1
|
Geng R, Wang Y, Wang R, Wu J, Bao X. Enhanced neurogenesis after ischemic stroke: The interplay between endogenous and exogenous stem cells. Neural Regen Res 2026; 21:212-223. [PMID: 39820432 PMCID: PMC12094570 DOI: 10.4103/nrr.nrr-d-24-00879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/02/2024] [Accepted: 11/26/2024] [Indexed: 01/19/2025] Open
Abstract
Ischemic stroke is a significant global health crisis, frequently resulting in disability or death, with limited therapeutic interventions available. Although various intrinsic reparative processes are initiated within the ischemic brain, these mechanisms are often insufficient to restore neuronal functionality. This has led to intensive investigation into the use of exogenous stem cells as a potential therapeutic option. This comprehensive review outlines the ontogeny and mechanisms of activation of endogenous neural stem cells within the adult brain following ischemic events, with focus on the impact of stem cell-based therapies on neural stem cells. Exogenous stem cells have been shown to enhance the proliferation of endogenous neural stem cells via direct cell-to-cell contact and through the secretion of growth factors and exosomes. Additionally, implanted stem cells may recruit host stem cells from their niches to the infarct area by establishing so-called "biobridges." Furthermore, xenogeneic and allogeneic stem cells can modify the microenvironment of the infarcted brain tissue through immunomodulatory and angiogenic effects, thereby supporting endogenous neuroregeneration. Given the convergence of regulatory pathways between exogenous and endogenous stem cells and the necessity for a supportive microenvironment, we discuss three strategies to simultaneously enhance the therapeutic efficacy of both cell types. These approaches include: (1) co-administration of various growth factors and pharmacological agents alongside stem cell transplantation to reduce stem cell apoptosis; (2) synergistic administration of stem cells and their exosomes to amplify paracrine effects; and (3) integration of stem cells within hydrogels, which provide a protective scaffold for the implanted cells while facilitating the regeneration of neural tissue and the reconstitution of neural circuits. This comprehensive review highlights the interactions and shared regulatory mechanisms between endogenous neural stem cells and exogenously implanted stem cells and may offer new insights for improving the efficacy of stem cell-based therapies in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Ruxu Geng
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuhe Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jun Wu
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China
| |
Collapse
|
2
|
Zou XF, Zhang BZ, Qian WW, Cheng FM. Bone marrow mesenchymal stem cells in treatment of peripheral nerve injury. World J Stem Cells 2024; 16:799-810. [PMID: 39219723 PMCID: PMC11362854 DOI: 10.4252/wjsc.v16.i8.799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/20/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024] Open
Abstract
Peripheral nerve injury (PNI) is a common neurological disorder and complete functional recovery is difficult to achieve. In recent years, bone marrow mesenchymal stem cells (BMSCs) have emerged as ideal seed cells for PNI treatment due to their strong differentiation potential and autologous transplantation ability. This review aims to summarize the molecular mechanisms by which BMSCs mediate nerve repair in PNI. The key mechanisms discussed include the differentiation of BMSCs into multiple types of nerve cells to promote repair of nerve injury. BMSCs also create a microenvironment suitable for neuronal survival and regeneration through the secretion of neurotrophic factors, extracellular matrix molecules, and adhesion molecules. Additionally, BMSCs release pro-angiogenic factors to promote the formation of new blood vessels. They modulate cytokine expression and regulate macrophage polarization, leading to immunomodulation. Furthermore, BMSCs synthesize and release proteins related to myelin sheath formation and axonal regeneration, thereby promoting neuronal repair and regeneration. Moreover, this review explores methods of applying BMSCs in PNI treatment, including direct cell transplantation into the injured neural tissue, implantation of BMSCs into nerve conduits providing support, and the application of genetically modified BMSCs, among others. These findings confirm the potential of BMSCs in treating PNI. However, with the development of this field, it is crucial to address issues related to BMSC therapy, including establishing standards for extracting, identifying, and cultivating BMSCs, as well as selecting application methods for BMSCs in PNI such as direct transplantation, tissue engineering, and genetic engineering. Addressing these issues will help translate current preclinical research results into clinical practice, providing new and effective treatment strategies for patients with PNI.
Collapse
Affiliation(s)
- Xiong-Fei Zou
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Bao-Zhong Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Beijing 100730, China.
| | - Wen-Wei Qian
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Florence Mei Cheng
- College of Nursing, The Ohio State University, Ohio, OH 43210, United States
| |
Collapse
|
3
|
Primak AL, Skryabina MN, Dzhauari SS, Tkachuk VA, Karagyaur MN. [The secretome of mesenchymal stromal cells as a new hope in the treatment of acute brain tissue injuries]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:83-91. [PMID: 38512099 DOI: 10.17116/jnevro202412403283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Ischemic and hemorrhagic strokes, traumatic brain injury, bacterial and viral encephalitis, toxic and metabolic encephalopathies are very different pathologies. But, they have much more in common than it might seem at first glance. In this review, the authors propose to consider these brain pathologies from the point of view of the unity of their pathogenetic mechanisms and approaches to therapy. Particular attention is paid to promising therapeutic approaches, such as therapy using cells and their secretion products: an analysis of the accumulated experimental data, the advantages and limitations of these approaches in the treatment of brain damage was carried out. The review may be of interest both to specialists in the field of neurology, neurosurgery and neurorehabilitation, and to readers who want to learn more about the progress of regenerative biomedicine in the treatment of brain pathologies.
Collapse
Affiliation(s)
- A L Primak
- Lomonosov Moscow State University, Moscow, Russia
| | | | - S S Dzhauari
- Lomonosov Moscow State University, Moscow, Russia
| | - V A Tkachuk
- Lomonosov Moscow State University, Moscow, Russia
| | | |
Collapse
|
4
|
Miceli V, Bulati M, Gallo A, Iannolo G, Busà R, Conaldi PG, Zito G. Role of Mesenchymal Stem/Stromal Cells in Modulating Ischemia/Reperfusion Injury: Current State of the Art and Future Perspectives. Biomedicines 2023; 11:689. [PMID: 36979668 PMCID: PMC10045387 DOI: 10.3390/biomedicines11030689] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Ischemia/reperfusion injury (IRI) is a multistep damage that occurs in several tissues when a blood flow interruption is inevitable, such as during organ surgery or transplantation. It is responsible for cell death and tissue dysfunction, thus leading, in the case of transplantation, to organ rejection. IRI takes place during reperfusion, i.e., when blood flow is restored, by activating inflammation and reactive oxygen species (ROS) production, causing mitochondrial damage and apoptosis of parenchymal cells. Unfortunately, none of the therapies currently in use are definitive, prompting the need for new therapeutic approaches. Scientific evidence has proven that mesenchymal stem/stromal cells (MSCs) can reduce inflammation and ROS, prompting this cellular therapy to also be investigated for treatment of IRI. Moreover, it has been shown that MSC therapeutic effects were mediated in part by their secretome, which appears to be involved in immune regulation and tissue repair. For these reasons, mediated MSC paracrine function might be key for injury amelioration upon IRI damage. In this review, we highlight the scientific literature on the potential beneficial use of MSCs and their products for improving IRI outcomes in different tissues/organs, focusing in particular on the paracrine effects mediated by MSCs, and on the molecular mechanisms behind these effects.
Collapse
Affiliation(s)
- Vitale Miceli
- Research Department, IRCSS ISMETT (Istituto Mediterraneo per I Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | | | | | | | | | | | - Giovanni Zito
- Research Department, IRCSS ISMETT (Istituto Mediterraneo per I Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| |
Collapse
|
5
|
Li M, Chen H, Zhu M. Mesenchymal stem cells for regenerative medicine in central nervous system. Front Neurosci 2022; 16:1068114. [PMID: 36583105 PMCID: PMC9793714 DOI: 10.3389/fnins.2022.1068114] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells, whose paracrine and immunomodulatory potential has made them a promising candidate for central nervous system (CNS) regeneration. Numerous studies have demonstrated that MSCs can promote immunomodulation, anti-apoptosis, and axon re-extension, which restore functional neural circuits. The therapeutic effects of MSCs have consequently been evaluated for application in various CNS diseases including spinal cord injury, cerebral ischemia, and neurodegenerative disease. In this review, we will focus on the research works published in the field of mechanisms and therapeutic effects of MSCs in CNS regeneration.
Collapse
Affiliation(s)
- Man Li
- Department of Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Chen
- Department of Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingxin Zhu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Mingxin Zhu,
| |
Collapse
|
6
|
Uwhangchungsimwon Inhibits Oxygen Glucose Deprivation/Re-Oxygenation-Induced Cell Death through Neuronal VEGF and IGF-1 Receptor Signaling and Synaptic Remodeling in Cortical Neurons. Antioxidants (Basel) 2022; 11:antiox11071388. [PMID: 35883879 PMCID: PMC9311511 DOI: 10.3390/antiox11071388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/10/2022] [Accepted: 07/10/2022] [Indexed: 11/17/2022] Open
Abstract
Uwhangchungsimwon (UCW), a multi-component herbal product, has long been used to treat vascular diseases such as headache, dizziness, high blood pressure, and stroke. Though the prophylactic actions of UCW are well known, insufficient experimental evidence exists on its effectiveness against stroke. Here, we investigated the mechanism underlying the efficacy of UCW in oxygen glucose deprivation/re-oxygenation (OGD/R)-injury to the primary cortical neurons using an in vitro ischemia model. Neurons secrete vascular endothelial growth factor (VEGF), which acts as a neurotrophic factor in response to an ischemic injury. VEGF modulates neuroprotection and axonal outgrowth by activating the VEGF receptors and plays a critical role in vascular diseases. In this study, cortical neurons were pretreated with UCW (2, 10, and 50 µg/mL) for 48 h, incubated in oxygen-glucose-deprived conditions for 2 h, and further reoxygenated for 24 h. UCW effectively protected neurons from OGD/R-induced degeneration and cell death. Moreover, the role of UCW in sustaining protection against OGD/R injury is associated with activation of VEGF-VEGFR and insulin-like growth factor 1 receptor expression. Therefore, UCW is a potential herbal supplement for the prevention of hypoxic-ischemic neuronal injury as it may occur after stroke.
Collapse
|
7
|
Zhang J, Jiang H, Wu F, Chi X, Pang Y, Jin H, Sun Y, Zhang S. Neuroprotective Effects of Hesperetin in Regulating Microglia Polarization after Ischemic Stroke by Inhibiting TLR4/NF- κB Pathway. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:9938874. [PMID: 34956584 PMCID: PMC8709759 DOI: 10.1155/2021/9938874] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Abstract
This study aimed to explore the influence of hesperidin on the polarization of microglia to clarify the key mechanism of regulating the polarization of M2 microglia. C57BL/6 mice were randomly divided into middle cerebral artery occlusion model group (MCAO group), MCAO + hesperidin treatment group (MCAO + hesperidin group), and sham group (sham operation group). The mice were assessed with neurological scores for their functional status. 2,3,5-Triphenyltetrazole chloride (TTC) was used to determine the volume of cerebral infarction. Hematoxylin and eosin (H&E) staining was performed to detect brain loss. The system with 1% O2, 5% CO2, and 92% N2 was applied to establish BV2 in vitro model induced by MCAO. TNF-α, IL-1β, TGF-β, and IL-10 levels of cytokines in the supernatant were detected by ELISA. RT-qPCR was used to detect mRNA levels of M1 iNOS, CD11b, CD32, and CD86, and mRNA levels of M2 CD206, Arg-1, and TGF-β. The Iba-1, iNOS, and Arg-1 of microglia and protein levels of TLR4 and p-NF-κB related to the pathway were detected by Western blot. After treatment with hesperidin, BV2 cells induced by MCAO in vitro can reduce the proinflammatory cytokines of TNF-α and IL-1β significantly, further upregulating anti-inflammatory cytokines of TGF-β, IL-10 while inhibiting TLR4 and p-NF-κB expression. The MCAO-induced BV2 cells treated by TLR-4 inhibitor TAK-242 and NF-κB inhibitor BAY 11-7082 had similar polarization effects to those treated with hesperidin. This study found that hesperetin gavage treatment can improve the neurological deficit and regulate the polarization of microglia in MCAO mice. In vitro experiments further verified that hesperidin plays a neuroprotective role by inhibiting the TLR4-NF-κB pathway, thus providing new targets and strategies for neuroprotection and nerve repair after ischemic stroke.
Collapse
Affiliation(s)
- Jiawen Zhang
- Department of Neurology Four Ward, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| | - Hao Jiang
- The Fifth Affiliated Hospital of Harbin Medical University, Qiqihar 161000, China
| | - Fang Wu
- Division of Liver Disease, Qiqihar Seventh Hospital, Qiqihar 161000, China
| | - Xiaofei Chi
- Department of Neurology Four Ward, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| | - Yu Pang
- Department of Neurology Four Ward, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| | - Hongwei Jin
- Department of Neurology Four Ward, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| | - Yuyang Sun
- Department of Neurology Four Ward, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| | - Shicun Zhang
- Department of Neurology Four Ward, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| |
Collapse
|
8
|
Strategies to Improve the Efficiency of Transplantation with Mesenchymal Stem Cells for the Treatment of Ischemic Stroke: A Review of Recent Progress. Stem Cells Int 2021; 2021:9929128. [PMID: 34490053 PMCID: PMC8418553 DOI: 10.1155/2021/9929128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/11/2022] Open
Abstract
Cerebral ischemia is a common global disease that is characterized by a loss of neurological function and a poor prognosis in many patients. However, only a limited number of treatments are available for this condition at present. Given that the efficacies of these treatments tend to be poor, cerebral ischemia can create a significant burden on patients, families, and society. Mesenchymal stem cell (MSC) transplantation treatment has shown significant potential in animal models of ischemic stroke; however, the specific mechanisms underlying this effect have yet to be elucidated. Furthermore, clinical trials have yet to yield promising results. Consequently, there is an urgent need to identify new methods to improve the efficiency of MSC transplantation as an optimal treatment for ischemic stroke. In this review, we provide an overview of recent scientific reports concerning novel strategies that promote MSC transplantation as an effective therapeutic approach, including physical approaches, chemical agents, traditional Chinese medicines and extracts, and genetic modification. Our analyses showed that two key factors need to be considered if we are to improve the efficacy of MSC transplantation treatments: survival ability and homing ability. We also highlight the importance of other significant mechanisms, including the enhanced activation of MSCs to promote neurogenesis and angiogenesis, and the regulation of permeability in the blood-brain barrier. Further in-depth investigations of the specific mechanisms underlying MSC transplantation treatment will help us to identify effective methods that improve the efficiency of MSC transplantation for ischemic stroke. The development of safer and more effective methods will facilitate the application of MSC transplantation as a promising adjuvant therapy for the treatment of poststroke brain damage.
Collapse
|
9
|
Sykova E, Cizkova D, Kubinova S. Mesenchymal Stem Cells in Treatment of Spinal Cord Injury and Amyotrophic Lateral Sclerosis. Front Cell Dev Biol 2021; 9:695900. [PMID: 34295897 PMCID: PMC8290345 DOI: 10.3389/fcell.2021.695900] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/31/2021] [Indexed: 01/01/2023] Open
Abstract
Preclinical and clinical studies with various stem cells, their secretomes, and extracellular vesicles (EVs) indicate their use as a promising strategy for the treatment of various diseases and tissue defects, including neurodegenerative diseases such as spinal cord injury (SCI) and amyotrophic lateral sclerosis (ALS). Autologous and allogenic mesenchymal stem cells (MSCs) are so far the best candidates for use in regenerative medicine. Here we review the effects of the implantation of MSCs (progenitors of mesodermal origin) in animal models of SCI and ALS and in clinical studies. MSCs possess multilineage differentiation potential and are easily expandable in vitro. These cells, obtained from bone marrow (BM), adipose tissue, Wharton jelly, or even other tissues, have immunomodulatory and paracrine potential, releasing a number of cytokines and factors which inhibit the proliferation of T cells, B cells, and natural killer cells and modify dendritic cell activity. They are hypoimmunogenic, migrate toward lesion sites, induce better regeneration, preserve perineuronal nets, and stimulate neural plasticity. There is a wide use of MSC systemic application or MSCs seeded on scaffolds and tissue bridges made from various synthetic and natural biomaterials, including human decellularized extracellular matrix (ECM) or nanofibers. The positive effects of MSC implantation have been recorded in animals with SCI lesions and ALS. Moreover, promising effects of autologous as well as allogenic MSCs for the treatment of SCI and ALS were demonstrated in recent clinical studies.
Collapse
Affiliation(s)
- Eva Sykova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dasa Cizkova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia.,Centre for Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Sarka Kubinova
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
10
|
Pathipati P, Lecuyer M, Faustino J, Strivelli J, Phinney DG, Vexler ZS. Mesenchymal Stem Cell (MSC)-Derived Extracellular Vesicles Protect from Neonatal Stroke by Interacting with Microglial Cells. Neurotherapeutics 2021; 18:1939-1952. [PMID: 34235636 PMCID: PMC8609070 DOI: 10.1007/s13311-021-01076-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2021] [Indexed: 02/04/2023] Open
Abstract
Mesenchymal stem cell (MSC)-based therapies are beneficial in models of perinatal stroke and hypoxia-ischemia. Mounting evidence suggests that in adult injury models, including stroke, MSC-derived small extracellular vesicles (MSC-sEV) contribute to the neuroprotective and regenerative effects of MSCs. Herein, we examined if MSC-sEV protect neonatal brain from stroke and if this effect is mediated via communication with microglia. MSC-sEV derived from bone marrow MSCs were characterized by size distribution (NanoSight™) and identity (protein markers). Studies in microglial cells isolated from the injured or contralateral cortex of postnatal day 9 (P9) mice subjected to a 3-h middle cerebral artery occlusion (tMCAO) and cultured (in vitro) revealed that uptake of fluorescently labeled MSC-sEV was significantly greater by microglia from the injured cortex vs. contralateral cortex. The cell-type-specific spatiotemporal distribution of MSC-sEV was also determined in vivo after tMCAO at P9. MSC-sEV administered at reperfusion, either by intracerebroventricular (ICV) or by intranasal (IN) routes, accumulated in the hemisphere ipsilateral to the occlusion, with differing spatial distribution 2 h, 18 h, and 72 h regardless of the administration route. By 72 h, MSC-sEV in the IN group was predominantly observed in Iba1+ cells with retracted processes and in GLUT1+ blood vessels in ischemic-reperfused regions. MSC-sEV presence in Iba1+ cells was sustained. MSC-sEV administration also significantly reduced injury volume 72 h after tMCAO in part via modulatory effects on microglial cells. Together, these data establish feasibility for MSC-sEV delivery to injured neonatal brain via a clinically relevant IN route, which affords protection during sub-acute injury phase.
Collapse
Affiliation(s)
- Praneeti Pathipati
- Department of Neurology, UCSF, 675 Nelson Rising Lane, San Francisco, CA, 94158-0663, USA
- Department of Pediatrics, UCSF, San Francisco, CA, USA
| | - Matthieu Lecuyer
- Department of Neurology, UCSF, 675 Nelson Rising Lane, San Francisco, CA, 94158-0663, USA
| | - Joel Faustino
- Department of Neurology, UCSF, 675 Nelson Rising Lane, San Francisco, CA, 94158-0663, USA
| | | | - Donald G Phinney
- Department of Molecular Medicine, Scripps Research Institute, Jupiter, FL, USA
| | - Zinaida S Vexler
- Department of Neurology, UCSF, 675 Nelson Rising Lane, San Francisco, CA, 94158-0663, USA.
| |
Collapse
|
11
|
Chen H, Shang D, Wen Y, Liang C. Bone-Derived Modulators That Regulate Brain Function: Emerging Therapeutic Targets for Neurological Disorders. Front Cell Dev Biol 2021; 9:683457. [PMID: 34179014 PMCID: PMC8222721 DOI: 10.3389/fcell.2021.683457] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/18/2021] [Indexed: 12/31/2022] Open
Abstract
Bone has traditionally been regarded as a structural organ that supports and protects the various organs of the body. Recent studies suggest that bone also acts as an endocrine organ to regulate whole-body metabolism. Particularly, homeostasis of the bone is shown to be necessary for brain development and function. Abnormal bone metabolism is associated with the onset and progression of neurological disorders. Recently, multiple bone-derived modulators have been shown to participate in brain function and neurological disorders, including osteocalcin, lipocalin 2, and osteopontin, as have bone marrow-derived cells such as mesenchymal stem cells, hematopoietic stem cells, and microglia-like cells. This review summarizes current findings regarding the roles of these bone-derived modulators in the brain, and also follows their involvement in the pathogenesis of neurological disorders. The content of this review may aide in the development of promising therapeutic strategies for neurological disorders via targeting bone.
Collapse
Affiliation(s)
- Hongzhen Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dewei Shang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuguan Wen
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chao Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
12
|
Bone marrow-derived mesenchymal stem cells improve post-ischemia neurological function in rats via the PI3K/AKT/GSK-3β/CRMP-2 pathway. Mol Cell Biochem 2021; 476:2193-2201. [PMID: 33559827 DOI: 10.1007/s11010-021-04073-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/16/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) is a potential therapy for cerebral ischemia. However, the underlying protective mechanism remains undetermined. Here, we tested the hypothesis that transplantation of BMSCs via intravenous injection can alleviate neurological functional deficits through activating PI3K/AKT signaling pathway after cerebral ischemia in rats. METHODS A cerebral ischemic rat model was established by the 2 h middle cerebral artery occlusion (MCAO). Twenty-four hours later, BMSCs (1 × 106 in 1 ml PBS) from SD rats were injected into the tail vein. Neurological function was evaluated by modified neurological severity score (mNSS) and modified adhesive removal test before and on d1, d3, d7, d10 and d14 after MCAO. Protein expressions of AKT, GSK-3β, CRMP-2 and GAP-43 were detected by Western-bolt. NF-200 was detected by immunofluorescence. RESULTS BMSCs transplantation did not only significantly improve the mNSS score and the adhesive-removal somatosensory test after MCAO, but also increase the density of NF-200 and the expression of p-AKT, pGSK-3β and GAP-43, while decrease the expression of pCRMP-2. Meanwhile, these effects can be suppressed by LY294002, a specific inhibitor of PI3K/AKT. CONCLUSION These data suggest that transplantation of BMSCs could promote axon growth and neurological deficit recovery after MCAO, which was associated with activation of PI3K/AKT /GSK-3β/CRMP-2 signaling pathway.
Collapse
|
13
|
Bonato JM, Meyer E, de Mendonça PSB, Milani H, Prickaerts J, Weffort de Oliveira RM. Roflumilast protects against spatial memory impairments and exerts anti-inflammatory effects after transient global cerebral ischemia. Eur J Neurosci 2021; 53:1171-1188. [PMID: 33340424 DOI: 10.1111/ejn.15089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
Phosphodiesterase 4 (PDE4) inhibitors have been shown to present beneficial effects in cerebral ischemic injury because of their ability to improve cognition and target different phases and mechanisms of cerebral ischemia, including apoptosis, neurogenesis, angiogenesis, and inflammation. The present study investigated whether repeated treatment with the PDE4 inhibitor roflumilast rescued memory loss and attenuated neuroinflammation in rats following transient global cerebral ischemia (TGCI). TGCI caused memory impairments, neuronal loss (reflected by Neuronal nuclei (NeuN) immunoreactivity), and compensatory neurogenesis (reflected by doublecortin (DCX) immunoreactivity) in the hippocampus. Also, increases in the protein expression of the phosphorylated response element-binding protein (pCREB) and inflammatory markers such as the glial fibrillary acidic protein (GFAP) and ionized calcium-binding adaptor molecule 1 (Iba-1), were detected in the hippocampus in TGCI rats. Repeated treatment with roflumilast (0.003 and 0.01 mg/kg) prevented spatial memory deficits without promoting hippocampal protection in ischemic animals. Roflumilast increased the levels of pCREB, arginase-1, interleukin (IL) 4, and IL-10 in the hippocampus 21 days after TGCI. These data suggest a protective effect of roflumilast against functional sequelae of cerebral ischemia, which might be related to its anti-inflammatory properties.
Collapse
Affiliation(s)
- Jéssica M Bonato
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| | - Erika Meyer
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| | | | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | | |
Collapse
|
14
|
Zhao L, Hu C, Han F, Chen D, Ma Y, Cai F, Chen J. Combination of mesenchymal stromal cells and machine perfusion is a novel strategy for organ preservation in solid organ transplantation. Cell Tissue Res 2021; 384:13-23. [PMID: 33439348 PMCID: PMC8016762 DOI: 10.1007/s00441-020-03406-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/15/2020] [Indexed: 12/22/2022]
Abstract
Organ preservation is a prerequisite for an urgent increase in the availability of organs for solid organ transplantation (SOT). An increasing amount of expanded criteria donor (ECD) organs are used clinically. Currently, the paradigm of organ preservation is shifting from simple reduction of cellular metabolic activity to maximal simulation of an ex vivo physiological microenvironment. An ideal organ preservation technique should not only preserve isolated organs but also offer the possibility of rehabilitation and evaluation of organ function prior to transplantation. Based on the fact that mesenchymal stromal cells (MSCs) possess strong regeneration properties, the combination of MSCs with machine perfusion (MP) is expected to be superior to conventional preservation methods. In recent years, several studies have attempted to use this strategy for SOT showing promising outcomes. With better organ function during ex vivo preservation and the potential of utilization of organs previously deemed untransplantable, this strategy is meaningful for patients with organ failure to help overcome organ shortage in the field of SOT.
Collapse
Affiliation(s)
- Lingfei Zhao
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang University, Hangzhou, Zhejiang Province People’s Republic of China
- Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| | - Chenxia Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| | - Fei Han
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang University, Hangzhou, Zhejiang Province People’s Republic of China
- Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| | - Dajin Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang University, Hangzhou, Zhejiang Province People’s Republic of China
- Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| | - Yanhong Ma
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang University, Hangzhou, Zhejiang Province People’s Republic of China
- Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| | - Fanghao Cai
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang University, Hangzhou, Zhejiang Province People’s Republic of China
- Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| | - Jianghua Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang University, Hangzhou, Zhejiang Province People’s Republic of China
- Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| |
Collapse
|
15
|
Chen PC, Kuo YC, Chuong CM, Huang YH. Niche Modulation of IGF-1R Signaling: Its Role in Stem Cell Pluripotency, Cancer Reprogramming, and Therapeutic Applications. Front Cell Dev Biol 2021; 8:625943. [PMID: 33511137 PMCID: PMC7835526 DOI: 10.3389/fcell.2020.625943] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
Stem cells work with their niches harmoniously during development. This concept has been extended to cancer pathology for cancer stem cells (CSCs) or cancer reprogramming. IGF-1R, a classical survival signaling, has been shown to regulate stem cell pluripotency, CSCs, or cancer reprogramming. The mechanism underlying such cell fate determination is unclear. We propose the determination is due to different niches in embryo development and tumor malignancy which modulate the consequences of IGF-1R signaling. Here we highlight the modulations of these niche parameters (hypoxia, inflammation, extracellular matrix), and the targeted stem cells (embryonic stem cells, germline stem cells, and mesenchymal stem cells) and CSCs, with relevance to cancer reprogramming. We organize known interaction between IGF-1R signaling and distinct niches in the double-sided cell fate with emerging trends highlighted. Based on these new insights, we propose that, through targeting IGF-1R signaling modulation, stem cell therapy and cancer stemness treatment can be further explored.
Collapse
Affiliation(s)
- Pei-Chin Chen
- Department of Education, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Internal Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yung-Che Kuo
- TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Yen-Hua Huang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan.,International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.,Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Comprehensive Cancer Center of Taipei Medical University, Taipei, Taiwan.,PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
16
|
Badyra B, Sułkowski M, Milczarek O, Majka M. Mesenchymal stem cells as a multimodal treatment for nervous system diseases. Stem Cells Transl Med 2020; 9:1174-1189. [PMID: 32573961 PMCID: PMC7519763 DOI: 10.1002/sctm.19-0430] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/05/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
Neurological disorders are a massive challenge for modern medicine. Apart from the fact that this group of diseases is the second leading cause of death worldwide, the majority of patients have no access to any possible effective and standardized treatment after being diagnosed, leaving them and their families helpless. This is the reason why such great emphasis is being placed on the development of new, more effective methods to treat neurological patients. Regenerative medicine opens new therapeutic approaches in neurology, including the use of cell-based therapies. In this review, we focus on summarizing one of the cell sources that can be applied as a multimodal treatment tool to overcome the complex issue of neurodegeneration-mesenchymal stem cells (MSCs). Apart from the highly proven safety of this approach, beneficial effects connected to this type of treatment have been observed. This review presents modes of action of MSCs, explained on the basis of data from vast in vitro and preclinical studies, and we summarize the effects of using these cells in clinical trial settings. Finally, we stress what improvements have already been made to clarify the exact mechanism of MSCs action, and we discuss potential ways to improve the introduction of MSC-based therapies in clinics. In summary, we propose that more insightful and methodical optimization, by combining careful preparation and administration, can enable use of multimodal MSCs as an effective, tailored cell therapy suited to specific neurological disorders.
Collapse
Affiliation(s)
- Bogna Badyra
- Department of TransplantationJagiellonian University Medical CollegeCracowPoland
| | - Maciej Sułkowski
- Department of TransplantationJagiellonian University Medical CollegeCracowPoland
| | - Olga Milczarek
- Department of Children NeurosurgeryJagiellonian University Medical CollegeCracowPoland
| | - Marcin Majka
- Department of TransplantationJagiellonian University Medical CollegeCracowPoland
| |
Collapse
|
17
|
Lee NH, Myeong SH, Son HJ, Hwang JW, Lee NK, Chang JW, Na DL. Ethionamide Preconditioning Enhances the Proliferation and Migration of Human Wharton's Jelly-Derived Mesenchymal Stem Cells. Int J Mol Sci 2020; 21:E7013. [PMID: 32977637 PMCID: PMC7583833 DOI: 10.3390/ijms21197013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are a useful source for cell-based therapy of a variety of immune-mediated diseases, including neurodegenerative disorders. However, poor migration ability and survival rate of MSCs after brain transplantation hinder the therapeutic effects in the disease microenvironment. Therefore, we attempted to use a preconditioning strategy with pharmacological agents to improve the cell proliferation and migration of MSCs. In this study, we identified ethionamide via the screening of a drug library, which enhanced the proliferation of MSCs. Preconditioning with ethionamide promoted the proliferation of Wharton's jelly-derived MSCs (WJ-MSCs) by activating phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein kinase/extracellular signal-regulated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK)1/2 signaling. Preconditioning with ethionamide also enhanced the migration ability of MSCs by upregulating expression of genes associated with migration, such as C-X-C motif chemokine receptor 4 (CXCR4) and C-X-C motif chemokine ligand 12 (CXCL12). Furthermore, preconditioning with ethionamide stimulated the secretion of paracrine factors, including neurotrophic and growth factors in MSCs. Compared to naïve MSCs, ethionamide-preconditioned MSCs (ETH-MSCs) were found to survive longer in the brain after transplantation. These results suggested that enhancing the biological process of MSCs induced by ethionamide preconditioning presents itself as a promising strategy for enhancing the effectiveness of MSCs-based therapies.
Collapse
Affiliation(s)
- Na-Hee Lee
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (N.-H.L.); (S.H.M.); (H.J.S.); (J.W.H.)
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Neuroscience Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea;
| | - Su Hyeon Myeong
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (N.-H.L.); (S.H.M.); (H.J.S.); (J.W.H.)
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Neuroscience Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea;
| | - Hyo Jin Son
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (N.-H.L.); (S.H.M.); (H.J.S.); (J.W.H.)
- Neuroscience Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea;
- School of Medicine, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
| | - Jung Won Hwang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (N.-H.L.); (S.H.M.); (H.J.S.); (J.W.H.)
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Neuroscience Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea;
| | - Na Kyung Lee
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea;
- School of Medicine, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Samsung Alzheimer Research Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
| | - Jong Wook Chang
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea;
- R & D Center, ENCell Co. Ltd., Seoul 06072, Korea
| | - Duk L. Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (N.-H.L.); (S.H.M.); (H.J.S.); (J.W.H.)
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Neuroscience Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea;
- Samsung Alzheimer Research Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
| |
Collapse
|
18
|
Mesenchymal stem cell therapy for ischemic stroke: A look into treatment mechanism and therapeutic potential. J Neurol 2020; 268:4095-4107. [DOI: 10.1007/s00415-020-10138-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022]
|
19
|
Nguyen LTB, Hsu CC, Ye H, Cui Z. Development of an in situ injectable hydrogel containing hyaluronic acid for neural regeneration. ACTA ACUST UNITED AC 2020; 15:055005. [PMID: 32324167 DOI: 10.1088/1748-605x/ab8c43] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this work, a novel enzymatically crosslinked injectable hydrogel comprising hyaluronic acid (HyA), dopamine (DA), and 3-(4-hydroxyphenyl) propionic acid (HPA) conjugates was successfully developed. To the best of our knowledge, it is the first time that HPA is conjugated to a HyA-based backbone. In situ hydrogelation of HyA-DA-HPA occurred in the presence of hydrogen peroxide (H2O2) as an oxidant and horseradish peroxidase (HRP) as a catalyst. Proton nuclear magnetic resonance and Fourier transform infrared spectroscopy were used to characterize the chemical reactions between HyA, DA, and HPA. Gel formation completed between 3 s to 5 min depending on the concentrations of polymer, HRP, and H2O2. Crosslinked HyA-DA-HPA gels acquired storage moduli ranging from ∼100 Pa to ∼20 000 Pa (at f = 2000 rad s-1). Biocompatibility of the hydrogels was examined with human mesenchymal stem cells (hMSCs) and human induced pluripotent stem cell-derived neural stem cells. The hydrogels made of 2.0 w/v% HyA-DA-HPA hydrogels, 0.24 U ml-1 HRP and ≤ 0.5 µmol ml-1 H2O2 were found biocompatible with hMSCs cultured on and encapsulated within the hydrogels. Since HyA serves as a backbone of the extracellular matrix in the central nervous system (CNS) and DA acquires the ability to restore dopaminergic neurons, use of this injectable HyA-DA-HPA hydrogel for stem cell transplantation is a potential treatment strategy for CNS repair and regeneration.
Collapse
Affiliation(s)
- Linh T B Nguyen
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, United Kingdom. Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London WC1X 8LD, United Kingdom
| | | | | | | |
Collapse
|
20
|
Zhang X, Bi X. Post-Stroke Cognitive Impairment: A Review Focusing on Molecular Biomarkers. J Mol Neurosci 2020; 70:1244-1254. [PMID: 32219663 DOI: 10.1007/s12031-020-01533-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023]
Abstract
Post-stroke cognitive impairment (PSCI), as one of the major complications after stroke, refers to a series of syndromes from mild cognitive impairment to dementia caused by stroke. Stroke has been reported to increase the risk of cognitive impairment by at least five to eight times. The assessment of PSCI usually relies on neuropsychological tests, but the results of these tests are subjective and inaccurate, and can be insufficient for the diagnosis and prognosis of PSCI. In recent years, an increasing number studies have indicated that changes in the expression of biomarkers such as C-reactive protein (CRP), interleukin 6 (IL-6) and IL-10 in blood, urine and other body fluids are associated with cognitive decline after stroke. Therefore, the detection of biomarkers in circulating blood serum, plasma and cerebrospinal fluid (CSF) may improve the accuracy of diagnosis and prognosis in PSCI. This review aims to summarize the studies on potential molecular biomarkers of PSCI.
Collapse
Affiliation(s)
- Xinxin Zhang
- School of kinesiology, Shanghai University of sport, No. 200 Hengren Road, Yangpu District, Shanghai, 200438, China
| | - Xia Bi
- Department of Rehabilitation Medicine, Shanghai University of Medicine & Health Sciences affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Pudong New District, Shanghai, 201318, China.
| |
Collapse
|
21
|
Naji A, Eitoku M, Favier B, Deschaseaux F, Rouas-Freiss N, Suganuma N. Biological functions of mesenchymal stem cells and clinical implications. Cell Mol Life Sci 2019; 76:3323-3348. [PMID: 31055643 PMCID: PMC11105258 DOI: 10.1007/s00018-019-03125-1] [Citation(s) in RCA: 357] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/19/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) are isolated from multiple biological tissues-adult bone marrow and adipose tissues and neonatal tissues such as umbilical cord and placenta. In vitro, MSCs show biological features of extensive proliferation ability and multipotency. Moreover, MSCs have trophic, homing/migration and immunosuppression functions that have been demonstrated both in vitro and in vivo. A number of clinical trials are using MSCs for therapeutic interventions in severe degenerative and/or inflammatory diseases, including Crohn's disease and graft-versus-host disease, alone or in combination with other drugs. MSCs are promising for therapeutic applications given the ease in obtaining them, their genetic stability, their poor immunogenicity and their curative properties for tissue repair and immunomodulation. The success of MSC therapy in degenerative and/or inflammatory diseases might depend on the robustness of the biological functions of MSCs, which should be linked to their therapeutic potency. Here, we outline the fundamental and advanced concepts of MSC biological features and underline the biological functions of MSCs in their basic and translational aspects in therapy for degenerative and/or inflammatory diseases.
Collapse
Affiliation(s)
- Abderrahim Naji
- Department of Environmental Medicine, Cooperative Medicine Unit, Research and Education Faculty, Medicine Science Cluster, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan.
| | - Masamitsu Eitoku
- Department of Environmental Medicine, Cooperative Medicine Unit, Research and Education Faculty, Medicine Science Cluster, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan
| | - Benoit Favier
- CEA, DRF-IBFJ, IDMIT, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, Paris-Sud University, Fontenay-aux-Roses, France
| | - Frédéric Deschaseaux
- STROMALab, Etablissement Français du Sang Occitanie, UMR 5273 CNRS, INSERM U1031, Université de Toulouse, Toulouse, France
| | - Nathalie Rouas-Freiss
- CEA, DRF-Francois Jacob Institute, Research Division in Hematology and Immunology (SRHI), Saint-Louis Hospital, IRSL, UMRS 976, Paris, France
| | - Narufumi Suganuma
- Department of Environmental Medicine, Cooperative Medicine Unit, Research and Education Faculty, Medicine Science Cluster, Kochi Medical School, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi, 783-8505, Japan
| |
Collapse
|
22
|
Ge Y, Zhang Y, Tang Q, Gao J, Yang H, Gao Z, Zhao RC. Mechanisms of the Immunomodulation Effects of Bone Marrow-Derived Mesenchymal Stem Cells on Facial Nerve Injury in Sprague-Dawley Rats. Stem Cells Dev 2019; 28:489-496. [PMID: 30704338 DOI: 10.1089/scd.2018.0104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Normal facial nerve (FN) function is very important for human being. However, if injured, FN function is difficult to restore completely. Recently, many studies reported the immune regulation function of stem cells (SCs). However, the immunomodulation function of SCs on FN injury is still unclear. Our study aims to explore the mechanism of immunomodulation effect of Sprague-Dawley rat bone marrow-derived SCs (BMSCs) on FN injury and specially focus on the regulation of Th17 and the protection effects of BMSCs on central facial motor neurons (FMNs). First, rat FNs were harvested. FN and BMSCs were cultured together or separately and levels of transforming growth factor (TGF)-β1, interleukin (IL)-6, hepatocyte growth factor (HGF), inducible nitric oxide synthase (iNOS), and prostaglandin E2 (PGE2) in supernatant were detected by enzyme-linked immunosorbent assay (ELISA). Then, after treating with or without local BMSCs injection, the proportion of Th17 in neck lymph nodes (LNs) was investigated in rat FN injury models. Furthermore, the apoptotic index of FMNs was studied in rat FN injury models that were treated with or without BMSCs. We found that BMSCs could secrete high levels of IL-6, HGF, PGE2, iNOS, and TGF-β1 in culture. The percentage of Th17 of neck LNs in BMSCs-treated group was significantly lower than that in the control group. The apoptotic index of FMNs in BMSCs-treated group was significantly lower than that in the control group. In conclusion, our research indicates BMSCs could independently secrete cytokines IL-6, HGF, PGE2, iNOS, and TGF-β1, and these cytokines could regulate the balance among subsets of CD4+ T cells and could protect FMNs by inhibiting neuron apoptosis.
Collapse
Affiliation(s)
- Yining Ge
- 1 Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,2 Department of Otolaryngology, Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,3 Department of Head and Neck Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yongli Zhang
- 1 Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,2 Department of Otolaryngology, Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Tang
- 1 Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,2 Department of Otolaryngology, Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Juanjuan Gao
- 1 Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,2 Department of Otolaryngology, Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hua Yang
- 1 Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,2 Department of Otolaryngology, Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiqiang Gao
- 1 Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,2 Department of Otolaryngology, Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Robert Chunhua Zhao
- 4 Department of Cell Biology, Center of Excellence in Tissue Engineering, Key Laboratory of Beijing, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
23
|
Řehořová M, Vargová I, Forostyak S, Vacková I, Turnovcová K, Kupcová Skalníková H, Vodička P, Kubinová Š, Syková E, Jendelová P. A Combination of Intrathecal and Intramuscular Application of Human Mesenchymal Stem Cells Partly Reduces the Activation of Necroptosis in the Spinal Cord of SOD1 G93A Rats. Stem Cells Transl Med 2019; 8:535-547. [PMID: 30802001 PMCID: PMC6525562 DOI: 10.1002/sctm.18-0223] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/03/2019] [Indexed: 12/13/2022] Open
Abstract
An increasing number of studies have demonstrated the beneficial effects of human mesenchymal stem cells (hMSC) in the treatment of amyotrophic lateral sclerosis (ALS). We compared the effect of repeated intrathecal applications of hMSC or their conditioned medium (CondM) using lumbar puncture or injection into the muscle (quadriceps femoris), or a combination of both applications in symptomatic SOD1G93A rats. We further assessed the effect of the treatment on three major cell death pathways (necroptosis, apoptosis, and autophagy) in the spinal cord tissue. All the animals were behaviorally tested (grip strength test, Basso Beattie Bresnahan (BBB) test, and rotarod), and the tissue was analyzed immunohistochemically, by qPCR and Western blot. All symptomatic SOD1 rats treated with hMSC had a significantly increased lifespan, improved motor activity and reduced number of Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positive cells. Moreover, a combined hMSC delivery increased motor neuron survival, maintained neuromuscular junctions in quadriceps femoris and substantially reduced the levels of proteins involved in necroptosis (Rip1, mixed lineage kinase‐like protein, cl‐casp8), apoptosis (cl‐casp 9) and autophagy (beclin 1). Furthermore, astrogliosis and elevated levels of Connexin 43 were decreased after combined hMSC treatment. The repeated application of CondM, or intramuscular injections alone, improved motor activity; however, this improvement was not supported by changes at the molecular level. Our results provide new evidence that a combination of repeated intrathecal and intramuscular hMSC applications protects motor neurons and neuromuscular junctions, not only through a reduction of apoptosis and autophagy but also through the necroptosis pathway, which is significantly involved in cell death in rodent SOD1G93A model of ALS. stem cells translational medicine2019;8:535–547
Collapse
Affiliation(s)
- Monika Řehořová
- Institute of Experimental Medicine, Czech Academy of Science, Prague, Czech Republic.,Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ingrid Vargová
- Institute of Experimental Medicine, Czech Academy of Science, Prague, Czech Republic.,Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Serhiy Forostyak
- Institute of Experimental Medicine, Czech Academy of Science, Prague, Czech Republic.,Prime Cell Advanced Therapy A.S., Brno, Czech Republic
| | - Irena Vacková
- Institute of Experimental Medicine, Czech Academy of Science, Prague, Czech Republic
| | - Karolína Turnovcová
- Institute of Experimental Medicine, Czech Academy of Science, Prague, Czech Republic
| | | | - Petr Vodička
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Liběchov, Czech Republic
| | - Šárka Kubinová
- Institute of Experimental Medicine, Czech Academy of Science, Prague, Czech Republic.,Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Eva Syková
- Institute of Experimental Medicine, Czech Academy of Science, Prague, Czech Republic.,Institute of Neuroimmunology, Slovak Academy of Science, Bratislava, Slovakia
| | - Pavla Jendelová
- Institute of Experimental Medicine, Czech Academy of Science, Prague, Czech Republic.,Second Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
24
|
Gubbi S, Quipildor GF, Barzilai N, Huffman DM, Milman S. 40 YEARS of IGF1: IGF1: the Jekyll and Hyde of the aging brain. J Mol Endocrinol 2018; 61:T171-T185. [PMID: 29739805 PMCID: PMC5988994 DOI: 10.1530/jme-18-0093] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 12/30/2022]
Abstract
The insulin-like growth factor 1 (IGF1) signaling pathway has emerged as a major regulator of the aging process, from rodents to humans. However, given the pleiotropic actions of IGF1, its role in the aging brain remains complex and controversial. While IGF1 is clearly essential for normal development of the central nervous system, conflicting evidence has emerged from preclinical and human studies regarding its relationship to cognitive function, as well as cerebrovascular and neurodegenerative disorders. This review delves into the current state of the evidence examining the role of IGF1 in the aging brain, encompassing preclinical and clinical studies. A broad examination of the data indicates that IGF1 may indeed play opposing roles in the aging brain, depending on the underlying pathology and context. Some evidence suggests that in the setting of neurodegenerative diseases that manifest with abnormal protein deposition in the brain, such as Alzheimer's disease, reducing IGF1 signaling may serve a protective role by slowing disease progression and augmenting clearance of pathologic proteins to maintain cellular homeostasis. In contrast, inducing IGF1 deficiency has also been implicated in dysregulated function of cognition and the neurovascular system, suggesting that some IGF1 signaling may be necessary for normal brain function. Furthermore, states of acute neuronal injury, which necessitate growth, repair and survival signals to persevere, typically demonstrate salutary effects of IGF1 in that context. Appreciating the dual, at times opposing 'Dr Jekyll' and 'Mr Hyde' characteristics of IGF1 in the aging brain, will bring us closer to understanding its impact and devising more targeted IGF1-related interventions.
Collapse
Affiliation(s)
- Sriram Gubbi
- Institute for Aging ResearchAlbert Einstein College of Medicine, Bronx, New York, USA
- Department of Internal MedicineJacobi Medical Center, Bronx, New York, USA
| | - Gabriela Farias Quipildor
- Institute for Aging ResearchAlbert Einstein College of Medicine, Bronx, New York, USA
- Department of Molecular PharmacologyAlbert Einstein College of Medicine, Bronx, New York, USA
- Division of EndocrinologyDepartment of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Nir Barzilai
- Institute for Aging ResearchAlbert Einstein College of Medicine, Bronx, New York, USA
- Division of EndocrinologyDepartment of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
- Division of GeriatricsDepartment of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of GeneticsAlbert Einstein College of Medicine, Bronx, New York, USA
| | - Derek M Huffman
- Institute for Aging ResearchAlbert Einstein College of Medicine, Bronx, New York, USA
- Department of Molecular PharmacologyAlbert Einstein College of Medicine, Bronx, New York, USA
- Division of EndocrinologyDepartment of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Sofiya Milman
- Institute for Aging ResearchAlbert Einstein College of Medicine, Bronx, New York, USA
- Division of EndocrinologyDepartment of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
- Division of GeriatricsDepartment of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
25
|
Wang J, Xing H, Wan L, Jiang X, Wang C, Wu Y. Treatment targets for M2 microglia polarization in ischemic stroke. Biomed Pharmacother 2018; 105:518-525. [PMID: 29883947 DOI: 10.1016/j.biopha.2018.05.143] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 02/06/2023] Open
Abstract
As the first line of defense in the nervous system, resident microglia are the predominant immune cells in the brain. In diseases of the central nervous system such as stroke, Alzheimer's disease, and Parkinson's disease, they often cause inflammation or phagocytosis; however, some studies have found that despite the current controversy over M1, M2 polarization could be beneficial. Ischemic stroke is the third most common cause of death in humans. Patients who survive an ischemic stroke might experience a clear decline in their quality of life, owing to conditions such as hemiplegic paralysis and aphasia. After stroke, the activated microglia become a double-edged sword, with distinct phenotypic changes to the deleterious M1 and neuroprotective M2 types. Therefore, methods for promoting the differentiation of microglia into the M2 polarized form to alleviate harmful reactions after stroke have become a topic of interest in recent years. Subsequently, the discovery of new drugs related to M2 polarization has enabled the realization of targeted therapies. In the present review, we discussed the neuroprotective effects of microglia M2 polarization and the potential mechanisms and drugs by which microglia can be transformed into the M2 polarized type after stroke.
Collapse
Affiliation(s)
- Ji Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongyi Xing
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin Wan
- The Children's Hospital of Soochow, Jiangsu, Hematology and Oncology, China
| | - Xingjun Jiang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chen Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
26
|
The Effect of Human Mesenchymal Stem Cells Derived from Wharton's Jelly in Spinal Cord Injury Treatment Is Dose-Dependent and Can Be Facilitated by Repeated Application. Int J Mol Sci 2018; 19:ijms19051503. [PMID: 29772841 PMCID: PMC5983761 DOI: 10.3390/ijms19051503] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/09/2018] [Accepted: 05/15/2018] [Indexed: 12/15/2022] Open
Abstract
Human mesenchymal stem cells derived from Wharton’s jelly (WJ-MSCs) were used for the treatment of the ischemic-compression model of spinal cord injury in rats. To assess the effectivity of the treatment, different dosages (0.5 or 1.5 million cells) and repeated applications were compared. Cells or saline were applied intrathecally by lumbar puncture for one week only, or in three consecutive weeks after injury. Rats were assessed for locomotor skills (BBB, rotarod, flat beam) for 9 weeks. Spinal cord tissue was morphometrically analyzed for axonal sprouting, sparing of gray and white matter and astrogliosis. Endogenous gene expression (Gfap, Casp3, Irf5, Cd86, Mrc1, Cd163) was studied with quantitative Real-time polymerase chain reaction (qRT PCR). Significant recovery of functional outcome was observed in all of the treated groups except for the single application of the lowest number of cells. Histochemical analyses revealed a gradually increasing effect of grafted cells, resulting in a significant increase in the number of GAP43+ fibers, a higher amount of spared gray matter and reduced astrogliosis. mRNA expression of macrophage markers and apoptosis was downregulated after the repeated application of 1.5 million cells. We conclude that the effect of hWJ-MSCs on spinal cord regeneration is dose-dependent and potentiated by repeated application.
Collapse
|
27
|
Li T, Liu Y, Yu L, Lao J, Zhang M, Jin J, Lu Z, Liu Z, Xu Y. Human Umbilical Cord Mesenchymal Stem Cells Protect Against SCA3 by Modulating the Level of 70 kD Heat Shock Protein. Cell Mol Neurobiol 2018; 38:641-655. [PMID: 28667374 PMCID: PMC11482022 DOI: 10.1007/s10571-017-0513-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 06/17/2017] [Indexed: 02/06/2023]
Abstract
Spinocerebellar ataxia 3 (SCA3), which is a progressive neurodegenerative disease, is currently incurable. Emerging studies have reported that human umbilical cord mesenchymal stem cells (HUC-MSCs) transplantation could be a promising therapeutic strategy for cerebellar ataxias. However, few studies have evaluated the effects of HUC-MSCs on SCA3 transgenic mouse. Thus, we investigated the effects of HUC-MSCs on SCA3 mice and the underlying mechanisms in this study. SCA3 transgenic mice received systematic administration of 2 × 106 HUC-MSCs once per week for 12 continuous weeks. Motor coordination was measured blindly by open field tests and footprint tests. Immunohistochemistry and Nissl staining were applied to detect neuropathological alternations. Neurotrophic factors in the cerebellum were assessed by ELISA. We used western blotting to detect the alternations of heat shock protein 70 (HSP70), IGF-1, mutant ataxin-3, and apoptosis-associated proteins. Tunel staining was also used to detect apoptosis of affected cells. The distribution and differentiation of HUC-MSCs were determined by immunofluorescence. Our results exhibited that HUC-MSCs transplantation significantly alleviated motor impairments, corresponding to a reduction of cerebellar atrophy, preservation of neurons, decreased expression of mutant ataxin-3, and increased expression of HSP70. Implanted HUC-MSCs were mainly distributed in the cerebellum and pons with no obvious differentiation, and the expressions of IGF-1, VEGF, and NGF in the cerebellum were significantly elevated. Furthermore, with the use of HSP70 analogy quercetin injection, it demonstrated that HSP70 is involved in mutant ataxin-3 reduction. These results showed that HUC-MSCs implantation is a potential treatment for SCA3, likely through upregulating the IGF-1/HSP70 pathway and subsequently inhibiting mutant ataxin-3 toxicity.
Collapse
Affiliation(s)
- Tan Li
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 ZhongShan Road, Nanjing City, 210008, Jiangsu Province, People's Republic of China
| | - Yi Liu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 ZhongShan Road, Nanjing City, 210008, Jiangsu Province, People's Republic of China
| | - Linjie Yu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 ZhongShan Road, Nanjing City, 210008, Jiangsu Province, People's Republic of China
| | - Jiamin Lao
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 ZhongShan Road, Nanjing City, 210008, Jiangsu Province, People's Republic of China
| | - Meijuan Zhang
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 ZhongShan Road, Nanjing City, 210008, Jiangsu Province, People's Republic of China
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jiali Jin
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 ZhongShan Road, Nanjing City, 210008, Jiangsu Province, People's Republic of China
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Zhengjuan Lu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 ZhongShan Road, Nanjing City, 210008, Jiangsu Province, People's Republic of China
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Zhuo Liu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 ZhongShan Road, Nanjing City, 210008, Jiangsu Province, People's Republic of China.
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| | - Yun Xu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 ZhongShan Road, Nanjing City, 210008, Jiangsu Province, People's Republic of China
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
28
|
Zhao H, Alam A, Soo AP, George AJT, Ma D. Ischemia-Reperfusion Injury Reduces Long Term Renal Graft Survival: Mechanism and Beyond. EBioMedicine 2018; 28:31-42. [PMID: 29398595 PMCID: PMC5835570 DOI: 10.1016/j.ebiom.2018.01.025] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/18/2018] [Accepted: 01/20/2018] [Indexed: 01/10/2023] Open
Abstract
Ischemia-reperfusion injury (IRI) during renal transplantation often initiates non-specific inflammatory responses that can result in the loss of kidney graft viability. However, the long-term consequence of IRI on renal grafts survival is uncertain. Here we review clinical evidence and laboratory studies, and elucidate the association between early IRI and later graft loss. Our critical analysis of previous publications indicates that early IRI does contribute to later graft loss through reduction of renal functional mass, graft vascular injury, and chronic hypoxia, as well as subsequent fibrosis. IRI is also known to induce kidney allograft dysfunction and acute rejection, reducing graft survival. Therefore, attempts have been made to substitute traditional preserving solutions with novel agents, yielding promising results. Ischaemia reperfusion injury (IRI) potentiates delayed renal graft function and causes reduction in renal graft survival IRI causes innate immune system activation, hypoxic injury, inflammation and graft vascular disease Reducing prolonged cold ischaemic time improves graft survival Novel protective strategies include mesenchymal stem cells, machine perfusion, and ex vivo preservation solution saturated with gas. Further studies are needed to investigate the long-term effects of novel ex vivo preservation agents
Collapse
Affiliation(s)
- Hailin Zhao
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Azeem Alam
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Aurelie Pac Soo
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | | | - Daqing Ma
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK.
| |
Collapse
|
29
|
Ku J, El-Hashash A. Stem Cell Roles and Applications in Genetic Neurodegenerative Diseases. STEM CELLS IN CLINICAL APPLICATIONS 2018. [DOI: 10.1007/978-3-319-98065-2_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Portis SM, Sanberg PR. Regenerative Rehabilitation: An Innovative and Multifactorial Approach to Recovery From Stroke and Brain Injury. CELL MEDICINE 2017; 9:67-71. [PMID: 28713637 DOI: 10.3727/215517917x693393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
There is currently a dearth of treatment options for stroke or traumatic brain injury that can restore cognitive and motor function. Regenerative and translational medicine have ushered forth promising new methods for mediating recovery in the central nervous system, the most salient of which are rehabilitation and stem cell therapies that, when combined, result in more pronounced recovery than one approach alone.
Collapse
Affiliation(s)
- Samantha M Portis
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Paul R Sanberg
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
31
|
Tang Y, Yasuhara T, Hara K, Matsukawa N, Maki M, Yu G, Xu L, Hess DC, Borlongan CV. Transplantation of Bone Marrow-Derived Stem Cells: A Promising Therapy for Stroke. Cell Transplant 2017. [DOI: 10.3727/000000007783464614] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Stroke remains a major cause of death in the US and around the world. Over the last decade, stem cell therapy has been introduced as an experimental treatment for stroke. Transplantation of stem cells or progenitors into the injured site to replace the nonfunctional cells, and enhancement of proliferation or differentiation of endogenous stem or progenitor cells stand as the two major cell-based strategies. Potential sources of stem/progenitor cells for stroke include fetal neural stem cells, embryonic stem cells, neuroteratocarcinoma cells, umbilical cord blood-derived nonhematopoietic stem cells, and bone marrow-derived stem cells. The goal of this article is to provide an update on the preclinical use of bone marrow-derived stem cells with major emphasis on mesenchymal stem cells (MSCs) and multipotent adult progenitor cells (MAPCs) because they are currently most widely applied in experimental stroke studies and are now being phased into early clinical trials. The phenotypic features of MSCs and MAPCs, as well as their application in stroke, are described.
Collapse
Affiliation(s)
- Yamei Tang
- Department of Neurology, Medical College of Georgia, Augusta, GA, USA
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
| | - Takao Yasuhara
- Department of Neurology, Medical College of Georgia, Augusta, GA, USA
| | - Koichi Hara
- Department of Neurology, Medical College of Georgia, Augusta, GA, USA
| | | | - Mina Maki
- Department of Neurology, Medical College of Georgia, Augusta, GA, USA
| | - Guolong Yu
- Department of Neurology, Medical College of Georgia, Augusta, GA, USA
| | - Lin Xu
- Department of Neurology, Medical College of Georgia, Augusta, GA, USA
| | - David C. Hess
- Department of Neurology, Medical College of Georgia, Augusta, GA, USA
- Research & Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | - Cesario V. Borlongan
- Department of Neurology, Medical College of Georgia, Augusta, GA, USA
- Research & Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| |
Collapse
|
32
|
Matthay MA, Pati S, Lee JW. Concise Review: Mesenchymal Stem (Stromal) Cells: Biology and Preclinical Evidence for Therapeutic Potential for Organ Dysfunction Following Trauma or Sepsis. Stem Cells 2017; 35:316-324. [PMID: 27888550 DOI: 10.1002/stem.2551] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 12/12/2022]
Abstract
Several experimental studies have provided evidence that bone-marrow derived mesenchymal stem (stromal) cells (MSC) may be effective in treating critically ill surgical patients who develop traumatic brain injury, acute renal failure, or the acute respiratory distress syndrome. There is also preclinical evidence that MSC may be effective in treating sepsis-induced organ failure, including evidence that MSC have antimicrobial properties. This review considers preclinical studies with direct relevance to organ failure following trauma, sepsis or major infections that apply to critically ill patients. Progress has been made in understanding the mechanisms of benefit, including MSC release of paracrine factors, transfer of mitochondria, and elaboration of exosomes and microvesicles. Regardless of how well they are designed, preclinical studies have limitations in modeling the complexity of clinical syndromes, especially in patients who are critically ill. In order to facilitate translation of the preclinical studies of MSC to critically ill patients, there will need to be more standardization regarding MSC production with a focus on culture methods and cell characterization. Finally, well designed clinical trials will be needed in critically ill patient to assess safety and efficacy. Stem Cells 2017;35:316-324.
Collapse
Affiliation(s)
- Michael A Matthay
- Departments of Medicine and Anesthesia and the Cardiovascular Research Institute, University of California, San Francisco, USA
| | - Shibani Pati
- Department of Laboratory Medicine, University of California, Blood Systems Research Institute, San Francisco, USA
| | - Jae-Woo Lee
- Department of Anesthesia, University of California, San Francisco, USA
| |
Collapse
|
33
|
Syková E, Rychmach P, Drahorádová I, Konrádová Š, Růžičková K, Voříšek I, Forostyak S, Homola A, Bojar M. Transplantation of Mesenchymal Stromal Cells in Patients With Amyotrophic Lateral Sclerosis: Results of Phase I/IIa Clinical Trial. Cell Transplant 2016; 26:647-658. [PMID: 27938483 DOI: 10.3727/096368916x693716] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive untreatable neurodegenerative disorder, leading to the death of the cortical and spinal motoneurons (MNs). Bone marrow-derived mesenchymal stem/stromal cells (BM-MSCs) may represent a new approach to slowing down the progression of ALS by providing neurotrophic support to host MNs and by having an anti-inflammatory effect. We have designed a prospective, nonrandomized, open-label clinical trial (phase I/IIa, EudraCT No. 2011-000362-35) to assess the safety and efficacy of autologous multipotent BM-MSCs in ALS treatment. Autologous BM-MSCs were isolated and expanded under GMP conditions. Patients received 15 ± 4.5 × 106 of BM-MSCs via lumbar puncture into the cerebrospinal fluid. Patients were monitored for 6 months before treatment and then for an 18-month follow-up period. Potential adverse reactions were assessed, and the clinical outcome was evaluated by the ALS functional rating scale (ALSFRS), forced vital capacity (FVC), and weakness scales (WSs) to assess muscle strength on the lower and upper extremities. In total, 26 patients were enrolled in the study and were assessed for safety; 23 patients were suitable for efficacy evaluation. After intrathecal BM-MSC application, about 30% of the patients experienced a mild to moderate headache, resembling the headaches after a standard lumbar puncture. No suspected serious adverse reactions (SUSAR) were observed. We found a reduction in ALSFRS decline at 3 months after application (p < 0.02) that, in some cases, persisted for 6 months ( p < 0.05). In about 80% of the patients, FVC values remained stable or above 70% for a time period of 9 months. Values of WS were stable in 75% of patients at 3 months after application. Our results demonstrate that the intrathecal application of BM-MSCs in ALS patients is a safe procedure and that it can slow down progression of the disease.
Collapse
|
34
|
Ruzicka J, Machova-Urdzikova L, Gillick J, Amemori T, Romanyuk N, Karova K, Zaviskova K, Dubisova J, Kubinova S, Murali R, Sykova E, Jhanwar-Uniyal M, Jendelova P. A Comparative Study of Three Different Types of Stem Cells for Treatment of Rat Spinal Cord Injury. Cell Transplant 2016; 26:585-603. [PMID: 27938489 DOI: 10.3727/096368916x693671] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Three different sources of human stem cells-bone marrow-derived mesenchymal stem cells (BM-MSCs), neural progenitors (NPs) derived from immortalized spinal fetal cell line (SPC-01), and induced pluripotent stem cells (iPSCs)-were compared in the treatment of a balloon-induced spinal cord compression lesion in rats. One week after lesioning, the rats received either BM-MSCs (intrathecally) or NPs (SPC-01 cells or iPSC-NPs, both intraspinally), or saline. The rats were assessed for their locomotor skills (BBB, flat beam test, and rotarod). Morphometric analyses of spared white and gray matter, axonal sprouting, and glial scar formation, as well as qPCR and Luminex assay, were conducted to detect endogenous gene expression, while inflammatory cytokine levels were performed to evaluate the host tissue response to stem cell therapy. The highest locomotor recovery was observed in iPSC-NP-grafted animals, which also displayed the highest amount of preserved white and gray matter. Grafted iPSC-NPs and SPC-01 cells significantly increased the number of growth-associated protein 43 (GAP43+) axons, reduced astrogliosis, downregulated Casp3 expression, and increased IL-6 and IL-12 levels. hMSCs transiently decreased levels of inflammatory IL-2 and TNF-α. These findings correlate with the short survival of hMSCs, while NPs survived for 2 months and matured slowly into glia- and tissue-specific neuronal precursors. SPC-01 cells differentiated more in astroglial phenotypes with a dense structure of the implant, whereas iPSC-NPs displayed a more neuronal phenotype with a loose structure of the graft. We concluded that the BBB scores of iPSC-NP- and hMSC-injected rats were superior to the SPC-01-treated group. The iPSC-NP treatment of spinal cord injury (SCI) provided the highest recovery of locomotor function due to robust graft survival and its effect on tissue sparing, reduction of glial scarring, and increased axonal sprouting.
Collapse
|
35
|
Wu Q, Wang Y, Demaerschalk BM, Ghimire S, Wellik KE, Qu W. Bone marrow stromal cell therapy for ischemic stroke: A meta-analysis of randomized control animal trials. Int J Stroke 2016; 12:273-284. [PMID: 27794139 DOI: 10.1177/1747493016676617] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background Results of animal studies assessing efficacy of bone marrow stromal cell therapy for ischemic stroke remain inconsistent. Aims The aims are to assess efficacy of bone marrow stromal cell therapy for ischemic stroke in animal studies. Methods Randomized controlled animal trials assessing efficacy of bone marrow stromal cell therapy were eligible. Stroke therapy academic industry round table was used to assess methodologic quality of included studies. Primary outcomes were total infarction volume and modified Neurological Severity Score. Multiple prespecified sensitivity analyses and subgroup analyses were conducted. Random effects models were used for meta-analysis. Results Thirty-three randomized animal trials were included with a total of 796 animals. The median quality score was 6 (interquartile range, 5-7). Bone marrow stromal cell therapy decreased total infarction volume (standardized mean difference, 0.897; 95% confidence interval, 0.553-1.241; P < .001) at follow-up. Overall standardized mean difference between animals treated with bone marrow stromal cell and controls was 2.47 (95% confidence interval, 1.84-3.11; P < .001) for modified Neurological Severity Score; 1.27 (95% confidence interval, 0.72-1.82; P < .001) for adhesive removal test; and 2.13 (95% confidence interval, 0.65-3.61; P < .001) for rotarod test. Significant heterogeneity among studies was observed. Effect of all outcomes stayed significant in various sensitivity analyses and subgroup analyses, except in a few subgroup analyses with small sample size or with short time follow-up. No significant difference between groups was observed except for study location, in which significantly larger estimates were found in Asian countries. On the basis of this meta-analysis, larger sample sizes are warranted for future animal studies. Conclusions Bone marrow stromal cell therapy significantly decreased total infarction volume and increased neural functional recovery in randomized controlled animal models of ischemic stroke.
Collapse
Affiliation(s)
- Qing Wu
- 1 Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Nevada USA.,2 Department of Environmental & Occupational Health, School of Community Health Sciences, University of Nevada, Las Vegas, Nevada USA
| | - Yuexiang Wang
- 3 Division of Pain Medicine, Mayo Clinic, Rochester, Minnesota USA
| | | | - Saruna Ghimire
- 1 Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Nevada USA
| | - Kay E Wellik
- 5 Division of Education Administration, Mayo Clinic, Scottsdale, Arizona USA
| | - Wenchun Qu
- 3 Division of Pain Medicine, Mayo Clinic, Rochester, Minnesota USA.,6 Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota USA
| |
Collapse
|
36
|
van Velthoven CT, Dzietko M, Wendland MF, Derugin N, Faustino J, Heijnen CJ, Ferriero DM, Vexler ZS. Mesenchymal stem cells attenuate MRI-identifiable injury, protect white matter, and improve long-term functional outcomes after neonatal focal stroke in rats. J Neurosci Res 2016; 95:1225-1236. [PMID: 27781299 DOI: 10.1002/jnr.23954] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 08/01/2016] [Accepted: 09/07/2016] [Indexed: 12/30/2022]
Abstract
Cell therapy has emerged as a potential treatment for many neurodegenerative diseases including stroke and neonatal ischemic brain injury. Delayed intranasal administration of mesenchymal stem cells (MSCs) after experimental hypoxia-ischemia and after a transient middle cerebral artery occlusion (tMCAO) in neonatal rats has shown improvement in long-term functional outcomes, but the effects of MSCs on white matter injury (WMI) are insufficiently understood. In this study we used longitudinal T2-weighted (T2W) and diffusion tensor magnetic resonance imaging (MRI) to characterize chronic injury after tMCAO induced in postnatal day 10 (P10) rats and examined the effects of delayed MSC administration on WMI, axonal coverage, and long-term somatosensory function. We show unilateral injury- and region-dependent changes in diffusion fraction anisotropy 1 and 2 weeks after tMCAO that correspond to accumulation of degraded myelin basic protein, astrocytosis, and decreased axonal coverage. With the use of stringent T2W-based injury criteria at 72 hr after tMCAO to randomize neonatal rats to receive intranasal MSCs or vehicle, we show that a single MSC administration attenuates WMI and enhances somatosensory function 28 days after stroke. A positive correlation was found between MSC-enhanced white matter integrity and functional performance in injured neonatal rats. Collectively, these data indicate that the damage induced by tMCAO progresses over time and is halted by administration of MSCs. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cindy T van Velthoven
- Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Mark Dzietko
- Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Michael F Wendland
- Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Nikita Derugin
- Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Joel Faustino
- Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Cobi J Heijnen
- Laboratory of Neuroimmunology, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Donna M Ferriero
- Department of Neurology, University of California, San Francisco, San Francisco, California.,Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Zinaida S Vexler
- Department of Neurology, University of California, San Francisco, San Francisco, California
| |
Collapse
|
37
|
Mesenchymal Stem Cell-Based Therapy for Kidney Disease: A Review of Clinical Evidence. Stem Cells Int 2016; 2016:4798639. [PMID: 27721835 PMCID: PMC5046016 DOI: 10.1155/2016/4798639] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/15/2016] [Accepted: 08/18/2016] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells form a population of self-renewing, multipotent cells that can be isolated from several tissues. Multiple preclinical studies have demonstrated that the administration of exogenous MSC could prevent renal injury and could promote renal recovery through a series of complex mechanisms, in particular via immunomodulation of the immune system and release of paracrine factors and microvesicles. Due to their therapeutic potentials, MSC are being evaluated as a possible player in treatment of human kidney disease, and an increasing number of clinical trials to assess the safety, feasibility, and efficacy of MSC-based therapy in various kidney diseases have been proposed. In the present review, we will summarize the current knowledge on MSC infusion to treat acute kidney injury, chronic kidney disease, diabetic nephropathy, focal segmental glomerulosclerosis, systemic lupus erythematosus, and kidney transplantation. The data obtained from these clinical trials will provide further insight into safety, feasibility, and efficacy of MSC-based therapy in renal pathologies and allow the design of consensus protocol for clinical purpose.
Collapse
|
38
|
De Geyter D, De Smedt A, Stoop W, De Keyser J, Kooijman R. Central IGF-I Receptors in the Brain are Instrumental to Neuroprotection by Systemically Injected IGF-I in a Rat Model for Ischemic Stroke. CNS Neurosci Ther 2016; 22:611-6. [PMID: 27080541 PMCID: PMC6492886 DOI: 10.1111/cns.12550] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 03/08/2016] [Accepted: 03/20/2016] [Indexed: 01/07/2023] Open
Abstract
AIM Insulin-like growth factor I (IGF-I) is a neuroprotective agent in animal models of ischemic stroke. The purpose of this study was to determine whether systemically injected IGF-I exerts its neuroprotective action by binding to IGF-I receptors in the brain after crossing the blood-brain barrier, or via peripheral effects. METHODS To differentiate the central effects of IGF-I from systemic effects, ischemic stroke was induced in conscious male Wistar Kyoto rats by the injection of endothelin-1 adjacent to the middle cerebral artery in the right hemisphere, while either the IGF-I receptor antagonist JB-1 or vehicle was introduced into the right lateral ventricle. RESULTS Intravenous injection of recombinant human (rh)IGF-I resulted in 50% reduction in infarct size, which was counteracted by the central administration of JB-1. Furthermore, rhIGF-I was detected in both the ischemic and nonischemic hemisphere. CONCLUSIONS Systemically injected rhIGF-I passes the blood-brain barrier and protects neurons via IGF-I receptors in the brain in rats with an ischemic stroke.
Collapse
Affiliation(s)
- Deborah De Geyter
- Center for Neurosciences (C4N)Vrije Universiteit Brussel (VUB)BrusselsBelgium
| | - Ann De Smedt
- Center for Neurosciences (C4N)Vrije Universiteit Brussel (VUB)BrusselsBelgium
- Department of NeurologyUniversitair Ziekenhuis BrusselBrusselsBelgium
| | - Wendy Stoop
- Center for Neurosciences (C4N)Vrije Universiteit Brussel (VUB)BrusselsBelgium
| | - Jacques De Keyser
- Center for Neurosciences (C4N)Vrije Universiteit Brussel (VUB)BrusselsBelgium
- Department of NeurologyUniversitair Ziekenhuis BrusselBrusselsBelgium
- Department of NeurologyUniversity Medical Center GroningenGroningenThe Netherlands
| | - Ron Kooijman
- Center for Neurosciences (C4N)Vrije Universiteit Brussel (VUB)BrusselsBelgium
| |
Collapse
|
39
|
Nam HS, Kwon I, Lee BH, Kim H, Kim J, An S, Lee OH, Lee PH, Kim HO, Namgoong H, Kim YD, Heo JH. Effects of Mesenchymal Stem Cell Treatment on the Expression of Matrix Metalloproteinases and Angiogenesis during Ischemic Stroke Recovery. PLoS One 2015; 10:e0144218. [PMID: 26637168 PMCID: PMC4670145 DOI: 10.1371/journal.pone.0144218] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 11/16/2015] [Indexed: 01/19/2023] Open
Abstract
Background The efficacy of mesenchymal stem cell (MSC) transplantation in ischemic stroke might depend on the timing of administration. We investigated the optimal time point of MSC transplantation. After MSC treatment, we also investigated the expression of matrix metalloproteinases (MMPs), which play a role in vascular and tissue remodeling. Methods Human bone marrow-derived MSCs (2 × 106, passage 5) were administrated intravenously after permanent middle cerebral artery occlusion (MCAO) was induced in male Sprague-Dawley rats. First, we determined the time point of MSC transplantation that led to maximal neurological recovery at 1 h, 1 day, and 3 days after MCAO. Next, we measured activity of MMP-2 and MMP-9, neurological recovery, infarction volume, and vascular density after transplanting MSCs at the time that led to maximal neurological recovery. Results Among the MSC-transplanted rats, those of the MSC 1-hour group showed maximal recovery in the rotarod test (P = 0.023) and the Longa score (P = 0.018). MMP-2 activity at 1 day after MCAO in the MSC 1-hour group was significantly higher than that in the control group (P = 0.002), but MMP-9 activity was not distinct. The MSC 1-hour group also showed smaller infarction volume and higher vascular density than did the control group. Conclusions In a permanent model of rodent MCAO, very early transplantation of human MSCs (1 h after MCAO) produced greater neurological recovery and decreased infraction volume. The elevation of MMP-2 activity and the increase in vascular density after MSC treatment suggest that MSCs might help promote angiogenesis and lead to neurological improvement during the recovery phase after ischemic stroke.
Collapse
Affiliation(s)
- Hyo Suk Nam
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Severance Integrative Research Institute for Cerebral & Cardiovascular Disease, Yonsei University Health System, Seoul, Korea
| | - Il Kwon
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Severance Integrative Research Institute for Cerebral & Cardiovascular Disease, Yonsei University Health System, Seoul, Korea
| | - Bo Hyung Lee
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Severance Integrative Research Institute for Cerebral & Cardiovascular Disease, Yonsei University Health System, Seoul, Korea
| | - Haejin Kim
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Severance Integrative Research Institute for Cerebral & Cardiovascular Disease, Yonsei University Health System, Seoul, Korea
| | - Jayoung Kim
- Brain Korea 21 Plus Project for Medical Science, Yonsei University, Seoul, Korea.,Severance Integrative Research Institute for Cerebral & Cardiovascular Disease, Yonsei University Health System, Seoul, Korea
| | - Sunho An
- Brain Korea 21 Plus Project for Medical Science, Yonsei University, Seoul, Korea.,Severance Integrative Research Institute for Cerebral & Cardiovascular Disease, Yonsei University Health System, Seoul, Korea
| | - Ok-Hee Lee
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Severance Integrative Research Institute for Cerebral & Cardiovascular Disease, Yonsei University Health System, Seoul, Korea
| | - Phil Hyu Lee
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Ok Kim
- Department of Laboratory Medicine, Severance Hospital, Yonsei Cell Therapy Center, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Namgoong
- Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Young Dae Kim
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Severance Integrative Research Institute for Cerebral & Cardiovascular Disease, Yonsei University Health System, Seoul, Korea
| | - Ji Hoe Heo
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Severance Integrative Research Institute for Cerebral & Cardiovascular Disease, Yonsei University Health System, Seoul, Korea
| |
Collapse
|
40
|
Lee H, Bae JS, Jin HK. Defective Self-Renewal and Differentiation of GBA-Deficient Neural Stem Cells Can Be Restored By Macrophage Colony-Stimulating Factor. Mol Cells 2015; 38:806-13. [PMID: 26282862 PMCID: PMC4588724 DOI: 10.14348/molcells.2015.0117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/06/2015] [Accepted: 06/18/2015] [Indexed: 11/27/2022] Open
Abstract
Gaucher disease (GD) is an autosomal recessive lysosomal storage disorder caused by mutations in the glucocerebrosidase gene (GBA), which encodes the lysosomal enzyme glucosylceramidase (GCase). Deficiency in GCase leads to characteristic visceral pathology and lethal neurological manifestations in some patients. Investigations into neurogenesis have suggested that neurodegenerative disorders, such as GD, could be overcome or at least ameliorated by the generation of new neurons. Bone marrow-derived mesenchymal stem cells (BM-MSCs) are potential candidates for use in the treatment of neurodegenerative disorders because of their ability to promote neurogenesis. Our objective was to examine the mechanism of neurogenesis by BM-MSCs in GD. We found that neural stem cells (NSCs) derived from a neuronopathic GD model exhibited decreased ability for self-renewal and neuronal differentiation. Co-culture of GBA-deficient NSCs with BM-MSCs resulted in an enhanced capacity for self-renewal, and an increased ability for differentiation into neurons or oligodendrocytes. Enhanced proliferation and neuronal differentiation of GBA-deficient NSCs was associated with elevated release of macrophage colony-stimulating factor (M-CSF) from BM-MSCs. Our findings suggest that soluble M-CSF derived from BM-MSCs can modulate GBA-deficient NSCs, resulting in their improved proliferation and neuronal differentiation.
Collapse
Affiliation(s)
- Hyun Lee
- Stem Cell Neuroplasticity Research Group, Cell and Matrix Research Institute, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701,
Korea
- Department of Laboratory Animal Medicine, Cell and Matrix Research Institute, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701,
Korea
| | - Jae-sung Bae
- Stem Cell Neuroplasticity Research Group, Cell and Matrix Research Institute, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701,
Korea
- Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 700-842,
Korea
- Department of Biomedical Science, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 700-842,
Korea
| | - Hee Kyung Jin
- Stem Cell Neuroplasticity Research Group, Cell and Matrix Research Institute, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701,
Korea
- Department of Laboratory Animal Medicine, Cell and Matrix Research Institute, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701,
Korea
| |
Collapse
|
41
|
Mesenchymal Stromal Cell Therapy in Ischemia/Reperfusion Injury. J Immunol Res 2015; 2015:602597. [PMID: 26258151 PMCID: PMC4518154 DOI: 10.1155/2015/602597] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/07/2015] [Indexed: 12/24/2022] Open
Abstract
Ischemia/reperfusion injury (IRI) represents a worldwide public health issue of increasing incidence. IRI may virtually affect all organs and tissues and is associated with significant morbidity and mortality. Particularly, the duration of blood supply deprivation has been recognized as a critical factor in stroke, hemorrhagic shock, or myocardial infarction, as well as in solid organ transplantation (SOT). Pathophysiologically, IRI causes multiple cellular and tissular metabolic and architectural changes. Furthermore, the reperfusion of ischemic tissues induces both local and systemic inflammation. In the particular field of SOT, IRI is an unavoidable event, which conditions both short- and long-term outcomes of graft function and survival. Clinically, the treatment of patients with IRI mostly relies on supportive maneuvers since no specific target-oriented therapy has been validated thus far. In the present review, we summarize the current literature on mesenchymal stromal cells (MSC) and their potential use as cell therapy in IRI. MSC have demonstrated immunomodulatory, anti-inflammatory, and tissue repair properties in rodent studies and in preliminary clinical trials, which may open novel avenues in the management of IRI and SOT.
Collapse
|
42
|
Efficacy of Surgery Combined with Autologous Bone Marrow Stromal Cell Transplantation for Treatment of Intracerebral Hemorrhage. Stem Cells Int 2015; 2015:318269. [PMID: 26240570 PMCID: PMC4512614 DOI: 10.1155/2015/318269] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/30/2014] [Accepted: 01/13/2015] [Indexed: 12/29/2022] Open
Abstract
Bone marrow stromal cells (BMSCs) may differentiate into nerve cells under a certain condition; however, the clinical application for treating nervous system disease remains unclear. The aim is to assess the safety profile, feasibility, and effectiveness of surgery combined with autologous BMSCs transplantation for treating ICH. 206 ICH patients who had received surgical procedure were divided into transplantation (n = 110) or control group (n = 96). For transplantation group, BMSCs were injected into the perihemorrhage area in the base ganglia through an intracranial drainage tube 5.5 (3.01–6.89) days after surgery, followed by a second injection into the subarachnoid space through lumbar puncture 4 weeks later. Neurologic impairment and daily activities were assessed with National Institute Stroke Scale (NIHSS), Barthel index, and Rankin scale before transplantation and 6 months and 12 months after transplantation. Our results revealed that, compared with control group, NIHSS score and Rankin scale were both significantly decreased but Barthel index was increased in transplantation group after 6 months. Interestingly, no significant difference was observed between 12 months and 6 months. No transplantation-related adverse effects were investigated during follow-up assessments. Our findings suggest that surgery combined with autologous BMSCs transplantation is safe for treatment of ICH, providing short-term therapeutic benefits.
Collapse
|
43
|
Titomanlio L, Fernández-López D, Manganozzi L, Moretti R, Vexler ZS, Gressens P. Pathophysiology and neuroprotection of global and focal perinatal brain injury: lessons from animal models. Pediatr Neurol 2015; 52:566-584. [PMID: 26002050 PMCID: PMC4720385 DOI: 10.1016/j.pediatrneurol.2015.01.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 01/16/2015] [Accepted: 01/24/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND Arterial ischemic stroke occurs more frequently in term newborns than in the elderly, and brain immaturity affects mechanisms of ischemic injury and recovery. The susceptibility to injury of the brain was assumed to be lower in the perinatal period as compared with childhood. This concept was recently challenged by clinical studies showing marked motor disabilities after stroke in neonates, with the severity of motor and cortical sensory deficits similar in both perinatal and childhood ischemic stroke. Our understanding of the triggers and the pathophysiological mechanisms of perinatal stroke has greatly improved in recent years, but many factors remain incompletely understood. METHODS In this review, we focus on the pathophysiology of perinatal stroke and on therapeutic strategies that can protect the immature brain from the consequences of stroke by targeting inflammation and brain microenvironment. RESULTS Studies in neonatal rodent models of cerebral ischemia have suggested a potential role for soluble inflammatory molecules as important modulators of injury and recovery. A great effort is underway to investigate neuroprotective molecules based on our increasing understanding of the pathophysiology. CONCLUSION In this review, we provide a comprehensive summary of new insights concerning pathophysiology of focal and global perinatal brain injury and their implications for new therapeutic approaches.
Collapse
Affiliation(s)
- Luigi Titomanlio
- Pediatric Emergency Department, APHP, Robert Debré Hospital, Paris, France
- Inserm, U1141, F-75019 Paris, France
| | - David Fernández-López
- Department of Neurology, University of California San Francisco, San Francisco, CA, 94158-0663, USA
| | - Lucilla Manganozzi
- Pediatric Emergency Department, APHP, Robert Debré Hospital, Paris, France
- Inserm, U1141, F-75019 Paris, France
| | | | - Zinaida S. Vexler
- Department of Neurology, University of California San Francisco, San Francisco, CA, 94158-0663, USA
| | - Pierre Gressens
- Inserm, U1141, F-75019 Paris, France
- Univ Paris Diderot, Sorbonne Paris Cité, UMRS 676, F-75019 Paris, France
- PremUP, Paris, France
- Centre for the Developing Brain, King’s College, St Thomas’ Campus, London SE1 7EH, UK
| |
Collapse
|
44
|
Xia CY, Zhang S, Gao Y, Wang ZZ, Chen NH. Selective modulation of microglia polarization to M2 phenotype for stroke treatment. Int Immunopharmacol 2015; 25:377-82. [DOI: 10.1016/j.intimp.2015.02.019] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/28/2015] [Accepted: 02/11/2015] [Indexed: 11/27/2022]
|
45
|
Kim D, Lee H, Kwon K, Park S, Heo H, Lee Y, Choi J, Shin C, Ryu J. Early immature neuronal death initiates cerebral ischemia-induced neurogenesis in the dentate gyrus. Neuroscience 2015; 284:42-54. [DOI: 10.1016/j.neuroscience.2014.09.074] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/16/2014] [Accepted: 09/16/2014] [Indexed: 02/03/2023]
|
46
|
Cell-based therapy for acute organ injury: preclinical evidence and ongoing clinical trials using mesenchymal stem cells. Anesthesiology 2014; 121:1099-121. [PMID: 25211170 DOI: 10.1097/aln.0000000000000446] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Critically ill patients often suffer from multiple organ failures involving lung, kidney, liver, or brain. Genomic, proteomic, and metabolomic approaches highlight common injury mechanisms leading to acute organ failure. This underlines the need to focus on therapeutic strategies affecting multiple injury pathways. The use of adult stem cells such as mesenchymal stem or stromal cells (MSC) may represent a promising new therapeutic approach as increasing evidence shows that MSC can exert protective effects following injury through the release of promitotic, antiapoptotic, antiinflammatory, and immunomodulatory soluble factors. Furthermore, they can mitigate metabolomic and oxidative stress imbalance. In this work, the authors review the biological capabilities of MSC and the results of clinical trials using MSC as therapy in acute organ injuries. Although preliminary results are encouraging, more studies concerning safety and efficacy of MSC therapy are needed to determine their optimal clinical use. (ANESTHESIOLOGY 2014; 121:1099-121).
Collapse
|
47
|
Paradells S, Zipancic I, Martínez-Losa MM, García Esparza MÁ, Bosch-Morell F, Alvarez-Dolado M, Soria JM. Lipoic acid and bone marrow derived cells therapy induce angiogenesis and cell proliferation after focal brain injury. Brain Inj 2014; 29:380-95. [PMID: 25384090 DOI: 10.3109/02699052.2014.973448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
UNLABELLED Abstract Introduction: Traumatic brain injury is a main cause of disability and death in developed countries, above all among children and adolescents. The intrinsic inability of the central nervous system to efficiently repair traumatic injuries renders transplantation of bone marrow-derived cells (BMDC) a promising approach towards repair of brain lesions. On the other hand, many studies have reported the beneficial effect of Lipoic acid (LA), a potent antioxidant promoting cell survival, angiogenesis and neuroregeneration. METHODS In this study, the cortex of adult mice was cryo-injured in order to mimic local traumatic brain injury. Vehicle or freshly prepared BMDC were grafted in the cerebral penumbra area 24 hours after unilateral local injury alone or combined with intra-peritoneal LA administration as a new regenerative strategy. RESULTS Differences were found in the process of cell proliferation, angiogenesis and glial scar formation after local injury depending of the applied treatment, either LA or BMDC alone or in combination. CONCLUSION The data presented here suggest that transplantation of BMDC is a good alternative and valid strategy to treat a focal brain injury when LA could not be prescribed due to its non-desired secondary effects.
Collapse
Affiliation(s)
- Sara Paradells
- Departamento de Ciencias Biomédicas, Universidad CEU Cardenal Herrera , Moncada , Spain
| | | | | | | | | | | | | |
Collapse
|
48
|
Hypoxia/Reoxygenation-Preconditioned Human Bone Marrow-Derived Mesenchymal Stromal Cells Rescue Ischemic Rat Cortical Neurons by Enhancing Trophic Factor Release. Mol Neurobiol 2014; 52:792-803. [DOI: 10.1007/s12035-014-8912-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 09/28/2014] [Indexed: 02/07/2023]
|
49
|
Wang C, Li F, Guan Y, Zhu L, Fei Y, Zhang J, Pan Y. Bone marrow stromal cells combined with oxiracetam influences the expression of B-cell lymphoma 2 in rats with ischemic stroke. J Stroke Cerebrovasc Dis 2014; 23:2591-2597. [PMID: 25267587 DOI: 10.1016/j.jstrokecerebrovasdis.2014.05.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 05/29/2014] [Accepted: 05/31/2014] [Indexed: 01/31/2023] Open
Abstract
This study aimed to investigate the combination effects of bone marrow stromal cells (BMSCs) and oxiracetam for ischemic stroke. Forty Sprague Dawley female rats (220 ± 20 g) were subjected to a 2-hour ischemic middle cerebral artery occlusion (MCAO)-24 hours reperfusion model. The rats were randomly divided into 4 groups. Rats from BMSCs group, oxiracetam group, and BMSCs + oxiracetam group accepted injection of BMSCs (3 × 10(6) cells), oxiracetam (800 mg/kg), and BMSCs + oxiracetam, respectively. Rats from control group did not receive any interventions after ischemia reperfusion. The neurologic function was examined by modified neurological severity scores (mNSS). B-cell lymphoma 2 (Bcl-2) expression and apoptosis were detected by immunohistochemistry and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining. The mNSS was decreased in all treatment groups and that in BMSCs + oxiracetam group was lower than BMSCs group and oxiracetam group (P < .05). The expression of Bcl-2 was unregulated in all treatment groups (P < .05), and similarly, the expression of Bcl-2 in BMSCs + oxiracetam group was higher than BMSCs group and oxiracetam group (P < .05). Control group displayed more TUNEL-positive cells than the treatment groups, and BMSCs + oxiracetam group displayed less apoptotic cells than BMSCs group or oxiracetam group (P < .05). Transplantation of BMSCs can promote the recovery of neurologic function in MCAO rats, and the effect of BMSCs combined with oxiracetam was better than the either one. Upregulation of Bcl-2 resulting in a decrease of apoptosis may be one of the mechanisms of BMSCs treatment for cerebral ischemic stroke.
Collapse
Affiliation(s)
- Chunyan Wang
- Department of Neurology, The First Hospital and Clinical College, Harbin Medical University, Harbin, China
| | - Fangqin Li
- Department of Neurology, The First Hospital and Clinical College, Harbin Medical University, Harbin, China
| | - Yu Guan
- Department of Neurology, Hangzhou Hospital of Zhejiang CAPF, Hangzhou, China
| | - Lei Zhu
- Department of Neurology, The First Hospital and Clinical College, Harbin Medical University, Harbin, China
| | - Yiping Fei
- Department of Neurology, The First Hospital and Clinical College, Harbin Medical University, Harbin, China
| | - Jiadong Zhang
- Department of Neurology, The First Hospital of Harbin, Harbin, China
| | - Yujun Pan
- Department of Neurology, The First Hospital and Clinical College, Harbin Medical University, Harbin, China.
| |
Collapse
|
50
|
The neuroprotective effect of bone marrow stem cells is not dependent on direct cell contact with hypoxic injured tissue: Experimental Neurology 2009; 215: 317-327. Ann Neurosci 2014; 18:21. [PMID: 25205914 PMCID: PMC4117024 DOI: 10.5214/ans.0972.7531.1118107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|