1
|
Wang L, Gu T, Yu C, Gao Y, Xuan T, Shen K, Wang G, Wang Z. Kaempferol attenuates experimental autoimmune neuritis through TNFR1/JNK/p38 signaling pathway inhibition. Int Immunopharmacol 2025; 147:113951. [PMID: 39752756 DOI: 10.1016/j.intimp.2024.113951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/14/2024] [Accepted: 12/23/2024] [Indexed: 01/29/2025]
Abstract
Kaempferol (Kae) is a flavonoid that has antioxidant, anti-inflammatory and neuroprotective effects. In recent years, there have been increasing reports on viral infection-induced Guillain-Barré syndrome (GBS) with high rates of disability and fatality. Therefore, in order to search for effective peripheral nerve injury repair drugs, we used rats with experimental autoimmune neuritis (EAN) as the typical animal model for GBS, and implemented Kae treatment intervention on EAN rats. Real-time quantitative polymerase chain reaction (qPCR), western blotting (WB) and immunofluorescence (IF) were utilized to detect the changes of inflammatory factors and signaling pathway proteins in peripheral nerve of rats. The impact of Kae on peripheral nerve damage in EAN rats was evaluated in multiple dimensions by clinical symptom score and neuroelectrophysiology examination, and the protective impact and mechanism of Kae on peripheral nerve injury were revealed. Our results showed that Kae increased the expression of sciatic myelin basic protein (MBP), decreased the expression of peripheral nerve macrophage infiltration and inflammatory cytokines, including TNF-α, IL-1β and IL-6, and down-regulated the expression levels of TNFR1. Additionally, it suppressed the activation of the JNK and p38 pathways. It can alleviate sciatic nerve symptoms and pathological injury in EAN rats. Therefore, we believe that Kae can be used as an adjunct drug in the treatment of GBS.
Collapse
Affiliation(s)
- Li Wang
- The First Clinical Medical School, Ningxia Medical University, Yinchuan 750004, China
| | - Tao Gu
- The First Clinical Medical School, Ningxia Medical University, Yinchuan 750004, China
| | - Chunguang Yu
- The First Clinical Medical School, Ningxia Medical University, Yinchuan 750004, China
| | - Yingying Gao
- The First Clinical Medical School, Ningxia Medical University, Yinchuan 750004, China
| | - Tingting Xuan
- The First Clinical Medical School, Ningxia Medical University, Yinchuan 750004, China
| | - Kaichun Shen
- The First Clinical Medical School, Ningxia Medical University, Yinchuan 750004, China
| | - Guowei Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing 400016, China.
| | - Zhenhai Wang
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan 750004, China; Diagnosis and Treatment Engineering Technology Research Center of Nervous System Diseases of Ningxia, Yinchuan 750004, China; Neurology Center, General Hospital of Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
2
|
Ahn M. Lithium alleviates paralysis in experimental autoimmune neuritis in Lewis rats by modulating glycogen synthase kinase-3β activity. J Vet Sci 2024; 25:e69. [PMID: 39363657 PMCID: PMC11450387 DOI: 10.4142/jvs.24212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 10/05/2024] Open
Abstract
IMPORTANCE Guillain-Barré syndrome (GBS)-like neuropathy mimics the leading cause of sporadic acute nontraumatic limb paralysis in individuals from developed countries. Experimental autoimmune neuritis (EAN) is an animal model of GBS and of syndromes such as acute canine polyradiculoneuritis, seen in dogs and cats. OBJECTIVE The involvement of glycogen synthase kinase (GSK)-3β, a pro-inflammatory molecule, in rat EAN is not fully understood. This study evaluated the potential role of GSK-3β in EAN through its inhibition by lithium. METHODS Lewis rats were injected with SP26 antigen to induce EAN. Lithium was administered from 1 day before immunization to day 14 post-immunization (PI). Then the rats were euthanized and their neural tissues were prepared for histological and Western blotting analyses. RESULTS Lithium, an inhibitor of GSK-3, significantly ameliorated EAN paralysis in rats, when administered from day 1 to day 14 PI. This corresponded with reduced inflammation in the sciatic nerves of EAN rats, where phosphorylation of GSK-3β was also upregulated, indicating suppression of GSK-3. CONCLUSIONS AND RELEVANCE These findings suggest that lithium, an inhibitor of GSK-3β, plays a significant role in ameliorating rat EAN paralysis, by suppressing GSK-3β and its related signals in EAN-affected sciatic nerves.
Collapse
Affiliation(s)
- Meejung Ahn
- Department of Animal Science, College of Life Science, Sangji University, Wonju 26339, Korea.
| |
Collapse
|
3
|
Chang LL, Wang HC, Tseng KY, Su MP, Wang JY, Chuang YT, Wang YH, Cheng KI. Upregulation of miR-133a-3p in the Sciatic Nerve Contributes to Neuropathic Pain Development. Mol Neurobiol 2020; 57:3931-3942. [PMID: 32632603 DOI: 10.1007/s12035-020-01999-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022]
Abstract
The micro (mi)RNAs expressed in the sciatic nerve of streptozotocin (STZ)-induced diabetic rats were evaluated in terms of their therapeutic potential in patients with diabetic neuropathic pain (DNP). Relative miRNA expression in sciatic nerve with DNP was analyzed using next-generation sequencing and quantitative PCR. Potential downstream targets of miRNAs were predicted using Ingenuity Pathway Analysis and the TargetScan database. In vitro experiments were performed using miR-133a-3p-transfected RSC96 Schwann cells. We performed micro-Western and Western blotting and immunofluorescence analyses to verify the role of miR-133a-3p. In vivo, the association between miR-133a-3p with DNP was analyzed via AAV-miR-133a-3p intraneural (intra-epineural but extrafascicular) injection into the sciatic nerve of normal rats or injection of an miR-133a-3p antagomir into the sciatic nerve of diabetes mellitus (DM) rats. miR-133a-3p mimics transfected into RSC96 Schwann cells increased VEGFR-2, p38α MAPK, TRAF-6, and PIAS3 expression and reduced NFκB p50 and MKP3 expression. In normal rats, AAV-miR-133a-3p delivery via intraneural injection into the sciatic nerve induced mechanical allodynia and p-p38 MAPK activation. In DM rats, miR-133a-3p antagomir administration alleviated DNP and downregulated p-p38 phosphorylation. Overexpression of miR-133a-3p in the sciatic nerve induced such pain. We suggest that miR-133a-3p is a potential therapeutic target for DNP.
Collapse
Affiliation(s)
- Lin-Li Chang
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hung-Chen Wang
- Department of Neurosurgery, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuang-Yi Tseng
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Miao-Pei Su
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jaw-Yuan Wang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ta Chuang
- Physical Education Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Hsuan Wang
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kuang-I Cheng
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
4
|
Sun Y, Chen H, Ma S, Liang L, Zheng Y, Guo X, Wang M, Wang W, Li G, Zhong D. Administration of SB203580, a p38 MAPK Inhibitor, Reduced the Expression of MMP9, and Relieved Neurologic Severity in the Experimental Autoimmune Neuritis (EAN) in Rats. Neurochem Res 2015; 40:1410-20. [DOI: 10.1007/s11064-015-1608-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 04/20/2015] [Accepted: 05/07/2015] [Indexed: 01/18/2023]
|
5
|
Oku K, Amengual O, Zigon P, Horita T, Yasuda S, Atsumi T. Essential role of the p38 mitogen-activated protein kinase pathway in tissue factor gene expression mediated by the phosphatidylserine-dependent antiprothrombin antibody. Rheumatology (Oxford) 2013; 52:1775-84. [DOI: 10.1093/rheumatology/ket234] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
6
|
Shin T. Osteopontin as a two-sided mediator in acute neuroinflammation in rat models. Acta Histochem 2012; 114:749-54. [PMID: 22947282 DOI: 10.1016/j.acthis.2012.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 08/13/2012] [Accepted: 08/14/2012] [Indexed: 01/26/2023]
Abstract
Osteopontin (OPN) plays an important role in the initiation of inflammation, affecting cell adhesion, chemotaxis, immune regulation, and protection against apoptosis, depending on its intracellular or extracellular localization. Although OPN in inflammation of the autoimmune central nervous system is proinflammatory, recent studies have shown that OPN during the induction stage of inflammation may also participate in neuroprotection and neurite growth. The present review examines the dual roles of OPN, specifically, its proinflammatory and subsequent neuroprotective roles, in acute neuroinflammation in rat models, including experimental autoimmune encephalomyelitis, brain injury, and autoimmune neuritis. All of these models are characterized by acute neuroinflammation, followed by remodeling of neural tissues.
Collapse
MESH Headings
- Acute Disease
- Animals
- Brain Injuries/immunology
- Brain Injuries/metabolism
- Brain Injuries/pathology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Inflammation
- Inflammation Mediators/metabolism
- Neuritis, Autoimmune, Experimental/immunology
- Neuritis, Autoimmune, Experimental/metabolism
- Neuritis, Autoimmune, Experimental/pathology
- Osteopontin/metabolism
- Rats
Collapse
Affiliation(s)
- Taekyun Shin
- Department of Veterinary Anatomy, College of Veterinary Medicine, Jeju National University, Republic of Korea.
| |
Collapse
|
7
|
Ahn M, Jin JK, Moon C, Matsumoto Y, Koh CS, Shin T. Glial cell line-derived neurotrophic factor is expressed by inflammatory cells in the sciatic nerves of Lewis rats with experimental autoimmune neuritis. J Peripher Nerv Syst 2010; 15:104-12. [DOI: 10.1111/j.1529-8027.2010.00258.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Upregulation of erythropoietin in rat peripheral nervous system with experimental autoimmune neuritis. Brain Res 2010; 1333:82-90. [DOI: 10.1016/j.brainres.2010.03.072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 03/18/2010] [Accepted: 03/21/2010] [Indexed: 01/21/2023]
|
9
|
Cavaletti G, Miloso M, Nicolini G, Scuteri A, Tredici G. Emerging role of mitogen-activated protein kinases in peripheral neuropathies. J Peripher Nerv Syst 2007; 12:175-194. [PMID: 17868245 DOI: 10.1111/j.1529-8027.2007.00138.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Among the different families of intracellular molecules that can be modulated during cell damage and repair, mitogen-activated protein kinases (MAPKs) are particularly interesting because they are involved in several intracellular pathways activated by injury and regeneration signals. Despite most of the studies have been performed in non-neurological models, recently a causal role for MAPKs has been postulated in central nervous system disorders. However, also in some peripheral neuropathies, MAPK changes can occur and these modifications might be relevant in the pathogenesis of the damage as well as during regeneration and repair. In this review, the current knowledge on the role of MAPKs in peripheral neuropathies will be discussed.
Collapse
Affiliation(s)
- Guido Cavaletti
- Department of Neurosciences and Biomedical Technologies, University of Milano Bicocca, Monza, Italy.
| | | | | | | | | |
Collapse
|
10
|
Kim H, Moon C, Ahn M, Lee Y, Kim S, Matsumoto Y, Koh CS, Kim MD, Shin T. Increased phosphorylation of cyclic AMP response element-binding protein in the spinal cord of Lewis rats with experimental autoimmune encephalomyelitis. Brain Res 2007; 1162:113-20. [PMID: 17617386 DOI: 10.1016/j.brainres.2007.05.072] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 05/29/2007] [Accepted: 05/31/2007] [Indexed: 12/29/2022]
Abstract
To investigate whether the phosphorylation of cyclic AMP response element-binding protein (CREB) is implicated in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), the change in the level of CREB phosphorylation was analyzed in the spinal cord of Lewis rats with EAE. Western blot analysis showed that the phosphorylation of CREB in the spinal cord of rats increased significantly at the peak stage of EAE compared with the controls (p<0.05) and declined significantly in the recovery stage (p<0.05). Immunohistochemistry showed that the phosphorylated form of CREB (p-CREB) was constitutively immunostained in few astrocytes and dorsal horn neurons in the spinal cord of normal rats. In the EAE-affected spinal cord, p-CREB was mainly found in ED1-positive macrophages at the peak stage of EAE, and the number of p-CREB-immunopositive astrocytes was markedly increased in the spinal cord with EAE compared with the controls. Moreover, p-CREB immunoreactivity of sensory neurons, which are closely associated with neuropathic pain, was significantly increased in the dorsal horns at the peak stage of EAE. Based on these results, we suggest that the increased phosphorylation of CREB in EAE lesions was mainly attributable to the infiltration of inflammatory cells and astrogliosis, possibly activating gene transcription, and that its increase in the sensory neurons in the dorsal horns is involved in the generation of neuropathic pain in the rat EAE model.
Collapse
MESH Headings
- Activating Transcription Factor 1/metabolism
- Animals
- Cyclic AMP Response Element-Binding Protein/metabolism
- Ectodysplasins/metabolism
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Fetal Blood/metabolism
- Gene Expression Regulation/physiology
- Glial Fibrillary Acidic Protein/metabolism
- Male
- Myelin Basic Protein
- Phosphorylation
- Rats
- Rats, Inbred Lew
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
Collapse
Affiliation(s)
- Heechul Kim
- Department of Veterinary Medicine and Applied Radiological Science Research Institute, Cheju National University, Jeju 690-756, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Corrow KA, Vizzard MA. Phosphorylation of extracellular signal-regulated kinases in urinary bladder in rats with cyclophosphamide-induced cystitis. Am J Physiol Regul Integr Comp Physiol 2007; 293:R125-34. [PMID: 17409261 DOI: 10.1152/ajpregu.00857.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Phosphorylated ERK expression has been demonstrated in the central and peripheral nervous system after various stimuli, including visceral stimulation. Changes in the activation (i.e., phosphorylation) of extracellular signal-regulated kinases (pERK) were examined in the urinary bladder after 4 h (acute), 48 h (intermediate), or chronic (10 day) cyclophosphamide (CYP) treatment. CYP-induced cystitis significantly ( P ≤ 0.01) increased pERK expression in the urinary bladder with intermediate (48 h) and chronic CYP treatment. Immunohistochemistry for pERK immunoreactivity revealed little pERK-IR in control or acute (4 h) CYP-treated rat urinary bladders. However, pERK expression was significantly ( P ≤ 0.01) upregulated in the urothelium after 48 h or chronic CYP treatment. Whole mount preparations of urothelium/lamina propria or detrusor smooth muscle from control (noninflamed) rats showed no pERK-IR in PGP9.5-labeled nerve fibers in the suburothelial plexus. However, with CYP-treatment (48 h, chronic), a few pERK-IR nerve fibers in the suburothelial plexus of whole mount preparations of bladder and at the serosal edge of urinary bladder sections were observed. pERK-IR cells expressing the CD86 antigen were also observed in urinary bladder from CYP-treated rats (48 h, chronic). Treatment with the upstream inhibitor of ERK phosphorylation, U0126, significantly ( P ≤ 0.01) increased bladder capacity in CYP-treated rats (48 h). These studies suggest that therapies targeted at pERK pathways may improve urinary bladder function in CYP-treated rats.
Collapse
Affiliation(s)
- Kimberly A Corrow
- Department of Neurology, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | | |
Collapse
|
12
|
Kim H, Moon C, Ahn M, Matsumoto Y, Koh CS, Kim MD, Shin T. Increased phosphorylation of caveolin-1 in the sciatic nerves of Lewis rats with experimental autoimmune neuritis. Brain Res 2007; 1137:153-60. [PMID: 17234162 DOI: 10.1016/j.brainres.2006.12.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2006] [Revised: 12/12/2006] [Accepted: 12/13/2006] [Indexed: 10/23/2022]
Abstract
The levels of phosphorylated caveolin-1 (p-caveolin-1) were analyzed in the sciatic nerves of Lewis rats with experimental autoimmune neuritis (EAN). Western blot analysis showed that the phosphorylation of caveolin-1 increased significantly in the sciatic nerves of EAN-affected rats at the paralytic stage of EAN on day 14 post-immunization (PI) (P<0.05) and declined slightly thereafter during the recovery stage. Immunohistochemistry showed intense p-caveolin-1 immunostaining in some inflammatory macrophages, as well as in T-cells in individual nerve fascicles at the peak stage of EAN, while p-caveolin-1 was weakly expressed in some of the vascular endothelial cells and Schwann cells of normal sciatic nerves. The inflammatory cells with intense p-caveolin-1 expression in the EAN-affected individual nerve fascicles were not positive for terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL), while the TUNEL-positive apoptotic cells in the perineurium, where infiltration initially occurred, were weakly positive for p-caveolin-1. Based on these findings, we postulate that caveolin-1 is phosphorylated in inflammatory cells soon after they infiltrate the sciatic nerve, as well as in the perineurium, and that p-caveolin-1 activates intracellular signaling in inflammatory cells, leading to cell death, which ultimately eliminates the infiltrating inflammatory cells from the sciatic nerves of animals with EAN.
Collapse
Affiliation(s)
- Heechul Kim
- Department of Veterinary Medicine, Cheju National University, Jeju 690-756, South Korea
| | | | | | | | | | | | | |
Collapse
|
13
|
Ahn M, Moon C, Kim H, Lee J, Sung Koh C, Matsumoto Y, Shin T. Immunohistochemical study of caveolin-1 in the sciatic nerves of Lewis rats with experimental autoimmune neuritis. Brain Res 2006; 1102:86-91. [PMID: 16806125 DOI: 10.1016/j.brainres.2006.05.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2005] [Revised: 05/01/2006] [Accepted: 05/08/2006] [Indexed: 10/24/2022]
Abstract
The expression of caveolin-1 and the related molecule endothelial nitric oxide synthase (eNOS) was analyzed in the sciatic nerves of Lewis rats with experimental autoimmune neuritis (EAN). Western blot analysis showed that caveolin-1 significantly increased in the sciatic nerves with EAN upon initiation of cell infiltration during the early and peak stages (days 10 and 14 post-immunization, p.i.) and declined thereafter. The pattern of eNOS expression over the course of EAN largely matched that of caveolin-1. Immunohistochemistry showed that in EAN lesions, intense caveolin-1 immunostaining occurred in ED1-positive macrophages as well as in vessels, while the caveolin-1 immunoreaction was reduced in Schwann cells in the inflammatory lesions. Consequently, we postulated that caveolin-1 expression increased in the sciatic nerves with EAN; this possibly mediated either molecular trafficking or nitric oxide generation partly through the activation of eNOS in vascular endothelial cells, as well as in inflammatory macrophages in EAN and/or cellular apoptosis of inflammatory cells.
Collapse
Affiliation(s)
- Meejung Ahn
- Department of Veterinary Medicine, Cheju National University, Jeju, South Korea
| | | | | | | | | | | | | |
Collapse
|
14
|
Ahn M, Shin T. Increased phosphorylation of c-Jun NH (2)-terminal protein kinase in the sciatic nerves of Lewis rats with experimental autoimmune neuritis. J Vet Sci 2006; 7:13-7. [PMID: 16434843 PMCID: PMC3242079 DOI: 10.4142/jvs.2006.7.1.13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The phosphorylation of c-Jun NH (2)-terminal protein kinase (JNK), one of the mitogen-activated protein kinases, was analyzed in the sciatic nerves of Lewis rats with experimental autoimmune neuritis (EAN). Western blot analysis showed that the expression levels of both phosphorylated JNK1 (p-JNK1, approximately 46 kDa) and phosphorylated JNK2 (p-JNK2, approximately 54 kDa) in the sciatic nerves of rats with EAN increased significantly (p < 0.05) at day 14 post-immunization (PI) and remained at this level at days 24 and 30 PI, with a slight decrease. In EAN-affected sciatic nerves, there was intense immunostaining for p-JNK in the infiltrating inflammatory cells (especially ED1-positive macrophages) and Schwann cells on days 14-24 PI, compared with those of controls. Some macrophages with increased p-JNK immunoreactivity was shown to be apoptotic, while some Schwann cells remained survived in this rat EAN model, suggesting that JNK is differentially involved in the EAN-affected sciatic nerves. These findings suggest that JNK phosphorylation is closely associated with the clearance of inflammatory cells as well as the activation of Schwann cells in the EAN affected sciatic nerves.
Collapse
Affiliation(s)
- Meejung Ahn
- Department of Veterinary Medicine, Cheju National University, Jeju 690-756, Korea
| | | |
Collapse
|