1
|
Shilenok I, Kobzeva K, Soldatov V, Deykin A, Bushueva O. C11orf58 (Hero20) Gene Polymorphism: Contribution to Ischemic Stroke Risk and Interactions with Other Heat-Resistant Obscure Chaperones. Biomedicines 2024; 12:2603. [PMID: 39595169 PMCID: PMC11592265 DOI: 10.3390/biomedicines12112603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Recently identified Hero proteins, which possess chaperone-like functions, are promising candidates for research into atherosclerosis-related diseases, including ischemic stroke (IS). Methods: 2204 Russian subjects (917 IS patients and 1287 controls) were genotyped for fifteen common SNPs in Hero20 gene C11orf58 using probe-based PCR and the MassArray-4 system. Results: Six C11orf58 SNPs were significantly associated with an increased risk of IS in the overall group (OG) and significantly modified by smoking (SMK) and low fruit/vegetable intake (LFVI): rs10766342 (effect allele (EA) A; P(OG = 0.02; SMK = 0.009; LFVI = 0.04)), rs11024032 (EA T; P(OG = 0.01; SMK = 0.01; LFVI = 0.036)), rs11826990 (EA G; P(OG = 0.007; SMK = 0.004; LFVI = 0.03)), rs3203295 (EA C; P(OG = 0.016; SMK = 0.01; LFVI = 0.04)), rs10832676 (EA G; P(OG = 0.006; SMK = 0.002; LFVI = 0.01)), rs4757429 (EA T; P(OG = 0.02; SMK = 0.04; LFVI = 0.04)). The top ten intergenic interactions of Hero genes (two-, three-, and four-locus models) involved exclusively polymorphic loci of C11orf58 and C19orf53 and were characterized by synergic and additive (independent) effects between SNPs. Conclusions: Thus, C11orf58 gene polymorphism represents a major risk factor for IS. Bioinformatic analysis showed the involvement of C11orf58 SNPs in molecular mechanisms of IS mediated by their role in the regulation of redox homeostasis, inflammation, vascular remodeling, apoptosis, vasculogenesis, neurogenesis, lipid metabolism, proteostasis, hypoxia, cell signaling, and stress response. In terms of intergenic interactions, C11orf58 interacts most closely with C19orf53.
Collapse
Affiliation(s)
- Irina Shilenok
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
- Division of Neurology, Kursk Emergency Hospital, 305035 Kursk, Russia
| | - Ksenia Kobzeva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
| | - Vladislav Soldatov
- Laboratory of Genome Editing for Biomedicine and Animal Health, Belgorod State National Research University, 308015 Belgorod, Russia
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Alexey Deykin
- Laboratory of Genome Editing for Biomedicine and Animal Health, Belgorod State National Research University, 308015 Belgorod, Russia
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Olga Bushueva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 305041 Kursk, Russia
| |
Collapse
|
2
|
Willems S, Merk D. Medicinal Chemistry and Chemical Biology of Nurr1 Modulators: An Emerging Strategy in Neurodegeneration. J Med Chem 2022; 65:9548-9563. [PMID: 35797147 DOI: 10.1021/acs.jmedchem.2c00585] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nuclear receptor related 1 (Nurr1) is a transcription factor with neuroprotective and antineuroinflammatory properties. Observations from genetic studies and human patients support potential of Nurr1 as a therapeutic target in neurodegeneration, but due to a lack of high-quality chemical tools for pharmacological control of Nurr1, its target validation is pending. Nevertheless, considerable progress has recently been made in elucidating structural and functional characteristics of Nurr1, and several ligand scaffolds have been discovered. Here, we analyze Nurr1's structure and mechanisms compared to other nuclear receptors, summarize the known small molecule Nurr1 ligands, and discuss the available evidence for the therapeutic potential of Nurr1 in neurodegeneration.
Collapse
Affiliation(s)
- Sabine Willems
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany.,Department of Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany.,Department of Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| |
Collapse
|
3
|
Wu XM, Qian C, Jiang F, Bao YX, Qian ZM, Ke Y. The involvement of nuclear factor-κB in astroprotection against ischemia-reperfusion injury by ischemia-preconditioned neurons. J Cell Physiol 2021; 236:4515-4527. [PMID: 33442879 DOI: 10.1002/jcp.30168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/21/2020] [Accepted: 11/06/2020] [Indexed: 11/12/2022]
Abstract
Ischemic preconditioned (IP) neurons protect astrocytes against ischemia/reperfusion (I/R)-induced injury by inhibiting oxidative stress. However, the relevant mechanisms are unknown. Based on the role of nuclear factor-κB (NF-κB) in cell survival and adaption to oxidative stress, we hypothesized that NF-κB might be associated with astroprotection induced by IP neurons via upregulation of antioxidant enzymes. Here, we investigated the effects of IP neurons on NF-κB activation, cell viability, reactive oxygen species (ROS), expression of antioxidant enzymes, erythropoietin (EPO), and tumor necrosis factor α (TNF-α), in the presence or absence of BAY11-7082 (an NF-κB inhibitor), anti-EPO, and anti-TNF-α antibodies, in astrocytes treated with or without I/R. We found that IP neurons could keep NF-κB activation at a relatively higher but beneficial level, and in turn, upregulated the activity of antioxidant enzymes and hence enhanced cell viability and reduced ROS in I/R treated astrocytes. The results collectively indicated that IP neurons are able to significantly inhibit the I/R-induced NF-κB overactivation, probably via EPO and TNF-α, being essential for IP neuron-induced astroprotection under the conditions of I/R. We concluded that NF-κB-mediated antioxidative stress is one of the mechanisms by which IP neurons protect astrocytes against I/R injury.
Collapse
Affiliation(s)
- Xiao-Mei Wu
- Institute of Translational & Precision Medicine and Institute for Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Christopher Qian
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Fei Jiang
- Institute of Translational & Precision Medicine and Institute for Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Yu-Xin Bao
- Research Center for Medicine and Biology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhong-Ming Qian
- Institute of Translational & Precision Medicine and Institute for Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
- Laboratory of Neuropharmacology, School of Pharmacy & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ya Ke
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| |
Collapse
|
4
|
Rajan S, Jang Y, Kim CH, Kim W, Toh HT, Jeon J, Song B, Serra A, Lescar J, Yoo JY, Beldar S, Ye H, Kang C, Liu XW, Feitosa M, Kim Y, Hwang D, Goh G, Lim KL, Park HM, Lee CH, Oh SF, Petsko GA, Yoon HS, Kim KS. PGE1 and PGA1 bind to Nurr1 and activate its transcriptional function. Nat Chem Biol 2020; 16:876-886. [PMID: 32451509 DOI: 10.1038/s41589-020-0553-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 04/22/2020] [Indexed: 12/11/2022]
Abstract
The orphan nuclear receptor Nurr1 is critical for the development, maintenance and protection of midbrain dopaminergic (mDA) neurons. Here we show that prostaglandin E1 (PGE1) and its dehydrated metabolite, PGA1, directly interact with the ligand-binding domain (LBD) of Nurr1 and stimulate its transcriptional function. We also report the crystallographic structure of Nurr1-LBD bound to PGA1 at 2.05 Å resolution. PGA1 couples covalently to Nurr1-LBD by forming a Michael adduct with Cys566, and induces notable conformational changes, including a 21° shift of the activation function-2 helix (H12) away from the protein core. Furthermore, PGE1/PGA1 exhibit neuroprotective effects in a Nurr1-dependent manner, prominently enhance expression of Nurr1 target genes in mDA neurons and improve motor deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse models of Parkinson's disease. Based on these results, we propose that PGE1/PGA1 represent native ligands of Nurr1 and can exert neuroprotective effects on mDA neurons, via activation of Nurr1's transcriptional function.
Collapse
Affiliation(s)
- Sreekanth Rajan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yongwoo Jang
- Molecular Neurobiology Laboratory, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA.,Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Chun-Hyung Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA.,Paean Biotechnology, Daejeon, Korea
| | - Woori Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Hui Ting Toh
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Nanyang Institute of Technology in Health and Medicine, Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore
| | - Jeha Jeon
- Molecular Neurobiology Laboratory, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Bin Song
- Molecular Neurobiology Laboratory, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Aida Serra
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Jun Yeob Yoo
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Serap Beldar
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Hong Ye
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Congbao Kang
- Experimental Drug Development Centre, Agency for Science, Technology and Research, Nanos, Singapore, Singapore
| | - Xue-Wei Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Melissa Feitosa
- Molecular Neurobiology Laboratory, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Yeahan Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Dabin Hwang
- Molecular Neurobiology Laboratory, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Geraldine Goh
- National Neuroscience Institute, Singapore, Singapore
| | - Kah-Leong Lim
- National Neuroscience Institute, Singapore, Singapore.,Lee Kong Chian School of Medicine, Singapore, Singapore
| | - Hye Min Park
- Department of Bioscience and Biotechnology, Konkuk University, Gwangjin-gu, Seoul, Republic of Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Gwangjin-gu, Seoul, Republic of Korea
| | - Sungwhan F Oh
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gregory A Petsko
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ho Sup Yoon
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore. .,NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore.
| | - Kwang-Soo Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA. .,Program in Neuroscience and Harvard Stem Cell Institute, McLean Hospital, Harvard Medical School, Belmont, MA, USA.
| |
Collapse
|
5
|
Xu GB, Yang LQ, Guan PP, Wang ZY, Wang P. Prostaglandin A1 Inhibits the Cognitive Decline of APP/PS1 Transgenic Mice via PPARγ/ABCA1-dependent Cholesterol Efflux Mechanisms. Neurotherapeutics 2019; 16:505-522. [PMID: 30627958 PMCID: PMC6554490 DOI: 10.1007/s13311-018-00704-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Prostaglandins (PGs) are early and key contributors to chronic neurodegenerative diseases. As one important member of classical PGs, PGA1 has been reported to exert potential neuroprotective effects. However, the mechanisms remain unknown. To this end, we are prompted to investigate whether PGA1 is a useful neurological treatment for Alzheimer's disease (AD) or not. Using high-throughput sequencing, we found that PGA1 potentially regulates cholesterol metabolism and lipid transport. Interestingly, we further found that short-term administration of PGA1 decreased the levels of the monomeric and oligomeric β-amyloid protein (oAβ) in a cholesterol-dependent manner. In detail, PGA1 activated the peroxisome proliferator-activated receptor-gamma (PPARγ) and ATP-binding cassette subfamily A member 1 (ABCA1) signalling pathways, promoting the efflux of cholesterol and decreasing the intracellular cholesterol levels. Through PPARγ/ABCA1/cholesterol-dependent pathway, PGA1 decreased the expression of presenilin enhancer protein 2 (PEN-2), which is responsible for the production of Aβ. More importantly, long-term administration of PGA1 remarkably decreased the formation of Aβ monomers, oligomers, and fibrils. The actions of PGA1 on the production and deposition of Aβ ultimately improved the cognitive decline of the amyloid precursor protein/presenilin1 (APP/PS1) transgenic mice.
Collapse
Affiliation(s)
- Guo-Biao Xu
- College of Life and Health Sciences, Northeastern University, No. 3-11. Wenhua Road, Shenyang, 110819, People's Republic of China
| | - Liu-Qing Yang
- College of Life and Health Sciences, Northeastern University, No. 3-11. Wenhua Road, Shenyang, 110819, People's Republic of China
| | - Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, No. 3-11. Wenhua Road, Shenyang, 110819, People's Republic of China
| | - Zhan-You Wang
- College of Life and Health Sciences, Northeastern University, No. 3-11. Wenhua Road, Shenyang, 110819, People's Republic of China.
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, No. 3-11. Wenhua Road, Shenyang, 110819, People's Republic of China.
| |
Collapse
|
6
|
Jha NK, Jha SK, Kar R, Nand P, Swati K, Goswami VK. Nuclear factor-kappa β as a therapeutic target for Alzheimer's disease. J Neurochem 2019; 150:113-137. [PMID: 30802950 DOI: 10.1111/jnc.14687] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/06/2019] [Accepted: 02/16/2019] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a typical progressive, chronic neurodegenerative disorder with worldwide prevalence. Its clinical manifestation involves the presence of extracellular plaques and intracellular neurofibrillary tangles (NFTs). NFTs occur in brain tissues as a result of both Aβ agglomeration and Tau phosphorylation. Although there is no known cure for AD, research into possible cures and treatment options continues using cell-cultures and model animals/organisms. The nuclear factor-kappa β (NF-κβ) plays an active role in the progression of AD. Impairment to this signaling module triggers undesirable phenotypic changes such as neuroinflammation, activation of microglia, oxidative stress related complications, and apoptotic cell death. These imbalances further lead to homeostatic abnormalities in the brain or in initial stages of AD essentially pushing normal neurons toward the degeneration process. Interestingly, the role of NF-κβ signaling associated receptor-interacting protein kinase is currently observed in apoptotic and necrotic cell death, and has been reported in brains. Conversely, the NF-κβ signaling pathway has also been reported to be involved in normal brain functioning. This pathway plays a crucial role in maintaining synaptic plasticity and balancing between learning and memory. Since any impairment in the pathways associated with NF-κβ signaling causes altered neuronal dynamics, neurotherapeutics using compounds including, antioxidants, bioflavonoids, and non-steroidal anti-inflammatory drugs against such abnormalities offer possibilities to rectify aberrant excitatory neuronal activity in AD. In this review, we have provided an extensive overview of the crucial role of NF-κβ signaling in normal brain homeostasis. We have also thoroughly outlined several established pathomechanisms associated with NF-κβ pathways in AD, along with their respective therapeutic approaches.
Collapse
Affiliation(s)
- Niraj Kumar Jha
- Department of Biotechnology, Noida Institute of Engineering & Technology (NIET), Greater Noida, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Rohan Kar
- Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Parma Nand
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Kumari Swati
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Vineet Kumar Goswami
- Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| |
Collapse
|
7
|
Xu M, Yang L, Hong LZ, Zhao XY, Zhang HL. Direct protection of neurons and astrocytes by matrine via inhibition of the NF-κB signaling pathway contributes to neuroprotection against focal cerebral ischemia. Brain Res 2012; 1454:48-64. [PMID: 22503072 DOI: 10.1016/j.brainres.2012.03.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 03/05/2012] [Accepted: 03/08/2012] [Indexed: 02/02/2023]
Abstract
Matrine (Mat) and oxymatrine are two major alkaloids of the Chinese herb Sophora flavescens Ait. (Leguminosae). Previous study has demonstrated that Mat reduces brain edema induced by focal cerebral ischemia. More recently, oxymatrine has been reported to produce neuroprotective effects against focal cerebral ischemia via inhibiting the activation of NF-κB in the ischemic brain tissue. In the current study, we investigated whether direct protection on neurons and astrocytes via inhibition of NF-κB signaling pathway is associated with Mat's neuroprotective effects against cerebral ischemia. In a model of permanent middle cerebral artery occlusion (pMCAO), Mat (12.5, 25 and 50 mg/kg) reduced the infarction volume and improved the neurological deficits in a dose-dependent manner, administered 10 min, 3h and even 6h following pMCAO. Mat 50 mg/kg also decreased the hemispheric water content. The number of GFAP-positive cells was markedly decreased in the ischemic cortex at 12h after ischemia. In contrast, Mat increased the number of GFAP-positive cells. Mat 50mg/kg has no effect on the cerebral blood flow (CBF). Primary neuron or astrocyte cultures were exposed to a paradigm of ischemic insult by using an oxygen-glucose deprivation (OGD), Mat (50-200 μM) reduced LDH leakage and the number of neuronal and astrocytic apoptosis, and increased the number of MAP2-positive and GFAP-positive cells. Further observations revealed that Mat increased the protein levels of IκBα, and blocked the translocation of NF-κB p65 from the cytosol to the nucleus in the ischemic cortex and injured neurons and astrocytes induced by in vitro OGD. Moreover, Mat could down-regulate NF-κB p65 downstream pro-apoptotic gene p53 and/or c-Myc in the injured neurons and astrocytes induced by OGD. The present findings suggest that Mat, even when administrated 6h after ischemia, has neuroprotective effects against focal cerebral ischemia and directly protects neurons and astrocytes via inhibition of NF-κB signaling pathway, contributing to matrine's neuroprotection against focal cerebral ischemia.
Collapse
Affiliation(s)
- Min Xu
- Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | | | | | | | | |
Collapse
|
8
|
Zhang HL, Xu M, Wei C, Qin AP, Liu CF, Hong LZ, Zhao XY, Liu J, Qin ZH. Neuroprotective effects of pioglitazone in a rat model of permanent focal cerebral ischemia are associated with peroxisome proliferator-activated receptor gamma-mediated suppression of nuclear factor-κB signaling pathway. Neuroscience 2011; 176:381-95. [DOI: 10.1016/j.neuroscience.2010.12.029] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 12/12/2010] [Accepted: 12/19/2010] [Indexed: 11/16/2022]
|
9
|
Céspedes-Rubio A, Jurado FW, Cardona-Gómez GP. p120 catenin/αN-catenin are molecular targets in the neuroprotection and neuronal plasticity mediated by atorvastatin after focal cerebral ischemia. J Neurosci Res 2010; 88:3621-34. [PMID: 20936696 DOI: 10.1002/jnr.22511] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 08/01/2010] [Accepted: 08/12/2010] [Indexed: 02/06/2023]
Abstract
Atorvastatin (ATV), a 3-hydroxy 3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, exerts beneficial effects on stroke through several pleiotropic mechanisms. However, its role following cerebral ischemia is not completely understood yet. We evaluated the effect of ATV treatment on the synaptic adhesion proteins after a transient middle cerebral artery occlusion (t-MCAO) model in rats. Ischemic male Wistar rats were treated with 10 mg/kg ATV. The first dose was 6 hr after reperfusion, then every 24 hr for 3days. Our findings showed that ATV treatment produced an increase in pAkt ser473 and a decrease in pMAPK 44/42 protein levels 12 and 24 hr postischemia in the cerebral cortex and the hippocampus. However, p120 catenin and αN-catenin became drastically increased throughout the temporal course of postischemia treatment (12-72 hr), mainly in the hippocampus. Neurological recovery was observed at 48 and 72 hr, supported by a significant reduction of infarct volume, neuronal loss, and glial hyperreactivity after 72 hr of postischemia treatment with ATV. ATV treatment also up-regulated the association of p120(ctn) , αN-catenin to PSD-95, accompanied by a reduction of RhoA activation and the recovery of MAP2 immunoreactivity, these being significantly affected by the focal cerebral ischemia. Our findings suggested that p120(ctn) and αN-catenin synaptic adhesion proteins are crucial molecular targets in ATV-mediated neuroprotection and neuronal plasticity after focal cerebral ischemia.
Collapse
Affiliation(s)
- Angel Céspedes-Rubio
- Neuroscience Group, Cellular and Molecular Neurobiology Area, School of Medicine, SIU, Universidad de Antioquia, Medellín, Colombia
| | | | | |
Collapse
|
10
|
Wang X, Qin ZH, Shi H, Savitz SI, Qin AP, Jiang Y, Zhang HL. Protective effect of Ginkgolids (A+B) is associated with inhibition of NIK/IKK/IkappaB/NF-kappaB signaling pathway in a rat model of permanent focal cerebral ischemia. Brain Res 2008; 1234:8-15. [PMID: 18722355 DOI: 10.1016/j.brainres.2008.07.102] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 04/01/2008] [Accepted: 07/18/2008] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND PURPOSE We have previously reported that Ginkgolids which contain Ginkgolids A and B (Ginkgolids (A+B), GKAB) reduce infarct size in a rat model of focal ischemia. NF-kappaB-inducing kinase (NIK)-IkappaBalpha kinase (IKK) pathway plays an important role in activation of nuclear factor kappaB (NF-kappaB). A previous study demonstrated that Ginkgolid B inhibited lipopolysaccharide (LPS)- and platelet activating factor (PAF)-induced NF-kappaB activation in rat pleural polymorphonuclear granulocytes. However, little is known about the inhibitory mechanisms of Ginkgolids on the activation of NF-kappaB. The present study evaluated the effects of GKAB on NIK/IKK/IkappaB/NF-kappaB signaling pathway in a rat model of permanent focal cerebral ischemia. METHODS Rats were subjected to permanent middle cerebral artery occlusion (pMCAO) by intraluminal suture blockade. GKAB was injected intravenously (iv) immediately after ischemic onset. Western blot analysis was employed to determine alterations in IkappaBalpha, phosphorylated NIK (p-NIK) and phosphorylated IKKalpha (p-IKKalpha). Immunohistochemistry was used to confirm the nuclear translocation of NF-kappaB p65. RT-PCR was used to detect induction of NF-kappaB target gene c-Myc mRNA. RESULTS The results showed a brief increase in p-NIK levels after ischemia. GKAB blocked ischemia-induced increases in p-NIK and p-IKKalpha levels, and reversed the decline in IkappaBalpha levels. Ischemia-induced nuclear translocation of NF-kappaB p65 was attenuated by GKAB(.) GKAB also repressed the ischemia-induced increase in expression of NF-kappaB target gene c-Myc mRNA. CONCLUSIONS These findings suggest that GKAB-mediated neuroprotective effect against ischemia appears to be associated with blocking NF-kappaB activation by suppressing the NIK-IKK pathway.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Soochow University School of Medicine, Suzhou, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Qin ZH, Tao LY, Chen X. Dual roles of NF-kappaB in cell survival and implications of NF-kappaB inhibitors in neuroprotective therapy. Acta Pharmacol Sin 2007; 28:1859-72. [PMID: 18031598 DOI: 10.1111/j.1745-7254.2007.00741.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
NF-kappaB is a well-characterized transcription factor with multiple physiological and pathological functions. NF-kappaB plays important roles in the development and maturation of lymphoids, regulation of immune and inflammatory response, and cell death and survival. The influence of NF-kappaB on cell survival could be protective or destructive, depending on types, developmental stages of cells, and pathological conditions. The complexity of NF-kappaB in cell death and survival derives from its multiple roles in regulating the expression of a broad array of genes involved in promoting cell death and survival. The activation of NF-kappaB has been found in many neurological disorders, but its actual roles in pathogenesis are still being debated. Many compounds with neuroprotective actions are strongly associated with the inhibition of NF-kappaB, leading to speculation that blocking the pathological activation of NF-kappaB could offer neuroprotective effects in certain neurodegenerative conditions. This paper reviews the recent developments in understanding the dual roles of NF-kappaB in cell death and survival and explores its possible usefulness in treating neurological diseases. This paper will summarize the genes regulated by NF-kappaB that are involved in cell death and survival to elucidate why NF-kappaB promotes cell survival in some conditions while facilitating cell death in other conditions. This paper will also focus on the effects of various NF-kappaB inhibitors on neuroprotection in certain pathological conditions to speculate if NF-kappaB is a potential target for neuroprotective therapy.
Collapse
Affiliation(s)
- Zheng-hong Qin
- Department of Pharmacology, Soochow University School of Medicine, Suzhou 215123, China.
| | | | | |
Collapse
|
12
|
Gharbi S, Garzón B, Gayarre J, Timms J, Pérez-Sala D. Study of protein targets for covalent modification by the antitumoral and anti-inflammatory prostaglandin PGA1: focus on vimentin. JOURNAL OF MASS SPECTROMETRY : JMS 2007; 42:1474-1484. [PMID: 17960581 DOI: 10.1002/jms.1291] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Prostaglandins with cyclopentenone structure (cyPG) display potent antiproliferative actions that have elicited their study as potential anticancer agents. Several natural and synthetic analogs of the cyPG prostaglandin A(1) (PGA(1)) have proven antitumoral efficacy in cancer cell lines and animal models. In addition, PGA(1) has been used as an inhibitor of transcription factor NF-kappaB-mediated processes, including inflammatory gene expression and viral replication. An important determinant for these effects is the ability of cyPG to form Michael adducts with free thiol groups. The chemical nature of this interaction implies that PGA(1) could covalently modify cysteine residues in a large number of cellular proteins potentially involved in its beneficial effects. However, only a few targets of PGA(1) have been identified. In previous work, we have observed that a biotinylated analog of PGA(1) that retains the cyclopentenone moiety (PGA(1)-B) binds to multiple targets in fibroblasts. Here, we have addressed the identification of these targets through a proteomic approach. Cell fractionation followed by avidin affinity chromatography yielded a fraction enriched in proteins modified by PGA(1)-B. Analysis of this fraction by SDS-PAGE and LC-MS/MS allowed the identification of the chaperone Hsp90, elongation and initiation factors for protein synthesis and cytoskeletal proteins including actin, tubulin and vimentin. Furthermore, we have characterized the modification of vimentin both in vitro and in intact cells. Our observations indicate that cysteine 328 is the main site for PGA(1) addition. These results may contribute to a better understanding of the mechanism of action of PGA(1) and the potential of cyPG-based therapeutic strategies.
Collapse
Affiliation(s)
- Severine Gharbi
- Cancer Proteomics Group, Ludwig Institute for Cancer Research, London, and Department of Gynaecological Oncology, University College London, UK
| | | | | | | | | |
Collapse
|
13
|
Xu XH, Hua YN, Zhang HL, Wu JC, Miao YZ, Han R, Gu ZL, Qin ZH. Greater stress protein expression enhanced by combined prostaglandin A1 and lithium in a rat model of focal ischemia. Acta Pharmacol Sin 2007; 28:1097-104. [PMID: 17640469 DOI: 10.1111/j.1745-7254.2007.00624.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM To investigate the effects of lithium (Li) and prostaglandin A1 (PGA1) on the expression of heat shock factor 1 (HSF-1), heat shock proteins (HSP), and apoptosis protease activating factor-1 (Apaf-1) induced by permanent focal ischemia in rats. METHODS The rats were pretreated with a subcutaneous (sc) injection of Li for 2 d or a single intracerebral ventricle (icv) administration of PGA1 for 15 min before ischemic insult, or a combination of Li (sc, 1 mEq/kg, 2 d) and PGA1 (icv, 15 min prior to ischemic insult). Brain ischemia was induced by the permanent middle cerebral artery occlusion (pMCAO). Twenty-four hours after the occlusion, the expression of HSF-1, HSP, and Apaf-1 in the ischemic striatum were examined with Western blot analysis. RESULTS The expression of HSF-1, heme oxygenase-1 (HO-1), HSP90alpha, and Apaf-1 were significantly increased, but the expression of HSP90beta was significantly decreased 24 h after the pMCAO. PGA1 and Li and their combination significantly enhanced the ischemia-induced elevation in the levels of HSF-1, HO-1, and HSP90alpha, and recovered HSP90beta expression, but decreased Apaf-1 levels in the ischemic striatum. CONCLUSION The present study demonstrates that PGA1 and Li have synergistic effects on the enhancement of the expression of HSP, suggesting that the synergistic effects of PGA1 and Li in the rat model of permanent focal cerebral ischemia may be mediated by the enhancement expression of HSP expression and the downregulation of Apaf-1. Our studies suggest that combined PGA1 and Li may have potential clinical value for the treatment of stroke.
Collapse
Affiliation(s)
- Xi-hui Xu
- Laboratory of Aging and Nervous Disease, Soochow University School of Medicine, Suzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Sánchez-Gómez FJ, Gayarre J, Avellano MI, Pérez-Sala D. Direct evidence for the covalent modification of glutathione-S-transferase P1-1 by electrophilic prostaglandins: Implications for enzyme inactivation and cell survival. Arch Biochem Biophys 2007; 457:150-9. [PMID: 17169324 DOI: 10.1016/j.abb.2006.10.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2006] [Revised: 10/24/2006] [Accepted: 10/26/2006] [Indexed: 01/22/2023]
Abstract
Glutathione-S-transferases (GST) catalyze the conjugation of electrophilic compounds to glutathione, thus playing a key role in cell survival and tumor chemoresistance. Cyclopentenone prostaglandins (cyPG) are electrophilic eicosanoids that display potent antiproliferative properties, through multiple mechanisms not completely elucidated. Here we show that the cyPG 15-deoxy-Delta(12,14)-PGJ2 (15d-PGJ2) binds to GSTP1-1 covalently, as demonstrated by mass spectrometry and by the use of biotinylated 15d-PGJ2. Moreover, cyPG inactivate GSTP1-1 irreversibly. The presence of the cyclopentenone moiety is important for these effects. Covalent interactions also occur in cells, in which 15d-PGJ2 binds to endogenous GSTP1-1, irreversibly reduces GST free-thiol content and inhibits GST activity. Protein delivery of GSTP1-1 improves cell survival upon serum deprivation whereas 15d-PGJ2-treated GSTP1-1 displays a reduced protective effect. These results show the first evidence for the formation of stable adducts between cyPG and GSTP1-1 and may offer new perspectives for the development of irreversible GST inhibitors as anticancer agents.
Collapse
Affiliation(s)
- Francisco J Sánchez-Gómez
- Departamento de Estructura y Función de Proteínas, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
15
|
Xu XH, Zhang HL, Han R, Gu ZL, Qin ZH. Enhancement of neuroprotection and heat shock protein induction by combined prostaglandin A1 and lithium in rodent models of focal ischemia. Brain Res 2006; 1102:154-62. [PMID: 16797496 DOI: 10.1016/j.brainres.2006.04.111] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 04/20/2006] [Accepted: 04/27/2006] [Indexed: 12/20/2022]
Abstract
Both prostaglandin A(1) (PGA(1)) and lithium have been reported to protect neurons against excitotoxic and ischemic injury. The present study was undertaken to examine the effects of lithium and PGA1 on heat shock proteins (HSP) and the growth arrest and DNA-damage-inducible gene (GADD153) and to evaluate if lithium could potentiate PGA(1)'s neuroprotective effects against cerebral ischemia. Rats were pretreated with a subcutaneous injection of lithium for 2 days and a single intracerebral ventricle administration of PGA(1) 15 min before ischemic insult. Brain ischemia was induced by a permanent middle cerebral artery occlusion. The infarct volume, motor behavior deficits and brain edema were analyzed 24 h after ischemic insult. The result showed that PGA(1) significantly reduced infarct volume, neurological deficits and brain edema. Except for neurological deficit, lithium enhanced PGA(1)'s neuroprotection. The neuroprotective effects of PGA(1) were associated with an up-regulation of cytoprotective heat shock proteins HSP70 and GRP78 in the ischemic brain hemisphere as determined by immunoblotting and immunofluorescence. The induction of HSP70 and GRP78 was enhanced by lithium. However, although the expression of GADD153 was enhanced significantly after pMCAO, it was not influenced by either PGA(1) or lithium or their combination. These studies suggest that lithium can potentiate PGA(1)'s neuroprotective effects and thus may have potential clinical value for the treatment of stroke in combination with other neuroprotective agents.
Collapse
Affiliation(s)
- Xi-Hui Xu
- Department of Pharmacology, Soochow University School of Medicine, Suzhou-Singopore Industrial Park, Suzhou, China
| | | | | | | | | |
Collapse
|
16
|
Zhu Y, Gu ZL, Liang ZQ, Zhang HL, Qin ZH. Prostaglandin A1 inhibits increases in intracellular calcium concentration, TXA(2) production and platelet activation. Acta Pharmacol Sin 2006; 27:549-54. [PMID: 16626509 DOI: 10.1111/j.1745-7254.2006.00311.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM In our previous studies we found that cyclopentenane prostaglandin A1 (PGA1) had neuroprotective effects in a rodent ischemic model. In the present study we aimed to investigate the inhibitory effect of PGA1 on platelet function. METHOD The rate of aggregation of human platelets was measured by using turbidimetry. The rate of adhesion of platelets to cultured endothelial cells was determined by using [(3)H]-adenine labeled platelets. 5-Hydroxytryptamine release from platelets was measured with O-phthaldialdehyde fluorospectrophotometry. The levels of TXB(2), a stable metabolite of TXA(2), were determined by radioimmuno-assay. Alternations in platelet morphology were observed using an electron microscope, and the intraplatelet free calcium concentrations were measured with Fluo-3/AM FCM assay. RESULTS PGA1 significantly inhibited thrombin-, collagen- and ADP-induced aggregation and adhesion of platelets. The morphological changes of platelets induced by thrombin were blocked by PGA1. PGA1 inhibited the release of 5-hydroxytyptamine from dense granules and the synthesis of TXA(2). CONCLUSION PGA1 inhibits the activation of platelets probably through blocking increases in intracellular calcium concentration and TXA(2) synthesis.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Pharmacology, Soochow University School of Medicine, Suzhou 215123, China
| | | | | | | | | |
Collapse
|
17
|
Abstract
Autophagy is a major cellular pathway for the degradation of long-lived proteins and cytoplasmic organelles in eukaryotic cells. A large number of intracellular/extracellular stimuli, including amino acid starvation and invasion of microorganisms, are able to induce the autophagic response in cells. The discovery of the ATG genes in yeast has greatly advanced our understanding of the molecular mechanisms participating in autophagy and the genes involved in regulating the autophagic pathway. Many yeast genes have mammalian homologs, suggesting that the basic machinery for autophagy has been evolutionarily conserved along the eukaryotic phylum. The regulation of autophagy is a very complex process. Many signaling pathways, including target of rapamycin (TOR) or mammalian target of rapamycin (mTOR), phosphatidylinositol 3-kinase-I (PI3K-I)/PKB, GTPases, calcium and protein synthesis all play important roles in regulating autophagy. The molecular mechanisms and regulation of autophagy are discussed in this review.
Collapse
Affiliation(s)
- Ya-Ping Yang
- Department of Pharmacology, Soochow University School of Medicine, Suzhou 215007, China
| | | | | | | |
Collapse
|