19346] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Retinal dopamine deficiency is a potential cause of myopia and visual deficits in retinopathy of prematurity (ROP). We investigated the cellular mechanisms responsible for lowered levels of retinal dopamine in an oxygen-induced retinopathy (OIR) mouse model of ROP. Methods Retinopathy was induced by exposing mice to 75% oxygen from postnatal day 7 (P7) to P12. Oxygen-induced retinopathy and age-matched control mice were euthanized at P12, P17, P25, or P42 to P50. Immunohistochemistry, electrophysiology, and biochemical approaches were used to determine the effect of OIR on the structure and function of dopaminergic amacrine cells (DACs). Results The total number of DACs was unchanged in OIR retinas at P12 despite significant capillary dropout in the central retina. However, a significant loss of DACs was observed in P17 OIR retinas (in which neovascularization was maximal), with the cell loss being more profound in the central (avascular) than in the peripheral (neovascular) regions. Cell loss was persistent in both regions at P25, at which time retinal neovascularization had regressed. At P42, the percentage of DACs lost (54%) was comparable to the percent decrease in total dopamine content (53%). Additionally, it was found that DACs recorded in OIR retinas at P42 to P50 had a complete dendritic field and exhibited relatively normal spontaneous and light-induced electrical activity. Conclusions The results suggest that remaining DACs are structurally and functionally intact and that loss of DACs is primarily responsible for the decreased levels of retinal dopamine observed after OIR.
Collapse
Affiliation(s)
- Nathan J Spix
- Eye Research Institute Oakland University, Rochester, Michigan, United States
| | - Lei-Lei Liu
- Eye Research Institute Oakland University, Rochester, Michigan, United States
| | - Zhijing Zhang
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States
| | - Joshua P Hohlbein
- Eye Research Institute Oakland University, Rochester, Michigan, United States
| | - Cameron L Prigge
- Eye Research Institute Oakland University, Rochester, Michigan, United States
| | - Shravan Chintala
- Eye Research Institute Oakland University, Rochester, Michigan, United States
| | - Christophe P Ribelayga
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States 3Graduate School of Biomedical Sciences, The University of Texas Health Science Center at
| | - Dao-Qi Zhang
- Eye Research Institute Oakland University, Rochester, Michigan, United States
| |
Collapse
|
11
|
He T, Mortensen X, Wang P, Tian N. The effects of immune protein CD3ζ development and degeneration of retinal neurons after optic nerve injury. PLoS One 2017; 12:e0175522. [PMID: 28441398 PMCID: PMC5404868 DOI: 10.1371/journal.pone.0175522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/27/2017] [Indexed: 02/07/2023] Open
Abstract
Major histocompatibility complex (MHC) class I molecules and their receptors play fundamental roles in neuronal death during diseases. T-cell receptors (TCR) function as MHCI receptor on T-cells and both MHCI and a key component of TCR, CD3ζ, are expressed by mouse retinal ganglion cells (RGCs) and displaced amacrine cells. Mutation of these molecules compromises the development of RGCs. We investigated whether CD3ζ regulates the development and degeneration of amacrine cells after RGC death. Surprisingly, mutation of CD3ζ not only impairs the proper development of amacrine cells expressing CD3ζ but also those not expressing CD3ζ. In contrast to effects of MHCI and its receptor, PirB, on other neurons, mutation of CD3ζ has no effect on RGC death and starburst amacrine cells degeneration after optic nerve crush. Thus, unlike MHCI and PirB, CD3ζ regulates the development of RGCs and amacrine cells but not their degeneration after optic nerve crush.
Collapse
Affiliation(s)
- Tao He
- Eye Center Remin Hospital of Wuhan University Wuhan, Hubei, PR China
- Department of Ophthalmology and Visual Science John Moran Eye Center University of Utah School of Medicine, Salt Lake City, UT, United States of America
| | - Xavier Mortensen
- Department of Ophthalmology and Visual Science John Moran Eye Center University of Utah School of Medicine, Salt Lake City, UT, United States of America
| | - Ping Wang
- Department of Ophthalmology and Visual Science John Moran Eye Center University of Utah School of Medicine, Salt Lake City, UT, United States of America
| | - Ning Tian
- Department of Ophthalmology and Visual Science John Moran Eye Center University of Utah School of Medicine, Salt Lake City, UT, United States of America
- VA Salt Lake City Health Care System, Salt Lake City, UT, United States of America
- * E-mail:
| |
Collapse
|
12
|
Nivison-Smith L, Khoo P, Acosta ML, Kalloniatis M. Pre-treatment with vinpocetine protects against retinal ischemia. Exp Eye Res 2016; 154:126-138. [PMID: 27899287 DOI: 10.1016/j.exer.2016.11.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/17/2016] [Accepted: 11/22/2016] [Indexed: 01/15/2023]
Abstract
Vinpocetine has been shown to have beneficial effects for tissues of the central nervous system subjected to ischemia and other related metabolic insults. We recently showed vinpocetine promotes glucose availability, prevents unregulated cation channel permeability and regulates glial reactivity when present during retinal ischemia. Less is known however about the ability of vinpocetine to protect against future ischemic insults. This study explores the effect of vinpocetine when used as a pre-treatment in an ex vivo model for retinal ischemia using cation channel permeability of agmatine (AGB) combined with immunohistochemistry as a measure for cell functionality. We found that vinpocetine pre-treatment reduced cation channel permeability and apoptotic marker immunoreactivity in the GCL and increased parvalbumin immunoreactivity of inner retinal neurons in the inner nuclear layer following ischemic insult. Vinpocetine pre-treatment also reduced Müller cell reactivity following ischemic insults of up to 120 min compared to untreated controls. Many of vinpocetine's effects however were transient in nature suggesting the drug can protect retinal neurons against future ischemic damage but may have limited long-term applications.
Collapse
Affiliation(s)
- Lisa Nivison-Smith
- Centre for Eye Health, University of New South Wales, Sydney, 2052, Australia; School of Optometry and Vision Science, University of New South Wales, Sydney, 2052, Australia.
| | - Pauline Khoo
- School of Optometry and Vision Science, University of New South Wales, Sydney, 2052, Australia
| | - Monica L Acosta
- School of Optometry and Vision Science, University of Auckland, New Zealand; New Zealand National Eye Centre, University of Auckland, New Zealand
| | - Michael Kalloniatis
- Centre for Eye Health, University of New South Wales, Sydney, 2052, Australia; School of Optometry and Vision Science, University of New South Wales, Sydney, 2052, Australia; School of Optometry and Vision Science, University of Auckland, New Zealand; New Zealand National Eye Centre, University of Auckland, New Zealand
| |
Collapse
|
13
|
Ortín-Martínez A, Salinas-Navarro M, Nadal-Nicolás FM, Jiménez-López M, Valiente-Soriano FJ, García-Ayuso D, Bernal-Garro JM, Avilés-Trigueros M, Agudo-Barriuso M, Villegas-Pérez MP, Vidal-Sanz M. Laser-induced ocular hypertension in adult rats does not affect non-RGC neurons in the ganglion cell layer but results in protracted severe loss of cone-photoreceptors. Exp Eye Res 2015; 132:17-33. [PMID: 25576772 DOI: 10.1016/j.exer.2015.01.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/19/2014] [Accepted: 01/07/2015] [Indexed: 01/09/2023]
Abstract
To investigate the long-term effects of laser-photocoagulation (LP)-induced ocular hypertension (OHT) in the innermost and outermost (outer-nuclear and outer segment)-retinal layers (ORL). OHT was induced in the left eye of adult rats. To investigate the ganglion cell layer (GCL) wholemounts were examined at 1, 3 or 6 months using Brn3a-immunodetection to identify retinal ganglion cells (RGCs) and DAPI-staining to detect all nuclei in this layer. To study the effects of LP on the ORL up to 6 months, retinas were: i) fresh extracted to quantify the levels of rod-, S- and L-opsin; ii) cut in cross-sections for morphometric analysis, or; iii) prepared as wholemounts to quantify and study retinal distributions of entire populations of RGCs (retrogradely labeled with fluorogold, FG), S- and L-cones (immunolabeled). OHT resulted in wedge-like sectors with their apex on the optic disc devoid of Brn3a(+)RGCs but with large numbers of DAPI(+)nuclei. The levels of all opsins diminished by 2 weeks and further decreased to 20% of basal-levels by 3 months. Cross-sections revealed focal areas of ORL degeneration. RGC survival at 15 days represented approximately 28% and did not change with time, whereas the S- and L-cone populations diminished to 65% and 80%, or to 20 and 35% at 1 or 6 months, respectively. In conclusion, LP induces in the GCL selective RGCs loss that does not progress after 1 month, and S- and L-cone loss that progresses for up to 6 months. Thus, OHT results in severe damage to both the innermost and the ORL.
Collapse
Affiliation(s)
- Arturo Ortín-Martínez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), 30100 Murcia, Spain
| | - Manuel Salinas-Navarro
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), 30100 Murcia, Spain
| | - Francisco Manuel Nadal-Nicolás
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), 30100 Murcia, Spain
| | - Manuel Jiménez-López
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), 30100 Murcia, Spain
| | - Francisco Javier Valiente-Soriano
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), 30100 Murcia, Spain
| | - Diego García-Ayuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), 30100 Murcia, Spain
| | - José Manuel Bernal-Garro
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), 30100 Murcia, Spain
| | - Marcelino Avilés-Trigueros
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), 30100 Murcia, Spain
| | - Marta Agudo-Barriuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), 30100 Murcia, Spain
| | - María Paz Villegas-Pérez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), 30100 Murcia, Spain
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), 30100 Murcia, Spain.
| |
Collapse
|
14
|
Szabolcsi V, Celio MR. De novo expression of parvalbumin in ependymal cells in response to brain injury promotes ependymal remodeling and wound repair. Glia 2014; 63:567-94. [PMID: 25421913 DOI: 10.1002/glia.22768] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 11/06/2014] [Indexed: 12/21/2022]
Abstract
The calcium-binding protein parvalbumin (PV) hallmarks subpopulations of interneurons in the murine brain. We serendipitously observed the de novo expression of PV in ependymal cells of the lateral ventricle wall following in vivo lesioning and brain slicing for the preparation of organotypic hippocampal slice cultures (OHSCs). In OHSCs, de novo PV-expression begins shortly after the onset of culturing, and the number of ependymal cells implicated in this process increases with time. PV-immunopositive ependymal cells aggregate and form compact cell clusters, which are characterized by lumen-formation and beating cilia. Scratches inflicted on such clusters with a sharp knife are rapidly closed. Exposure of OHSCs to NF-КB-inhibitors and to antioxidants reduces PV-expression in ependymal cells, thereby implicating injury-induced inflammation in this process. Indeed, in vivo stab injury enhances PV-expression in ependymal cells adjacent to the lesion, whereas neuraminidase denudation is without effect. PV-knock-out mice manifest an impaired wound-healing response to in vivo injury, and a reduced scratch-wound reparation capacity in OHSCs. Whole-transcriptome analysis of ependymal-cell clusters in OHSCs revealed down-regulation of genes involved in cytoskeletal rearrangement, cell motility and cell adhesion in PV-knock out mice as compared with wild-type mice. Our data indicate that the injury-triggered up-regulation of PV-expression is mediated by inflammatory cytokines, and promotes the motility and adhesion of ependymal cells, thereby contributing to leakage closure by the re-establishment of a continuous ependymal layer.
Collapse
Affiliation(s)
- Viktória Szabolcsi
- Anatomy and Program in Neuroscience, Department of Medicine, University of Fribourg, Rte Albert Gockel 1, CH-1700, Fribourg, Switzerland
| | | |
Collapse
|
15
|
Light JG, Fransen JW, Adekunle AN, Adkins A, Pangeni G, Loudin J, Mathieson K, Palanker DV, McCall MA, Pardue MT. Inner retinal preservation in rat models of retinal degeneration implanted with subretinal photovoltaic arrays. Exp Eye Res 2014; 128:34-42. [PMID: 25224340 DOI: 10.1016/j.exer.2014.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/09/2014] [Accepted: 09/11/2014] [Indexed: 11/26/2022]
Abstract
Photovoltaic arrays (PVA) implanted into the subretinal space of patients with retinitis pigmentosa (RP) are designed to electrically stimulate the remaining inner retinal circuitry in response to incident light, thereby recreating a visual signal when photoreceptor function declines or is lost. Preservation of inner retinal circuitry is critical to the fidelity of this transmitted signal to ganglion cells and beyond to higher visual targets. Post-implantation loss of retinal interneurons or excessive glial scarring could diminish and/or eliminate PVA-evoked signal transmission. As such, assessing the morphology of the inner retina in RP animal models with subretinal PVAs is an important step in defining biocompatibility and predicting success of signal transmission. In this study, we used immunohistochemical methods to qualitatively and quantitatively compare inner retinal morphology after the implantation of a PVA in two RP models: the Royal College of Surgeons (RCS) or transgenic S334ter-line 3 (S334ter-3) rhodopsin mutant rat. Two PVA designs were compared. In the RCS rat, we implanted devices in the subretinal space at 4 weeks of age and histologically examined them at 8 weeks of age and found inner retinal morphology preservation with both PVA devices. In the S334ter-3 rat, we implanted devices at 6-12 weeks of age and again, inner retinal morphology was generally preserved with either PVA design 16-26 weeks post-implantation. Specifically, the length of rod bipolar cells and numbers of cholinergic amacrine cells were maintained along with their characteristic inner plexiform lamination patterns. Throughout the implanted retinas we found nonspecific glial reaction, but none showed additional glial scarring at the implant site. Our results indicate that subretinally implanted PVAs are well-tolerated in rodent RP models and that the inner retinal circuitry is preserved, consistent with our published results showing implant-evoked signal transmission.
Collapse
Affiliation(s)
- Jacob G Light
- Ophthalmology, Emory University, USA; Rehab R&D Center of Excellence, Atlanta VA Medical Center, USA
| | - James W Fransen
- Anatomical Sciences & Neurobiology, University of Louisville, USA
| | | | - Alice Adkins
- Rehab R&D Center of Excellence, Atlanta VA Medical Center, USA
| | - Gobinda Pangeni
- Ophthalmology & Visual Sciences, University of Louisville, USA
| | - James Loudin
- Hansen Experimental Physics Laboratory, Stanford University, USA
| | - Keith Mathieson
- Hansen Experimental Physics Laboratory, Stanford University, USA; Institute of Photonics, University of Strathclyde, UK
| | - Daniel V Palanker
- Hansen Experimental Physics Laboratory, Stanford University, USA; Ophthalmology, Stanford University, USA
| | - Maureen A McCall
- Anatomical Sciences & Neurobiology, University of Louisville, USA; Ophthalmology & Visual Sciences, University of Louisville, USA
| | - Machelle T Pardue
- Ophthalmology, Emory University, USA; Rehab R&D Center of Excellence, Atlanta VA Medical Center, USA.
| |
Collapse
|
16
|
D'Alessandro A, Cervia D, Catalani E, Gevi F, Zolla L, Casini G. Protective effects of the neuropeptides PACAP, substance P and the somatostatin analogue octreotide in retinal ischemia: a metabolomic analysis. MOLECULAR BIOSYSTEMS 2014; 10:1290-304. [PMID: 24514073 DOI: 10.1039/c3mb70362b] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ischemia is a primary cause of neuronal death in retinal diseases and the somatostatin subtype receptor 2 agonist octreotide (OCT) is known to decrease ischemia-induced retinal cell death. Using a recently optimized ex vivo mouse model of retinal ischemia, we tested the anti-ischemic potential of two additional neuropeptides, pituitary adenylate cyclase activating peptide (PACAP) and substance P (SP), and monitored the major changes occurring at the metabolic level. Metabolomics analyses were performed via fast HPLC online using a microTOF-Q MS instrument, a workflow that is increasingly becoming the gold standard in the field of metabolomics. The metabolomic approach allowed detection of the most significant alterations induced in the retina by ischemia and of the significance of the protective effects exerted by OCT, PACAP or SP. All treatments were shown to reduce ischemia-induced cell death, vascular endothelial growth factor over-expression and glutamate release. The metabolomic analysis showed that OCT and, to a lesser extent, also PACAP or SP, were able to counteract the ischemia-induced oxidative stress and to promote, with various efficacies, (i) decreased accumulation of glutamate and normalization of glutathione homeostasis; (ii) reduced build-up of α-ketoglutarate, which might serve as a substrate for the enhanced biosynthesis of glutamate in response to ischemia; (iii) reduced accumulation of peroxidized lipids and inflammatory mediators; (iv) the normalization of glycolytic fluxes and thus preventing the over-accumulation of lactate or either promoting the down-regulation of the glyoxalate anti-oxidant system; (v) a reduced metabolic shift from glycolysis towards the PPP or either a blockade at the non-oxidative phase of the PPP; and (vi) tuning down of purine metabolism. In addition, OCT seemed to stimulate nitric oxide production. None of the treatments was able to restore ATP production, although ATP reservoirs were partly replenished by OCT, PACAP or SP. These data indicate that, in addition to that of somatostatin, peptidergic systems such as those of PACAP and SP deserve attention in view of peptide-based therapies to treat ischemic retinal disorders.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Dipartimento di Scienze Ecologiche e Biologiche, Università della Tuscia, L.go dell'Università snc, I-01100 Viterbo, Italy.
| | | | | | | | | | | |
Collapse
|
17
|
Vinpocetine regulates cation channel permeability of inner retinal neurons in the ischaemic retina. Neurochem Int 2014; 66:1-14. [DOI: 10.1016/j.neuint.2014.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/09/2013] [Accepted: 01/04/2014] [Indexed: 11/23/2022]
|
18
|
Abstract
Retinal ischemia is a common clinical entity and, due to relatively ineffective treatment, remains a common cause of visual impairment and blindness. Generally, ischemic syndromes are initially characterized by low homeostatic responses which, with time, induce injury to the tissue due to cell loss by apoptosis. In this respect, retinal ischemia is a primary cause of neuronal death. It can be considered as a sort of final common pathway in retinal diseases and results in irreversible morphological and functional changes. This review summarizes the recent knowledge on the effects of ischemia in retinal tissue and points out experimental strategies/models performed to gain better comprehension of retinal ischemia diseases. In particular, the nature of the mechanisms leading to neuronal damage (i.e., excess of glutamate release, oxidative stress and inflammation) will be outlined as well as the potential and most intriguing retinoprotective approaches and the possible therapeutic use of naturally occurring molecules such as neuropeptides. There is a general agreement that a better understanding of the fundamental pathophysiology of retinal ischemia will lead to better management and improved clinical outcome. In this respect, to contrast this pathological state, specific pharmacological strategies need to be developed aimed at the many putative cascades generated during ischemia.
Collapse
|
19
|
Inhibition of hypoxia-induced [3H]glycine release from chicken retina by the glycine transporter type-1 (GlyT-1) inhibitors NFPS and Org-24461. Exp Eye Res 2012; 94:6-12. [DOI: 10.1016/j.exer.2011.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/17/2011] [Accepted: 10/18/2011] [Indexed: 11/19/2022]
|
20
|
Lee JH, Shin JM, Shin YJ, Chun MH, Oh SJ. Immunochemical changes of calbindin, calretinin and SMI32 in ischemic retinas induced by increase of intraocular pressure and by middle cerebral artery occlusion. Anat Cell Biol 2011; 44:25-34. [PMID: 21519546 PMCID: PMC3080005 DOI: 10.5115/acb.2011.44.1.25] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 02/24/2011] [Accepted: 03/02/2011] [Indexed: 12/31/2022] Open
Abstract
The reaction of neuroactive substances to ischemic conditions in the rat retina evoked by different methods was immunochemically evaluated in adult Sprague-Dawley rats. Ocular ischemic conditions were unilaterally produced by elevating intraocular pressure (EIOP) or by middle cerebral artery occlusion (MCAO). Two EF-hand calcium binding proteins, calbindin D28K (CB) and calretinin (CR), in the normal retina showed similar immunolocalization, such as the amacrine and displaced amacrine cells, the ganglion cells, and their processes, particularly CB in horizontal cells. CB immunoreactive neurons in the ganglion cell layer in both types of ischemic retinas were more reduced in number than CR neurons compared to those in a normal retina. The CB protein level in both ischemic retinas was reduced to 60-80% of normal. The CR protein level in MCAO retinas was reduced to about 80% of normal but increased gradually to the normal value, whereas that in the EIOP showed a gradual reduction and a slight recovery. SMI32 immunoreactivity, which detects a dephosphorylated epitope of neurofilaments-M and -H, appeared in the axon bundles of ganglion cells in the innermost nerve fiber layer of normal retinas. The reactivity in the nerve fiber bundles appeared to only increase slightly in EIOP retinas, whereas a moderate increase occurred in MCAO retinas. The SMI32 protein level in MCAO retinas showed a gradual increasing tendency, whereas that in the EIOP showed a slight fluctuation. Interestingly, the MCAO retinas showed additional SMI32 immunoreactivity in the cell soma of presumed ganglion cells, whereas that of EIOP appeared in the Müller proximal radial fibers. Glial fibrillary acidic protein (GFAP) immunoreactivity appeared in the astrocytes located in the nerve fiber layer of normal retinas. Additional GFAP immunoreactivity appeared in the Müller glial fibers deep in EIOP retinas and at the proximal end in MCAO retinas. These findings suggest that the neurons in the ganglion cell layer undergo degenerative changes in response to ischemia, although EIOP retinas represented a remarkable Müller glial reaction, whereas MCAO retinas had only a small-scaled axonal transport disturbance.
Collapse
Affiliation(s)
- Jong-Hyun Lee
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | |
Collapse
|
21
|
Bernstein SL, Guo Y. Changes in cholinergic amacrine cells after rodent anterior ischemic optic neuropathy (rAION). Invest Ophthalmol Vis Sci 2011; 52:904-10. [PMID: 20847114 PMCID: PMC3053113 DOI: 10.1167/iovs.10-5247] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 07/21/2010] [Accepted: 08/09/2010] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Displaced cholinergic amacrine cell neurons comprise a significant fraction of the retinal ganglion cell (RGC) layer. Rodent anterior ischemic optic neuropathy (rAION) is an optic nerve infarct, which results in RGC loss in mice. The goal was to determine whether rAION produces changes in amacrine cell neurons. METHODS rAION was generated in transgenic mice carrying a cyan fluorescent reporter protein (CFP) gene linked to the Thy-1 promoter, which expresses CFP in RGCs. rAION was induced with standard parameters. Retinas were examined pre-and post-induction by retinal fundus microscopy. rAION induction severity was scored by changes in retinal transparency and RGC loss. Cholinergic amacrine cells were identified via choline acetyltransferase (ChAT) immunohistochemistry. ChAT and CFP expression was evaluated in flat-mounted retinas examined by confocal microscopy and western analysis. RESULTS Moderate rAION induction levels (defined as early retention of retinal transparency and <70% RGC loss) did not alter amacrine cell numbers in the RGC layer, but changed the relative levels of ChAT expression by immunohistochemistry. No changes in total ChAT protein were seen. Severe rAION induction (defined as loss of retinal transparency and >70% RGC loss) resulted in a trend toward amacrine cell loss and decreased ChAT protein levels. CONCLUSIONS There is wide disparity in mouse rAION induction levels using standardized parameters. Moderate rAION induction levels without direct retinal compromise produces isolated RGC loss, with displaced amacrine cell changes likely due to changes in RGC-amacrine communication. Severe rAION induction results in both RGC and amacrine cell loss, possibly due to intra-retinal ischemic changes.
Collapse
Affiliation(s)
- Steven L Bernstein
- Departments of Ophthalmology, University of Maryland at Baltimore, School of Medicine, Baltimore, Maryland 21201, USA.
| | | |
Collapse
|
22
|
Li SY, Yang D, Yeung CM, Yu WY, Chang RCC, So KF, Wong D, Lo ACY. Lycium barbarum polysaccharides reduce neuronal damage, blood-retinal barrier disruption and oxidative stress in retinal ischemia/reperfusion injury. PLoS One 2011; 6:e16380. [PMID: 21298100 PMCID: PMC3027646 DOI: 10.1371/journal.pone.0016380] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 12/14/2010] [Indexed: 01/26/2023] Open
Abstract
Neuronal cell death, glial cell activation, retinal swelling and oxidative injury are complications in retinal ischemia/reperfusion (I/R) injuries. Lycium barbarum polysaccharides (LBP), extracts from the wolfberries, are good for “eye health” according to Chinese medicine. The aim of our present study is to explore the use of LBP in retinal I/R injury. Retinal I/R injury was induced by surgical occlusion of the internal carotid artery. Prior to induction of ischemia, mice were treated orally with either vehicle (PBS) or LBP (1 mg/kg) once a day for 1 week. Paraffin-embedded retinal sections were prepared. Viable cells were counted; apoptosis was assessed using TUNEL assay. Expression levels of glial fibrillary acidic protein (GFAP), aquaporin-4 (AQP4), poly(ADP-ribose) (PAR) and nitrotyrosine (NT) were investigated by immunohistochemistry. The integrity of blood-retinal barrier (BRB) was examined by IgG extravasations. Apoptosis and decreased viable cell count were found in the ganglion cell layer (GCL) and the inner nuclear layer (INL) of the vehicle-treated I/R retina. Additionally, increased retinal thickness, GFAP activation, AQP4 up-regulation, IgG extravasations and PAR expression levels were observed in the vehicle-treated I/R retina. Many of these changes were diminished or abolished in the LBP-treated I/R retina. Pre-treatment with LBP for 1 week effectively protected the retina from neuronal death, apoptosis, glial cell activation, aquaporin water channel up-regulation, disruption of BRB and oxidative stress. The present study suggests that LBP may have a neuroprotective role to play in ocular diseases for which I/R is a feature.
Collapse
Affiliation(s)
- Suk-Yee Li
- Eye Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Di Yang
- Eye Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Chung-Man Yeung
- Eye Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Wing-Yan Yu
- Eye Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Raymond Chuen-Chung Chang
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Research Center of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Kwok-Fai So
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Research Center of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - David Wong
- Eye Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Research Center of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- St. Paul's Eye Unit, The Royal Liverpool University Hospital, Liverpool, United Kingdom
| | - Amy C. Y. Lo
- Eye Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Research Center of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- * E-mail:
| |
Collapse
|
23
|
Kim SA, Jeon JH, Son MJ, Cha J, Chun MH, Kim IB. Changes in transcript and protein levels of calbindin D28k, calretinin and parvalbumin, and numbers of neuronal populations expressing these proteins in an ischemia model of rat retina. Anat Cell Biol 2010; 43:218-29. [PMID: 21212862 PMCID: PMC3015040 DOI: 10.5115/acb.2010.43.3.218] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/07/2010] [Accepted: 09/10/2010] [Indexed: 02/06/2023] Open
Abstract
Excessive calcium is thought to be a critical step in various neurodegenerative processes including ischemia. Calbindin D28k (CB), calretinin (CR), and parvalbumin (PV), members of the EF-hand calcium-binding protein family, are thought to play a neuroprotective role in various pathologic conditions by serving as a buffer against excessive calcium. The expression of CB, PV and CR in the ischemic rat retina induced by increasing intraocular pressure was investigated at the transcript and protein levels, by means of the quantitative real-time reverse transcription-polymerase chain reaction, western blot and immunohistochemistry. The transcript and protein levels of CB, which is strongly expressed in the horizontal cells in both normal and affected retinas, were not changed significantly and the number of CB-expressing horizontal cells remained unchanged throughout the experimental period 8 weeks after ischemia/reperfusion injury. At both the transcript and protein levels, however, CR, which is strongly expressed in several types of amacrine, ganglion, and displaced amacrine cells in both normal and affected retinas, was decreased. CR-expressing ganglion cell number was particularly decreased in ischemic retinas. Similar to the CR, PV transcript and protein levels, and PV-expressing AII amacrine cell number were decreased. Interestingly, in ischemic retinas PV was transiently expressed in putative cone bipolar cell types possibly those that connect with AII amacrine cells via gap junctions. These results suggest that these three calcium binding proteins may play different neuroprotective roles in ischemic insult by their ability to buffer calcium in the rat retina.
Collapse
Affiliation(s)
- Shin Ae Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
24
|
Fletcher EL, Phipps JA, Ward MM, Vessey KA, Wilkinson-Berka JL. The renin-angiotensin system in retinal health and disease: Its influence on neurons, glia and the vasculature. Prog Retin Eye Res 2010; 29:284-311. [PMID: 20380890 DOI: 10.1016/j.preteyeres.2010.03.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Renin-Angiotensin System is classically recognized for its role in the control of systemic blood pressure. However, the retina is recognized to have all the components necessary for angiotensin II formation, suggestive of a role for Angiotensin II in the retina that is independent of the systemic circulation. The most well described effects of Angiotensin II are on the retinal vasculature, with roles in vasoconstriction and angiogenesis. However, it is now emerging that Angiotensin II has roles in modulation of retinal function, possibly in regulating GABAergic amacrine cells. In addition, Angiotensin II is likely to have effects on glia. Angiotensin II has also been implicated in retinal vascular diseases such as Retinopathy of Prematurity and diabetic retinopathty, and more recently actions in choroidal neovascularizaiton and glaucoma have also emerged. The mechanisms by which Angiotensin II promotes angiogensis in retinal vascular diseases is indicative of the complexity of the RAS and the variety of cell types that it effects. Indeed, these diseases are not purely characterized by direct effects of Angiotensin II on the vasculature. In retinopathy of prematurity, for example, blockade of AT1 receptors prevents pathological angiogenesis, but also promotes revascularization of avascular regions of the retina. The primary site of action of Angiotensin II in this disease may be on retinal glia, rather than the vasculature. Indeed, blockade of AT1 receptors prevents glial loss and promotes the re-establishment of normal vessel growth. Blockade of RAS as a treatment for preventing the incidence and progression of diabetic retinopathy has also emerged based on a series of studies in animal models showing that blockade of the RAS prevents the development of a variety of vascular and neuronal deficits in this disease. Importantly these effects may be independent of actions on systemic blood pressure. This has culminated recently with the completion of several large multi-centre clinical trials that showed that blockade of the RAS may be of benefit in some at risk patients with diabetes. With the emergence of novel compounds targeting different aspects of the RAS even more effective ways of blocking the RAS may be possible in the future.
Collapse
Affiliation(s)
- Erica L Fletcher
- Department of Anatomy and Cell Biology, The University of Melbourne, Parkville 3010, Victoria, Australia.
| | | | | | | | | |
Collapse
|
25
|
Downie LE, Hatzopoulos KM, Pianta MJ, Vingrys AJ, Wilkinson-Berka JL, Kalloniatis M, Fletcher EL. Angiotensin type-1 receptor inhibition is neuroprotective to amacrine cells in a rat model of retinopathy of prematurity. J Comp Neurol 2010; 518:41-63. [DOI: 10.1002/cne.22205] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Sun D, Bui BV, Vingrys AJ, Kalloniatis M. Alterations in photoreceptor-bipolar cell signaling following ischemia/reperfusion in the rat retina. J Comp Neurol 2008; 505:131-46. [PMID: 17729268 DOI: 10.1002/cne.21470] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Studies of retinal ischemia/reperfusion indicate a disparity between the anatomical and functional results; while a large number of rod bipolar cells remain postischemia, there is a significant reduction in the amplitude of the scotopic b-wave of the electroretinogram (ERG). We investigated the alterations in photoreceptor-bipolar cell signaling following ischemia/reperfusion and suggest a mechanism for the decrease in b-wave amplitude. A cation channel probe (agmatine, 1-amino-4-guanidobutane, AGB) was used to assess cellular ion channel activity in neurochemically identified cells secondary to endogenous glutamate release or pharmacological manipulations. By applying the "neurochemical truth point" principle (Sun et al. [2007a] J Comp Neurol, this issue), we have been able to confirm the loss of specific subpopulations of neurons. ERG was used to assess gross retinal function, with parameters of the ERG model providing insight into changes in the phototransduction cascade and sensitivity of postreceptoral glutamate receptors. Following ischemia/reperfusion, rod bipolar cells maintained 2-amino-4-phosphonobutyric acid-responsive metabotropic glutamate receptors and displayed no change in sensitivity to flashes of light as assessed by ERG. Therefore, the loss in b-wave amplitude is likely due to alterations in photoreceptoral glutamate release detected as a change in postsynaptic AGB permeation into rod bipolar cells. Bipolar cell to amacrine cell signaling was also altered. The robust AGB entry into cholinergic amacrine cells was virtually absent in retinas that had undergone ischemia/reperfusion but remained in the AII amacrine cells. Such results suggest a loss of glutamate receptors and/or a change in receptor subunit expression in subpopulations of inner retinal neurons. Although many cells retain their characteristic neurochemical labeling following ischemia/reperfusion, caution should be used when assuming cells participate in functional retinal circuits based solely on the persistence of neurochemical labeling.
Collapse
Affiliation(s)
- Daniel Sun
- Department of Optometry and Vision Science, University of Auckland, New Zealand
| | | | | | | |
Collapse
|
27
|
Sun D, Vingrys AJ, Kalloniatis M. Metabolic and functional profiling of the ischemic/reperfused rat retina. J Comp Neurol 2008; 505:114-30. [PMID: 17729266 DOI: 10.1002/cne.21481] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We quantitatively tracked the recovery in amino acid labeling and cation channel functionality within distinct retinal elements for up to 2 weeks after an ischemic insult. Pattern recognition analysis of multiple amino acid and agmatine (a cation channel probe; 1-amino-4-guanidobutane; AGB) immunocytochemical patterns was used to classify all neural elements within the retina. This classification was spatially complete and with single-cell resolution. By 48 hours of reperfusion the amino acid labeling pattern of virtually all cell populations had returned to near preischemic levels, with the exception of glutamine and alanine levels, which remained significantly higher in many cell populations. Classification resulted in a total of 18 statistically separable theme classes (including neurons, glia, and extraretinal classes), a reduction of 10 theme classes from the normal retina (Sun et al. [ 2007a, b] J Comp Neurol, this issue). In addition to the known selective losses of amacrine cell types within the inner nuclear layer, we now demonstrate a selective loss of theme classes representing cone bipolar cells within the bipolar cell population. While there was a recovery in the amino acid labeling pattern, there were persistent cation channel gating anomalies (as reflected by AGB labeling) within several theme classes, including the theme class representing all the remaining rod bipolar cells, suggesting aberrant neuronal function secondary to metabolic insult.
Collapse
Affiliation(s)
- Daniel Sun
- Department of Optometry and Vision Science, University of Auckland, New Zealand
| | | | | |
Collapse
|
28
|
Abstract
Animal models are useful to elucidate the etiology and pathology of glaucoma and to develop novel and more effective therapies for the disease. Because of the substantial similarities between the rodent and primate eyes, and the advances of relevant study techniques, rat and mouse models of glaucoma have recently become popular as research tools. This review surveys research techniques used in the measurement of rodent intraocular pressure, and also the evaluation of pertinent morphologic, biochemical, and functional changes in the retina, optic nerve head, and optic nerve. This review further describes in detail the individual rodent models, some of which serve as surrogate models and do not entail ocular hypertension, whereas others involve transient or chronic increases of intraocular pressure. The technical considerations and theoretical concerns of these models, their advantages, and limitations, are also discussed.
Collapse
Affiliation(s)
- Iok-Hou Pang
- Glaucoma Research, Alcon Research, Ltd, Fort Worth, TX, USA.
| | | |
Collapse
|
29
|
Hirata A, Inatani M, Inomata Y, Yonemura N, Kawaji T, Honjo M, Tanihara H. Y-27632, a Rho-associated protein kinase inhibitor, attenuates neuronal cell death after transient retinal ischemia. Graefes Arch Clin Exp Ophthalmol 2007; 246:51-9. [PMID: 17763865 DOI: 10.1007/s00417-007-0666-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 07/19/2007] [Accepted: 07/30/2007] [Indexed: 10/22/2022] Open
Abstract
PURPOSE Transient retinal ischemia induces the death of retinal neuronal cells. Postischemic damage is associated with the infiltration of leukocytes into the neural tissue through vascular endothelia. The current study aimed to investigate whether this damage was attenuated by the inhibition of Rho/ROCK (Rho kinases) signaling, recently shown to play a critical role in the transendothelial migration of leukocytes. METHODS Y-27632, a selective inhibitor of ROCK, was injected intravitreally into rat eyes with transient retinal ischemia. Cell loss of the ganglion cell layer (GCL) and thinning of the inner plexiform layer (IPL) with and without the administration of Y-27632 were evaluated by histological analysis, TUNEL assay and retrograde labeling of retinal ganglion cells (RGCs). To examine the attenuation of leukocyte infiltration in postischemic retinas with the administration of Y-27632, silver nitrate staining and immunohistochemistry using an anti-LCA antibody were performed. RESULTS Cell loss of the GCL and thinning of the IPL were significantly attenuated when 100 nmol Y-27632 was administered within three hours of the induction of ischemia. TUNEL assay and retrograde labeling of RGCs showed a decreased number of apoptotic cells and an increased number of RGCs in Y-27632-injected retinas. Moreover, silver nitrate staining and immunohistochemical analysis using an anti-LCA antibody showed that Y-27632 injection dramatically inhibited leukocyte infiltration and endothelial disarrangement. CONCLUSIONS Our data suggest that inhibition of Rho/ROCK signaling offers neuroprotective therapy against postischemic neural damage, by regulating leukocyte infiltration in the neural tissue.
Collapse
Affiliation(s)
- Akira Hirata
- Department of Ophthalmology and Visual Science, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Lim EJ, Kim IB, Oh SJ, Chun MH. Identification and characterization of SMI32-immunoreactive amacrine cells in the mouse retina. Neurosci Lett 2007; 424:199-202. [PMID: 17723270 DOI: 10.1016/j.neulet.2007.07.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 07/10/2007] [Accepted: 07/29/2007] [Indexed: 11/16/2022]
Abstract
Mammalian neurons express the neural intermediate filament protein neurofilament (NF). In the retina, NFs have been detected primarily in the axons and processes of retinal ganglion and horizontal cells. We found an amacrine cell type that was immunolabeled with an antibody against SMI32, a non-phosphorylated epitope on neurofilament proteins of high molecular weight, in the mouse retina. This type of amacrine cell was non-randomly distributed, and these cells exhibited a central-peripheral density gradient. Most of these cells co-expressed GABA and ChAT, but not glycine or any other amacrine cell marker. These results suggest that some SMI32-immunoreactive amacrine cells belong to a GABAergic population, and that SMI32 can therefore be used as a marker for a subset of amacrine cells in addition to ganglion cells and horizontal cells in the mouse retina.
Collapse
Affiliation(s)
- Eun-Jin Lim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Socho-gu, Seoul 137-701, Republic of Korea
| | | | | | | |
Collapse
|
31
|
Catalani E, Cervia D, Martini D, Bagnoli P, Simonetti E, Timperio AM, Casini G. Changes in neuronal response to ischemia in retinas with genetic alterations of somatostatin receptor expression. Eur J Neurosci 2007; 25:1447-59. [PMID: 17425570 DOI: 10.1111/j.1460-9568.2007.05419.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ischemia is a primary cause of neuronal death in retinal diseases. The repertoire of expressed transmitter receptors would determine the neurons' responses to ischemic damage, and peptidergic receptors may be involved. With a new in vitro model of the ischemic mouse retina, we investigated whether an altered expression of somatostatin receptors could modulate retinal responses to ischemia. We used retinas of somatostatin receptor 1 (sst(1)) knock out (KO) mice, where sst(2) are over-expressed and over-functional, and of sst(2) KO mice. TUNEL analysis of ischemic retinas showed a marked reduction of cell death in sst(1) KO retinas, while there were no differences between wild-type (WT) and sst(2) KO retinas. In addition, caspase-3 mRNA expression was also reduced in sst(1) KO as compared to WT retinas. An immunohistochemical analysis demonstrated that different cell populations responded differently to the ischemic insult, and that the persistence of some immunohistochemical markers was greater in sst(1) KO than in WT or in sst(2) KO retinas. In particular, rod bipolar cell survival was markedly improved in sst(1) KO retinas, while it was dramatically decreased in sst(2) KO retinas. Furthermore, consistent with a role of glutamate excitotoxicity in ischemia-induced neuronal death, retinal glutamate release was observed to increase under ischemic conditions, but this increase was significantly reduced in sst(1) KO retinas. These observations demonstrate that an increased presence of functional sst(2) protects against retinal ischemia, thus implementing the background for the use of sst(2) analogs in therapies of retinal diseases such as glaucoma or diabetic retinopathy.
Collapse
Affiliation(s)
- Elisabetta Catalani
- Dipartimento di Scienze Ambientali, Università della Tuscia, Largo dell'Università snc, Blocco D, 01100 Viterbo, Italy
| | | | | | | | | | | | | |
Collapse
|
32
|
Dijk F, Bergen AAB, Kamphuis W. GAP-43 expression is upregulated in retinal ganglion cells after ischemia/reperfusion-induced damage. Exp Eye Res 2007; 84:858-67. [PMID: 17343850 DOI: 10.1016/j.exer.2007.01.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 11/14/2006] [Accepted: 01/12/2007] [Indexed: 01/08/2023]
Abstract
In response to injury, the adult mammalian retina shows signs of structural remodeling, possibly in an attempt to preserve or regain some of its functional neural connections. In order to study the mechanisms involved in injury-induced plasticity, we have studied changes in growth associated protein 43 (GAP-43) after retinal ischemia/reperfusion in the rat. GAP-43 is a marker for neuronal remodeling and is involved in synapse formation. Ischemic injury of the rat retina was induced by 60 min of ischemia followed by reperfusion times varying from 2h up to 4 weeks. GAP-43 mRNA levels were significantly increased between 12h and 72 h reperfusion with a peak around 24h. GAP-43 specific antibodies showed that the total amount of GAP-43 labeling in the inner plexiform layer was diminished after 12h of reperfusion by approximately 35% and remained at this level up to 1 week postischemia despite the reduction in thickness of this layer during this period resulting from the ischemia-induced cell loss. At 2 and 4 weeks reperfusion, the amount of labeling was reduced by 70%, simultaneously with a decrease of GAP-43 transcript level. Between 72 h up to 2 weeks postischemia, the induction of intense GAP-43 labeling was observed in NeuN- and beta-tubulin-positive ganglion cell somata and in horizontally and vertically oriented processes in the inner plexiform layer. Ischemia also induced GAP-43 expression in some GFAP-positive Müller cells. Double-labeling showed that in controls and after ischemia GAP-43 was expressed by some amacrine cells of the glycinergic (glycine transporter 1), calretinin-positive, and dopaminergic (tyrosine hydroxylase) subpopulations. No increase of GAP-43 expression levels was found in these amacrine cells. The results demonstrate that ganglion cells show an elevated expression of GAP-43 after ischemia-inflicted damage. These findings suggest a temporal window during which ganglion cells may remodel their neuronal network in the damaged retina.
Collapse
Affiliation(s)
- Frederike Dijk
- Molecular Ophthalmogenetics, Netherlands Institute for Neuroscience (NIN), KNAW, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | | | | |
Collapse
|
33
|
Yamamoto H, Schmidt-Kastner R, Hamasaki DI, Yamamoto H, Parel JM. Complex neurodegeneration in retina following moderate ischemia induced by bilateral common carotid artery occlusion in Wistar rats. Exp Eye Res 2005; 82:767-79. [PMID: 16359664 DOI: 10.1016/j.exer.2005.09.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 09/25/2005] [Accepted: 09/27/2005] [Indexed: 12/30/2022]
Abstract
Bilateral common carotid artery occlusion (BCCAO) produces moderate levels of ischemia in the retina of rats, which may simulate the inflow disturbances in severe carotid artery disease. ERG changes following acute BCCAO have been well described, but the effects of chronic BCCAO on the histopathology of the retina remain to be characterized in a reproducible model. Chronic BCCAO was induced in halothane-anaesthetized male Wistar rats and the retina fixed after 3, 6, or 24 hr, 1 week, and 2, 4, or 6 months. Cell counts and measurements of retinal layers were performed in H&E stained paraffin sections. Immunohistochemistry with a panel of fourteen antibodies served to examine the survival of different retinal cell class, astrocytic reactions and the expression of acute stress response proteins. A lectin method was used to label activated microglial cells. Microglial activation, heme oxygenase-1 upregulation and caspase-3 cleavage occurred during the first 24hr in the absence of overt cell death of retinal ganglion cells (RGC). Three waves of neurodegeneration followed. RGCs were affected after 1 week, followed by neurons in the inner nuclear layer at 2 months, and finally photoreceptors at 4 months. Immunomarkers indicated acute damage to horizontal cells and prolonged survival of amacrine cells. In conclusion, chronic BCCAO produced delayed neuronal death in the retina of adult male Wistar rats. The window of moderate changes of at least 1 day may facilitate molecular studies on retinal ganglion cell loss.
Collapse
Affiliation(s)
- Hideo Yamamoto
- Bascom Palmer Eye Institute, Ophthalmic Biophysics Center, University of Miami School of Medicine, P.O. Box 016880, Miami, FL 33101, USA
| | | | | | | | | |
Collapse
|
34
|
Kielczewski JL, Pease ME, Quigley HA. The effect of experimental glaucoma and optic nerve transection on amacrine cells in the rat retina. Invest Ophthalmol Vis Sci 2005; 46:3188-96. [PMID: 16123418 PMCID: PMC1236985 DOI: 10.1167/iovs.05-0321] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To detect alterations in amacrine cells associated with retinal ganglion cell (RGC) depletion caused by experimental optic nerve transection and glaucoma. METHODS Intraocular pressure (IOP) was elevated unilaterally in 18 rats by translimbal trabecular laser treatment, and eyes were studied at 1 (n = 6), 2 (n = 5), and 3 (n = 7) months. Complete optic nerve transection was performed unilaterally in nine rats with survival for 1 (n = 4) and 3 (n = 5) months. Serial cryosections (five per eye) were immunohistochemically labeled with rabbit anti-gamma-aminobutyric acid (GABA) and anti-glycine antibodies. Cells in the ganglion cell and inner nuclear layers that labeled for GABA or glycine were counted in a masked fashion under bright-field microscopy. Additional labeling with other RGC and amacrine antigens was also performed. RGC loss was quantified by axon counts. RESULTS Amacrine cells identified by GABA and glycine labeling were not significantly affected by experimental glaucoma, with a mean decrease of 15% compared with bilaterally untreated control cells (557 +/- 186 neurons/mm [glaucoma] versus 653.9 +/- 114.4 neurons/mm [control] of retina; P = 0.15, t-test). There was no significant trend for amacrine cell counts to be lower in eyes with fewer RGCs (r = -0.39, P = 0.11). By contrast, there was highly significant loss of GABA and glycine staining 3 months after nerve transection, both in the treated and the fellow eyes (P < 0.0001, t-test). However, there was a substantial number of remaining amacrine cells in transected retinas, as indicated by labeling for calretinin and calbindin. CONCLUSIONS Experimental glaucoma causes minimal change in amacrine cells and their expression of neurotransmitters. After nerve transection, neurotransmitter presence declines, but many amacrine cell bodies remain. Differences among optic nerve injury models, as well as effects on "untreated" fellow eyes, should be recognized.
Collapse
Affiliation(s)
| | | | - Harry A. Quigley
- Corresponding author: Harry A. Quigley, Wilmer 122, Johns Hopkins Hospital, 600 North Wolfe Street, Baltimore, MD 21287;
| |
Collapse
|
35
|
Dijk F, van Leeuwen S, Kamphuis W. Differential effects of ischemia/reperfusion on amacrine cell subtype-specific transcript levels in the rat retina. Brain Res 2005; 1026:194-204. [PMID: 15488481 DOI: 10.1016/j.brainres.2004.08.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2004] [Indexed: 10/26/2022]
Abstract
Transient retinal ischemia induces loss of retinal ganglion cells, supporting the hypothesis that ischemic conditions contribute to the induction and progression of glaucoma. However, after 60 min of ischemia, also amacrine cells are lost from the inner nuclear layer. The main goal was to determine the relative vulnerability of various amacrine subpopulations by measuring the levels of transcripts that are known to be specifically expressed by different amacrine subpopulations. A 60-min ischemic period was administered to the rat eye by raising the intraocular pressure, followed by a reperfusion period lasting between 2 h and 4 weeks. Total RNA was isolated from the whole retina and expression levels were assessed by real-time quantitative polymerase chain reaction (qPCR). Retinal ischemia/reperfusion has differential effects on the levels of the various transcripts. Three main patterns of changes were identified. (i) A gradual decrease of transcript level without recovery was observed for parvalbumin; this transcript is expressed by the glycinergic AII cells. (ii) A gradual reduction to different levels at 72 h of reperfusion followed by a partial or complete recovery (glycine transporter 1, glutamate decarboxylase, calretinin, and several other transcripts). The glycinergic amacrine cell markers recovered to 65-75% of the control level, while the main GABAergic markers had completely recovered at 4 weeks. (iii) No significant changes of transcript levels were found for markers of several smaller GABAergic subpopulations [including substance P (Tac1), somatostatin, and others]. Expression levels of photoreceptor-, horizontal cell-, and bipolar cell-specific transcripts were not altered. These patterns were confirmed by a cluster analysis of the data. Based on gene expression levels, it may be concluded that amacrine cells are vulnerable to ischemic insults and that the glycinergic amacrine cells are relatively more sensitive to ischemia than the GABAergic population. In particular, the extensive loss of the parvalbumin-containing AII amacrine cells, which serve in the rod pathway, may have functional implications for vision under scotopic conditions. In the accompanying paper [F. Dijk and W. Kamphuis, An immunocytochemical study on specific amacrine subpopulations in the rat retina after ischemia, Brain Res. (2004).], the results are evaluated at the protein level by immunostaining for a selection of the amacrine cell markers.
Collapse
Affiliation(s)
- Frederike Dijk
- Netherlands Ophthalmic Research Institute KNAW, Glaucoma Research Group, Research Unit Molecular Ophthalmogenetics, Graduate School for the Neurosciences Amsterdam, Meibergdreef 47, Amsterdam 1105 BA, The Netherlands
| | | | | |
Collapse
|