1
|
O'Mahony C, Hidalgo-Lanussa O, Barreto GE. Unveiling FOXO3's metabolic contribution to menopause and Alzheimer's disease. Exp Gerontol 2025; 200:112679. [PMID: 39778695 DOI: 10.1016/j.exger.2025.112679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
The increasing prevalence of Alzheimer's disease (AD) calls for a comprehensive exploration of its complex etiology, with a focus on sex-specific vulnerability, particularly the heightened susceptibility observed in postmenopausal women. Neurometabolic alterations during the endocrine transition emerge as early indicators of AD pathology, including reduced glucose metabolism and increased amyloid-beta (Aβ) deposition. The fluctuating endocrine environment, marked by declining estradiol levels and reduced estrogen receptor beta (ERβ) activity, further exacerbates this process. In this context, here we explore the potential of forkhead box O3 (FOXO3) as a critical mediator linking metabolic disturbances to hormonal decline. We propose that FOXO3 plays a key role in the intersection of menopause and AD, given its dysregulation in both AD patients and postmenopausal women, modulating cellular metabolism through interactions with the AMPK/AKT/PI3K pathways. This relationship highlights the intersection between hormonal changes and increased AD susceptibility. This review aims to open a discussion on FOXO3's contribution to the metabolic dysregulation seen in menopause and its impact on the progression of AD. Understanding the functional role of FOXO3 in menopause-associated metabolic changes could lead to targeted therapeutic strategies, offering novel insights for managing for this condition.
Collapse
Affiliation(s)
- Christopher O'Mahony
- Department of Biological Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Oscar Hidalgo-Lanussa
- Department of Biological Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick V94 T9PX, Ireland.
| |
Collapse
|
2
|
Diaz JC, Dunaway K, Zuniga C, Sheil E, Sadeghian K, Auger AP, Baldo BA. Delayed estrogen actions diminish food consumption without changing food approach, motor activity, or hypothalamic activation elicited by corticostriatal µ-opioid signaling. Neuropsychopharmacology 2023; 48:1952-1962. [PMID: 37640922 PMCID: PMC10584984 DOI: 10.1038/s41386-023-01711-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/01/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023]
Abstract
Mu-opioid receptor (μ-OR) signaling in forebrain sites including nucleus accumbens (Acb) and ventromedial prefrontal cortex (vmPFC) modulates reward-driven feeding and may play a role in the pathophysiology of disordered eating. In preclinical models, intra-Acb or intra-vmPFC μ-OR stimulation causes overeating and vigorous responding for food rewards. These effects have been studied mainly in male animals, despite demonstrated sex differences and estrogen modulation of central reward systems. Hence, the present study investigated sex differences and estrogen modulation of intra-Acb and intra-vmPFC μ-OR-driven feeding behaviors. First, the dose-related effects of intra-Acb and intra-vmPFC infusions of the μ-OR-selective agonist, DAMGO, were compared among intact female, ovariectomized (OVX) female, and intact male rats. The DAMGO feeding dose-effect function was flattened in intact females relative to the robust, dose-dependent effects observed in OVX females and intact males. Thus, in intact females, intra-Acb DAMGO failed to elevate food intake relative to vehicle, while intra-vmPFC DAMGO elevated food intake, but to a smaller degree compared to males and OVX females. Next, to explore the possible role of estrogen in mediating the diminished DAMGO response observed in intact females, OVX rats were given intra-Acb or intra-vmPFC infusions of DAMGO either immediately after a subcutaneous injection of 17-beta-estradiol 3-benzoate (EB; 5 μg/0.1 mL) or 24 h after EB injection. Intra-Acb DAMGO effects were not changed at the immediate post-EB time point. At the delayed post-EB timepoint, significant lordosis was noted and the duration of intra-Acb DAMGO-driven feeding bouts was significantly reduced, with no change in the number of bouts initiated, locomotor hyperactivity, or Fos immunoreactivity in hypothalamic feeding and arousal systems. Similarly, EB failed to alter the motor-activational effects of intra-vmPFC DAMGO while reducing feeding. These findings indicate that delayed, presumably genomically mediated estrogen actions modulate the μ-OR-generated motivational state by reducing consummatory activity while sparing goal-approach and general arousal/activity. The results additionally suggest that EB regulation of consummatory activity occurs outside of forebrain-μ-OR control of hypothalamic systems.
Collapse
Affiliation(s)
- Julio C Diaz
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Kate Dunaway
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
- College of Letters and Science, University of Wisconsin-Madison, Madison, WI, USA
| | - Carla Zuniga
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth Sheil
- College of Letters and Science, University of Wisconsin-Madison, Madison, WI, USA
| | - Ken Sadeghian
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Anthony P Auger
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
| | - Brian A Baldo
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
3
|
Barreto GE. Repurposing of Tibolone in Alzheimer's Disease. Biomolecules 2023; 13:1115. [PMID: 37509151 PMCID: PMC10377087 DOI: 10.3390/biom13071115] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disease characterised by the accumulation of amyloid-beta and tau in the brain, leading to the progressive loss of memory and cognition. The causes of its pathogenesis are still not fully understood, but some risk factors, such as age, genetics, and hormones, may play a crucial role. Studies show that postmenopausal women have a higher risk of developing AD, possibly due to the decrease in hormone levels, especially oestrogen, which may be directly related to a reduction in the activity of oestrogen receptors, especially beta (ERβ), which favours a more hostile cellular environment, leading to mitochondrial dysfunction, mainly affecting key processes related to transport, metabolism, and oxidative phosphorylation. Given the influence of hormones on biological processes at the mitochondrial level, hormone therapies are of clinical interest to reduce the risk or delay the onset of symptoms associated with AD. One drug with such potential is tibolone, which is used in clinics to treat menopause-related symptoms. It can reduce amyloid burden and have benefits on mitochondrial integrity and dynamics. Many of its protective effects are mediated through steroid receptors and may also be related to neuroglobin, whose elevated levels have been shown to protect against neurological diseases. Its importance has increased exponentially due to its implication in the pathogenesis of AD. In this review, we discuss recent advances in tibolone, focusing on its mitochondrial-protective effects, and highlight how valuable this compound could be as a therapeutic alternative to mitigate the molecular pathways characteristic of AD.
Collapse
Affiliation(s)
- George E Barreto
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
4
|
Santollo J, Collett JA, Edwards AA. The anti-dipsogenic and anti-natriorexigenic effects of estradiol, but not the anti-pressor effect, are lost in aged female rats. Physiol Rep 2021; 9:e14948. [PMID: 34288542 PMCID: PMC8290476 DOI: 10.14814/phy2.14948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 11/24/2022] Open
Abstract
Estradiol (E2) inhibits fluid intake in several species, which may help to defend fluid homeostasis by preventing excessive extracellular fluid volume. Although this phenomenon is well established using the rat model, it has only been studied directly in young adults. Because aging influences the neuronal sensitivity to E2 and the fluid intake effects of E2 are mediated in the brain, we tested the hypothesis that aging influences the fluid intake effects of E2 in female rats. To do so, we examined water and NaCl intake in addition to the pressor effect after central angiotensin II treatment in young (3-4 months), middle-aged (10-12 months), and old (16-18 months) ovariectomized rats treated with estradiol benzoate (EB). As expected, EB treatment reduced water and NaCl intake in young rats. EB treatment, however, did not reduce water intake in old rats, nor did it reduce NaCl intake in middle-aged or old rats. The ability of EB to reduce blood pressure was, in contrast, observed in all three age groups. Next, we also measured the gene expression of estrogen receptors (ERs) and the angiotensin type 1 receptor (AT1R) in the areas of the brain that control fluid balance. ERβ, G protein estrogen receptor (GPER), and AT1R were reduced in the paraventricular nucleus of the hypothalamus in middle-aged and old rats, compared to young rats. These results suggest the estrogenic control of fluid intake is modified by age. Older animals lost the fluid intake effects of E2, which correlated with decreased ER and AT1R expression in the hypothalamus.
Collapse
Affiliation(s)
| | - Jason A. Collett
- Department of BiologyUniversity of KentuckyLexingtonKYUSA
- Department of Anatomy, Cell Biology and PhysiologyIndiana University School of MedicineIndianapolisINUSA
| | | |
Collapse
|
5
|
Wang J, Yu R, Han QQ, Huang HJ, Wang YL, Li HY, Wang HM, Chen XR, Ma SL, Yu J. G-1 exhibit antidepressant effect, increase of hippocampal ERs expression and improve hippocampal redox status in aged female rats. Behav Brain Res 2019; 359:845-852. [DOI: 10.1016/j.bbr.2018.07.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/09/2018] [Accepted: 07/20/2018] [Indexed: 01/31/2023]
|
6
|
Aghamohammadi-Sereshki A, Hrybouski S, Travis S, Huang Y, Olsen F, Carter R, Camicioli R, Malykhin NV. Amygdala subnuclei and healthy cognitive aging. Hum Brain Mapp 2018; 40:34-52. [PMID: 30291764 DOI: 10.1002/hbm.24353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/13/2018] [Accepted: 08/02/2018] [Indexed: 12/25/2022] Open
Abstract
Amygdala is a group of nuclei involved in the neural circuits of fear, reward learning, and stress. The main goal of this magnetic resonance imaging (MRI) study was to investigate the relationship between age and the amygdala subnuclei volumes in a large cohort of healthy individuals. Our second goal was to determine effects of the apolipoprotein E (APOE) and brain-derived neurotrophic factor (BDNF) polymorphisms on the amygdala structure. One hundred and twenty-six healthy participants (18-85 years old) were recruited for this study. MRI datasets were acquired on a 4.7 T system. Amygdala was manually segmented into five major subdivisions (lateral, basal, accessory basal nuclei, and cortical, and centromedial groups). The BDNF (methionine and homozygous valine) and APOE genotypes (ε2, homozygous ε3, and ε4) were obtained using single nucleotide polymorphisms. We found significant nonlinear negative associations between age and the total amygdala and its lateral, basal, and accessory basal nuclei volumes, while the cortical amygdala showed a trend. These age-related associations were found only in males but not in females. Centromedial amygdala did not show any relationship with age. We did not observe any statistically significant effects of APOE and BDNF polymorphisms on the amygdala subnuclei volumes. In contrast to APOE ε2 allele carriers, both older APOE ε4 and ε3 allele carriers had smaller lateral, basal, accessory basal nuclei volumes compared to their younger counterparts. This study indicates that amygdala subnuclei might be nonuniformly affected by aging and that age-related association might be gender specific.
Collapse
Affiliation(s)
| | - Stanislau Hrybouski
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Scott Travis
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Yushan Huang
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Fraser Olsen
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Rawle Carter
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Richard Camicioli
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Division of Neurology, University of Alberta, Edmonton, Alberta, Canada
| | - Nikolai V Malykhin
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Effects of Estrogen Therapy on the Serotonergic System in an Animal Model of Perimenopause Induced by 4-Vinylcyclohexen Diepoxide (VCD). eNeuro 2018; 5:eN-NWR-0247-17. [PMID: 29362726 PMCID: PMC5777542 DOI: 10.1523/eneuro.0247-17.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/07/2017] [Accepted: 12/16/2017] [Indexed: 01/05/2023] Open
Abstract
Chronic exposure to 4-vinylcycloxene diepoxide (VCD) in rodents accelerates the natural process of ovarian follicular atresia modelling perimenopause in women. We investigated why estrogen therapy is beneficial for symptomatic women despite normal or high estrogen levels during perimenopause. Female rats (28 d) were injected daily with VCD or oil for 15 d; 55-65 d after the first injection, pellets of 17β-estradiol or oil were inserted subcutaneously. Around 20 d after, the rats were euthanized (control rats on diestrus and estradiol-treated 21 d after pellets implants). Blood was collected for hormone measurement, the brains were removed and dorsal raphe nucleus (DRN), hippocampus (HPC), and amygdala (AMY) punched out for serotonin (5-HT), estrogen receptor β (ERβ), and progesterone receptor (PR) mRNA level measurements. Another set of rats was perfused for tryptophan hydroxylase (TPH) immunohistochemistry in the DRN. Periestropausal rats exhibited estradiol levels similar to controls and a lower progesterone level, which was restored by estradiol. The DRN of periestropausal rats exhibited lower expression of PR and ERβ mRNA and a lower number of TPH cells. Estradiol restored the ERβ mRNA levels and number of serotonergic cells in the DRN caudal subregion. The 5-HT levels were lower in the AMY and HPC in peristropausal rats, and estradiol treatment increased the 5-HT levels in the HPC and also increased ERβ expression in this area. In conclusion, estradiol may improve perimenopause symptoms by increasing progesterone and boosting serotonin pathway from the caudal DRN to the dorsal HPC potentially through an increment in ERβ expression in the DRN.
Collapse
|
8
|
Diaz A, Treviño S, Vázquez-Roque R, Venegas B, Espinosa B, Flores G, Fernández-G JM, Montaño LF, Guevara J. The aminoestrogen prolame increases recognition memory and hippocampal neuronal spine density in aged mice. Synapse 2017; 71:e21987. [PMID: 28545157 DOI: 10.1002/syn.21987] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 12/24/2022]
Abstract
The aging brain shows biochemical and morphological changes in the dendrites of pyramidal neurons from the limbic system associated with memory loss. Prolame (N-(3-hydroxy-1,3,5 (10)-estratrien-17β-yl)-3-hydroxypropylamine) is a non-feminizing aminoestrogen with antithrombotic activity that prevents neuronal deterioration, oxidative stress, and neuroinflammation. Our aim was to evaluate the effect of prolame on motor and cognitive processes, as well as its influence on the dendritic morphology of neurons at the CA1, CA3, and granule cells of the dentate gyrus (DG) regions of hippocampus (HP), and medium spiny neurons of the nucleus accumbens (NAcc) of aged mice. Dendritic morphology was assessed with the Golgi-Cox stain procedure followed by Sholl analysis. Prolame (60 µg/kg) was subcutaneously injected daily for 60 days in 18-month-old mice. Immediately after treatment, locomotor activity in a new environment and recognition memory using the Novel Object Recognition Task (NORT) were evaluated. Prolame-treated mice showed a significant increase in the long-term exploration quotient, but locomotor activity was not modified in comparison to control animals. Prolame-treated mice showed a significant increase in dendritic spines density and dendritic length in neurons of the CA1, CA3, and DG regions of the HP, whereas dendrites of neurons in the NAcc remained unmodified. In conclusion, prolame administration promotes hippocampal plasticity processes but not in the NAcc neurons of aged mice, thus improving long-term recognition memory. Prolame could become a pharmacological alternative to prevent or delay the brain aging process, and thus the emergence of neurodegenerative diseases that affect memory.
Collapse
Affiliation(s)
- Alfonso Diaz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Pue, Mexico
| | - Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Pue, Mexico
| | - Rubén Vázquez-Roque
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Pue, Mexico
| | - Berenice Venegas
- Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Pue, Mexico
| | - Blanca Espinosa
- Departamento de Bioquímica, Instituto Nacional de Enfermedades Respiratorias INER, Ciudad de México, Mexico
| | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Pue, Mexico
| | | | - Luis F Montaño
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Jorge Guevara
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
9
|
Engler-Chiurazzi EB, Brown CM, Povroznik JM, Simpkins JW. Estrogens as neuroprotectants: Estrogenic actions in the context of cognitive aging and brain injury. Prog Neurobiol 2017; 157:188-211. [PMID: 26891883 PMCID: PMC4985492 DOI: 10.1016/j.pneurobio.2015.12.008] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/06/2015] [Accepted: 12/10/2015] [Indexed: 12/30/2022]
Abstract
There is ample empirical evidence to support the notion that the biological impacts of estrogen extend beyond the gonads to other bodily systems, including the brain and behavior. Converging preclinical findings have indicated a neuroprotective role for estrogen in a variety of experimental models of cognitive function and brain insult. However, the surprising null or even detrimental findings of several large clinical trials evaluating the ability of estrogen-containing hormone treatments to protect against age-related brain changes and insults, including cognitive aging and brain injury, led to hesitation by both clinicians and patients in the use of exogenous estrogenic treatments for nervous system outcomes. That estrogen-containing therapies are used by tens of millions of women for a variety of health-related applications across the lifespan has made identifying conditions under which benefits with estrogen treatment will be realized an important public health issue. Here we provide a summary of the biological actions of estrogen and estrogen-containing formulations in the context of aging, cognition, stroke, and traumatic brain injury. We have devoted special attention to highlighting the notion that estrogen appears to be a conditional neuroprotectant whose efficacy is modulated by several interacting factors. By developing criteria standards for desired beneficial peripheral and neuroprotective outcomes among unique patient populations, we can optimize estrogen treatments for attenuating the consequences of, and perhaps even preventing, cognitive aging and brain injury.
Collapse
Affiliation(s)
- E B Engler-Chiurazzi
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV 26506, United States; Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, United States.
| | - C M Brown
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV 26506, United States; Department of Neurobiology and Anatomy, West Virginia University, Morgantown, WV 26506, United States.
| | - J M Povroznik
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV 26506, United States; Department of Pediatrics, West Virginia University, Morgantown, WV 26506, United States.
| | - J W Simpkins
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV 26506, United States; Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, United States.
| |
Collapse
|
10
|
Shults CL, Dingwall CB, Kim CK, Pinceti E, Rao YS, Pak TR. 17β-estradiol regulates the RNA-binding protein Nova1, which then regulates the alternative splicing of estrogen receptor β in the aging female rat brain. Neurobiol Aging 2017; 61:13-22. [PMID: 29031089 DOI: 10.1016/j.neurobiolaging.2017.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 11/18/2022]
Abstract
Alternative RNA splicing results in the translation of diverse protein products arising from a common nucleotide sequence. These alternative protein products are often functional and can have widely divergent actions from the canonical protein. Studies in humans and other vertebrate animals have demonstrated that alternative splicing events increase with advanced age, sometimes resulting in pathological consequences. Menopause represents a critical transition for women, where the beneficial effects of estrogens are no longer evident; therefore, factors underlying increased pathological conditions in women are confounded by the dual factors of aging and declining estrogens. Estrogen receptors (ERs) are subject to alternative splicing, the spliced variants increase following menopause, and they fail to efficiently activate estrogen-dependent signaling pathways. However, the factors that regulate the alternative splicing of ERs remain unknown. We demonstrate novel evidence supporting a potential biological feedback loop where 17β-estradiol regulates the RNA-binding protein Nova1, which, in turn, regulates the alternative splicing of ERβ. These data increase our understanding of ER alternative splicing and could have potential implications for women taking hormone replacement therapy after menopause.
Collapse
Affiliation(s)
- Cody L Shults
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Caitlin B Dingwall
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Chun K Kim
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Elena Pinceti
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Yathindar S Rao
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Toni R Pak
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA.
| |
Collapse
|
11
|
Shams WM, Sanio C, Quinlan MG, Brake WG. 17β-Estradiol infusions into the dorsal striatum rapidly increase dorsal striatal dopamine release in vivo. Neuroscience 2016; 330:162-70. [PMID: 27256507 DOI: 10.1016/j.neuroscience.2016.05.049] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 01/07/2023]
Abstract
Systemic injections of 17β-estradiol (E2) in ovariectomized (OVX) female rats rapidly enhance dorsal striatal dopamine (DA) release in response to amphetamine (AMPH). Additionally, a single injection of E2 rapidly (within 30min) enhances amphetamine-induced DA release. In situ studies show that this rapid effect of E2 occurs specifically within the dorsal striatum (DS). The present study investigated the in vivo effects of E2 infused into the DS, medial prefrontal cortex (mPFC) or the substantia nigra (SN) on dorsal striatal DA release. Rats were OVX and implanted with a silastic tube containing 5% E2 in cholesterol, previously shown to mimic low physiological serum concentrations of 18-32pg/ml. Single-probe microdialysis was used to measure extracellular DA levels in the DS. In addition, DA release was measured subsequent to systemic injections of the indirect DA agonist, AMPH (0.5mg/kg SC), administered simultaneously with E2 (0.544μg/100μl) or its vehicle, cyclodextrin (VEH) (0.520μg/100μl). Local infusions of E2 into the DS resulted in a greater amphetamine-induced dorsal striatal DA release in comparison to vehicle. Local infusions of E2 into the mPFC or the SN did not result in an enhancement of amphetamine-induced DA levels in the DS. These studies suggest that increases in dorsal striatal DA release in response to systemic E2 are a consequence of E2 actions within the DS itself.
Collapse
Affiliation(s)
- Waqqas M Shams
- Centre for Studies in Behavioral Neurobiology (CSBN), Department of Psychology, Concordia University, Montreal H4B1R6, Canada.
| | - Christian Sanio
- Centre for Studies in Behavioral Neurobiology (CSBN), Department of Psychology, Concordia University, Montreal H4B1R6, Canada.
| | - Matthew G Quinlan
- Centre for Studies in Behavioral Neurobiology (CSBN), Department of Psychology, Concordia University, Montreal H4B1R6, Canada.
| | - Wayne G Brake
- Centre for Studies in Behavioral Neurobiology (CSBN), Department of Psychology, Concordia University, Montreal H4B1R6, Canada.
| |
Collapse
|
12
|
Garcia AN, Depena CK, Yin W, Gore AC. Testing the critical window of estradiol replacement on gene expression of vasopressin, oxytocin, and their receptors, in the hypothalamus of aging female rats. Mol Cell Endocrinol 2016; 419:102-12. [PMID: 26454088 PMCID: PMC4684429 DOI: 10.1016/j.mce.2015.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/02/2015] [Accepted: 10/02/2015] [Indexed: 11/28/2022]
Abstract
The current study tested the "critical window" hypothesis of menopause that postulates that the timing and duration of hormone treatment determine their potential outcomes. Our focus was genes in the rat hypothalamus involved in social and affiliative behaviors that change with aging and/or estradiol (E2): Avp, Avpr1a, Oxt, Oxtr, and Esr2 in the paraventricular nucleus (PVN) and supraoptic nucleus (SON). Rats were reproductively mature or aging adults, ovariectomized, given E2 or vehicle treatment of different durations, with or without a post-ovariectomy delay. Our hypothesis was that age-related changes in gene expression are mitigated by E2 treatments. Contrary to this, PVN Oxtr increased with E2, and Avpr1a increased with age. In the SON, Avpr1a increased with age, Oxtr with age and timing, and Avp was altered by duration. Thus, chronological age and E2 have independent actions on gene expression, with the "critical window" hypothesis supported by the observed timing and duration effects.
Collapse
Affiliation(s)
- Alexandra N Garcia
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Christina K Depena
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Weiling Yin
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Andrea C Gore
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA; Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
13
|
Shults CL, Pinceti E, Rao YS, Pak TR. Aging and Loss of Circulating 17β-Estradiol Alters the Alternative Splicing of ERβ in the Female Rat Brain. Endocrinology 2015; 156:4187-99. [PMID: 26295370 PMCID: PMC4606750 DOI: 10.1210/en.2015-1514] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Loss of circulating 17β-estradiol (E2) that occurs during menopause can have detrimental effects on cognitive function. The efficacy of hormone replacement therapy declines as women become farther removed from the menopausal transition, yet the molecular mechanisms underlying this age-related switch in E2 efficacy are unknown. We hypothesized that aging and varying lengths of E2 deprivation alters the ratio of alternatively spliced estrogen receptor (ER)β isoforms in the brain of female rats. Further, we tested whether changes in global transcriptional activity and splicing kinetics regulate the alternative splicing of ERβ. Our results revealed brain region-specific changes in ERβ alternative splicing in both aging and E2-deprivation paradigms and showed that ERβ could mediate E2-induced alternative splicing. Global transcriptional activity, as measured by phosphorylated RNA polymerase II, was also regulated by age and E2 in specific brain regions. Finally, we show that inhibition of topoisomerase I resulted in increased ERβ2 splice variant expression.
Collapse
Affiliation(s)
- Cody L Shults
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153
| | - Elena Pinceti
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153
| | - Yathindar S Rao
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153
| | - Toni R Pak
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153
| |
Collapse
|
14
|
Hara Y, Waters EM, McEwen BS, Morrison JH. Estrogen Effects on Cognitive and Synaptic Health Over the Lifecourse. Physiol Rev 2015; 95:785-807. [PMID: 26109339 PMCID: PMC4491541 DOI: 10.1152/physrev.00036.2014] [Citation(s) in RCA: 283] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Estrogen facilitates higher cognitive functions by exerting effects on brain regions such as the prefrontal cortex and hippocampus. Estrogen induces spinogenesis and synaptogenesis in these two brain regions and also initiates a complex set of signal transduction pathways via estrogen receptors (ERs). Along with the classical genomic effects mediated by activation of ER α and ER β, there are membrane-bound ER α, ER β, and G protein-coupled estrogen receptor 1 (GPER1) that can mediate rapid nongenomic effects. All key ERs present throughout the body are also present in synapses of the hippocampus and prefrontal cortex. This review summarizes estrogen actions in the brain from the standpoint of their effects on synapse structure and function, noting also the synergistic role of progesterone. We first begin with a review of ER subtypes in the brain and how their abundance and distributions are altered with aging and estrogen loss (e.g., ovariectomy or menopause) in the rodent, monkey, and human brain. As there is much evidence that estrogen loss induced by menopause can exacerbate the effects of aging on cognitive functions, we then review the clinical trials of hormone replacement therapies and their effectiveness on cognitive symptoms experienced by women. Finally, we summarize studies carried out in nonhuman primate models of age- and menopause-related cognitive decline that are highly relevant for developing effective interventions for menopausal women. Together, we highlight a new understanding of how estrogen affects higher cognitive functions and synaptic health that go well beyond its effects on reproduction.
Collapse
Affiliation(s)
- Yuko Hara
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories, Friedman Brain Institute, Department of Geriatrics and Palliative Medicine, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; and Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York
| | - Elizabeth M Waters
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories, Friedman Brain Institute, Department of Geriatrics and Palliative Medicine, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; and Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York
| | - Bruce S McEwen
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories, Friedman Brain Institute, Department of Geriatrics and Palliative Medicine, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; and Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York
| | - John H Morrison
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories, Friedman Brain Institute, Department of Geriatrics and Palliative Medicine, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; and Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York
| |
Collapse
|
15
|
Munetomo A, Hojo Y, Higo S, Kato A, Yoshida K, Shirasawa T, Shimizu T, Barron A, Kimoto T, Kawato S. Aging-induced changes in sex-steroidogenic enzymes and sex-steroid receptors in the cortex, hypothalamus and cerebellum. J Physiol Sci 2015; 65:253-63. [PMID: 25715777 PMCID: PMC10717965 DOI: 10.1007/s12576-015-0363-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/03/2015] [Indexed: 02/07/2023]
Abstract
We investigated age-induced changes in mRNA expression profiles of sex-steroidogenic enzymes and sex-steroid receptors in 3-, 12-, and 24-month-old male rat brain subregions [cerebral cortex (CC), hypothalamus (Hy) and cerebellum (CL)]. In many cases, the expression levels of mRNA decreased with age for androgen synthesis enzyme systems, including Cyp17a1, Hsd17b and Srd5a in the CC and CL, but not in the Hy. Estradiol synthase Cyp19a1 did not show age-induced decline in the Hy, and nearly no expression of Cyp19a1 was observed in the CC and CL over 3-24 m. Androgen receptor Ar increased in the Hy but decreased in the CC with age. Estrogen receptor Esr1 increased in the CC and Hy, and did not change in the CL with age. Esr2 did not change in the CC and Hy, but decreased in the CL with age. As a comparison, age-induced changes of brain-derived neurotrophic factor mRNA were also investigated.
Collapse
Affiliation(s)
- Arisa Munetomo
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, Univ. Tokyo, Komaba 3-8-1, Meguro, Tokyo, 153 Japan
| | - Yasushi Hojo
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, Univ. Tokyo, Komaba 3-8-1, Meguro, Tokyo, 153 Japan
| | - Shimpei Higo
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, Univ. Tokyo, Komaba 3-8-1, Meguro, Tokyo, 153 Japan
| | - Asami Kato
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, Univ. Tokyo, Komaba 3-8-1, Meguro, Tokyo, 153 Japan
| | - Kotaro Yoshida
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, Univ. Tokyo, Komaba 3-8-1, Meguro, Tokyo, 153 Japan
| | - Takuji Shirasawa
- Department of Aging Control Medicine, Graduate School of Medicine, Juntendo University, Bunkyo-Ku, Tokyo, 113-0033 Japan
| | - Takahiko Shimizu
- Molecular Gerontogy, Tokyo Metropolitan Institute of Gerontology, Itabashi-Ku, Tokyo, 173-0015 Japan
- Department of Advanced Aging Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8670 Japan
| | - Anna Barron
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, Univ. Tokyo, Komaba 3-8-1, Meguro, Tokyo, 153 Japan
| | - Tetsuya Kimoto
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, Univ. Tokyo, Komaba 3-8-1, Meguro, Tokyo, 153 Japan
| | - Suguru Kawato
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, Univ. Tokyo, Komaba 3-8-1, Meguro, Tokyo, 153 Japan
| |
Collapse
|
16
|
Fortress AM, Kim J, Poole RL, Gould TJ, Frick KM. 17β-Estradiol regulates histone alterations associated with memory consolidation and increases Bdnf promoter acetylation in middle-aged female mice. ACTA ACUST UNITED AC 2014; 21:457-67. [PMID: 25128537 PMCID: PMC4138358 DOI: 10.1101/lm.034033.113] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Histone acetylation is essential for hippocampal memory formation in young adult rodents. Although dysfunctional histone acetylation has been associated with age-related memory decline in male rodents, little is known about whether histone acetylation is altered by aging in female rodents. In young female mice, the ability of 17β-estradiol (E2) to enhance object recognition memory consolidation requires histone H3 acetylation in the dorsal hippocampus. However, the extent to which histone acetylation is regulated by E2 in middle-aged females is unknown. The mnemonic benefits of E2 in aging females appear to be greatest in middle age, and so pinpointing the molecular mechanisms through which E2 enhances memory at this age could lead to the development of safer and more effective treatments for maintaining memory function without the side effects of current therapies. Here, we show that dorsal hippocampal infusion of E2 rapidly enhanced object recognition and spatial memory, and increased histone H3 acetylation in the dorsal hippocampus, while also significantly reducing levels of histone deacetylase (HDAC2 and HDAC3) proteins. E2 specifically increased histone H3 acetylation at Bdnf promoters pII and pIV in the dorsal hippocampus of both young and middle-aged mice, despite age-related decreases in pI and pIV acetylation. Furthermore, levels of mature BDNF and pro-BDNF proteins in the dorsal hippocampus were increased by E2 in middle-aged females. Together, these data suggest that the middle-aged female dorsal hippocampus remains epigenetically responsive to E2, and that E2 may enhance memory in middle-aged females via epigenetic regulation of Bdnf.
Collapse
Affiliation(s)
- Ashley M Fortress
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Jaekyoon Kim
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Rachel L Poole
- Department of Psychology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Thomas J Gould
- Department of Psychology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| |
Collapse
|
17
|
Regulation of object recognition and object placement by ovarian sex steroid hormones. Behav Brain Res 2014; 285:140-57. [PMID: 25131507 DOI: 10.1016/j.bbr.2014.08.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 07/29/2014] [Accepted: 08/01/2014] [Indexed: 12/26/2022]
Abstract
The ovarian hormones 17β-estradiol (E2) and progesterone (P4) are potent modulators of hippocampal memory formation. Both hormones have been demonstrated to enhance hippocampal memory by regulating the cellular and molecular mechanisms thought to underlie memory formation. Behavioral neuroendocrinologists have increasingly used the object recognition and object placement (object location) tasks to investigate the role of E2 and P4 in regulating hippocampal memory formation in rodents. These one-trial learning tasks are ideal for studying acute effects of hormone treatments on different phases of memory because they can be administered during acquisition (pre-training), consolidation (post-training), or retrieval (pre-testing). This review synthesizes the rodent literature testing the effects of E2 and P4 on object recognition (OR) and object placement (OP), and the molecular mechanisms in the hippocampus supporting memory formation in these tasks. Some general trends emerge from the data. Among gonadally intact females, object memory tends to be best when E2 and P4 levels are elevated during the estrous cycle, pregnancy, and in middle age. In ovariectomized females, E2 given before or immediately after testing generally enhances OR and OP in young and middle-aged rats and mice, although effects are mixed in aged rodents. Effects of E2 treatment on OR and OP memory consolidation can be mediated by both classical estrogen receptors (ERα and ERβ), and depend on glutamate receptors (NMDA, mGluR1) and activation of numerous cell signaling cascades (e.g., ERK, PI3K/Akt, mTOR) and epigenetic processes (e.g., histone acetylation, DNA methylation). Acute P4 treatment given immediately after training also enhances OR and OP in young and middle-aged ovariectomized females by activating similar cell signaling pathways as E2 (e.g., ERK, mTOR). The few studies that have administered both hormones in combination suggest that treatment can enhance OR and OP, but that effects are highly dependent on factors such as dose and timing of administration. In addition to providing more detail on these general conclusions, this review will discuss directions for future avenues of research into the hormonal regulation of object memory.
Collapse
|
18
|
Wang TJ, Chen JR, Wang WJ, Wang YJ, Tseng GF. Genistein partly eases aging and estropause-induced primary cortical neuronal changes in rats. PLoS One 2014; 9:e89819. [PMID: 24587060 PMCID: PMC3934964 DOI: 10.1371/journal.pone.0089819] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 01/26/2014] [Indexed: 01/11/2023] Open
Abstract
Gonadal hormones can modulate brain morphology and behavior. Recent studies have shown that hypogonadism could result in cortical function deficits. To this end, hormone therapy has been used to ease associated symptoms but the risk may outweigh the benefits. Here we explored whether genistein, a phytoestrogen, is effective in restoring the cognitive and central neuronal changes in late middle age and surgically estropause female rats. Both animal groups showed poorer spatial learning than young adults. The dendritic arbors and spines of the somatosensory cortical and CA1 hippocampal pyramidal neurons were revealed with intracellular dye injection and analyzed. The results showed that dendritic spines on these neurons were significantly decreased. Remarkably, genistein treatment rescued spatial learning deficits and restored the spine density on all neurons in the surgically estropause young females. In late middle age females, genistein was as effective as estradiol in restoring spines; however, the recovery was less thorough than on young OHE rats. Neither genistein nor estradiol rectified the shortened dendritic arbors of the aging cortical pyramidal neurons suggesting that dendritic arbors and spines are differently modulated. Thus, genistein could work at central level to restore excitatory connectivity and appears to be potent alternative to estradiol for easing aging and menopausal syndromes.
Collapse
Affiliation(s)
- Tsyr-Jiuan Wang
- Department of Nursing, National Taichung University of Science and Technology, Taichung, Taiwan
| | - Jeng-Rung Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Wen-Jay Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Yueh-Jan Wang
- Department of Anatomy, College of Medicine, Tzu-Chi University, Hualien, Taiwan
| | - Guo-Fang Tseng
- Department of Anatomy, College of Medicine, Tzu-Chi University, Hualien, Taiwan
| |
Collapse
|
19
|
Estrogen-dependent changes in estrogen receptor-β mRNA expression in middle-aged female rat brain. Brain Res 2013; 1543:49-57. [PMID: 24239930 DOI: 10.1016/j.brainres.2013.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/06/2013] [Accepted: 11/07/2013] [Indexed: 01/21/2023]
Abstract
During aging, estrogen production and circulating levels of estrogen are markedly decreased in females. Although several differences exist in the process of reproductive aging between women and female rats, the results of many studies suggest that the female rat, especially the middle-aged or aged ovariectomized female, is an important animal model of hormone loss in women. In target tissues including the brain, the actions of estrogen are mediated mainly via the alpha and beta subtypes of the estrogen receptor (ER-α and ER-β). Estrogen treatment is known to change the expression of ER-α mRNA and protein in specific regions of the brain in middle-aged female rodents. In contrast, we do not know if estrogen regulates the expression of ER-β in the brain at this stage of life. In the present study, we performed in situ hybridization on brain sections of ovariectomized and estrogen-treated middle-aged female rats to reveal the effects of estrogen on the expression of ER-β throughout the brain. Our results showed that estrogen treatment decreased the number of ER-β mRNA-positive cells in the mitral cell and external plexiform layers of the olfactory bulb, central amygdaloid nucleus, medial geniculate nucleus, posterior hypothalamic nucleus, suprachiasmatic nucleus, and reticular part of the substantia nigra. As compared to the results of previous studies of young females, our data revealed that the regions in which expression of ER-β mRNA expression is affected by estrogen differ in middle age. These results suggest that the effects of estrogen on ER-β expression change with age.
Collapse
|
20
|
Frick KM. Epigenetics, oestradiol and hippocampal memory consolidation. J Neuroendocrinol 2013; 25:1151-62. [PMID: 24028406 PMCID: PMC3943552 DOI: 10.1111/jne.12106] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 08/13/2013] [Accepted: 09/05/2013] [Indexed: 02/02/2023]
Abstract
Epigenetic alterations of histone proteins and DNA are essential for hippocampal synaptic plasticity and cognitive function, and contribute to the aetiology of psychiatric disorders and neurodegenerative diseases. Hippocampal memory formation depends on histone alterations and DNA methylation, and increasing evidence suggests that the regulation of these epigenetic processes by modulatory factors, such as environmental enrichment, stress and hormones, substantially influences memory function. Recent work from our laboratory suggests that the ability of the sex-steroid hormone 17β-oestradiol (E2 ) to enhance novel object recognition memory consolidation in young adult female mice is dependent on histone H3 acetylation and DNA methylation in the dorsal hippocampus. Our data also suggest that enzymes mediating DNA methylation and histone acetylation work in concert to regulate the effects of E2 on memory consolidation. These findings shed light on the epigenetic mechanisms that influence hormonal modulation of cognitive function, and may have important implications for understanding how hormones influence cognition in adulthood and ageing. The present review provides a brief overview of the literature on epigenetics and memory, describes in detail our findings demonstrating that epigenetic alterations regulate E2 -induced memory enhancement in female mice, and discusses future directions for research on the epigenetic regulation of E2 -induced memory enhancement.
Collapse
Affiliation(s)
- Karyn M. Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211
| |
Collapse
|
21
|
Schreihofer DA, Ma Y. Estrogen receptors and ischemic neuroprotection: Who, what, where, and when? Brain Res 2013; 1514:107-22. [DOI: 10.1016/j.brainres.2013.02.051] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 02/08/2023]
|
22
|
Chisholm NC, Juraska JM. Factors influencing the cognitive and neural effects of hormone treatment during aging in a rodent model. Brain Res 2013; 1514:40-9. [PMID: 23419893 DOI: 10.1016/j.brainres.2013.02.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 02/06/2013] [Accepted: 02/11/2013] [Indexed: 12/18/2022]
Abstract
Whether hormone treatment alters brain structure or has beneficial effects on cognition during aging has recently become a topic of debate. Although previous research has indicated that hormone treatment benefits memory in menopausal women, several newer studies have shown no effect or detrimental effects. These inconsistencies emphasize the need to evaluate the role of hormones in protecting against age-related cognitive decline in an animal model. Importantly, many studies investigating the effects of estrogen and progesterone on cognition and related brain regions have used young adult animals, which respond differently than aged animals. However, when only the studies that have examined the effects of hormone treatment in an aging model are reviewed, there are still varied behavioral and neural outcomes. This article reviews some of the important factors that can influence the behavioral and neural outcomes of hormone treatment including the type of estrogen administered, whether or not estrogen is combined with progesterone and if so, the type of progesterone used, as well as the route, mode, and length of treatment. How these factors influence cognitive outcomes highlights the importance of study design and avoiding generalizations from a small number of studies. This article is part of a Special Issue entitled Hormone Therapy.
Collapse
Affiliation(s)
- Nioka C Chisholm
- Department of Psychology, University of Illinois at Urbana - Champaign, Champaign, IL 61820, USA.
| | | |
Collapse
|
23
|
Kajta M, Rzemieniec J, Litwa E, Lason W, Lenartowicz M, Krzeptowski W, Wojtowicz AK. The key involvement of estrogen receptor β and G-protein-coupled receptor 30 in the neuroprotective action of daidzein. Neuroscience 2013; 238:345-60. [PMID: 23419549 DOI: 10.1016/j.neuroscience.2013.02.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/05/2013] [Indexed: 01/01/2023]
Abstract
Phytoestrogens have received considerable attention because they provide an array of beneficial effects, such as neuroprotection. To better understand the molecular and functional link between phytoestrogens and classical as well as membrane estrogen receptors (ERs), we investigated the effect of daidzein on the glutamate-mediated apoptotic pathway. Our study demonstrated that daidzein (0.1-10μM) inhibited the pro-apoptotic and neurotoxic effects caused by glutamate treatment. Hippocampal, neocortical and cerebellar tissues responded to the inhibitory action of daidzein on glutamate-activated caspase-3 and lactate dehydrogenase (LDH) release in a similar manner. Biochemical data were supported at the cellular level by Hoechst 33342 and calcein AM staining. The sensitivity of neuronal cells to daidzein-mediated protection was most prominent in hippocampal cultures at an early stage of development 7th day in vitro. A selective estrogen receptor β (ERβ) antagonist, 4-[2-phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5,-a]pyrimidin-3-yl]phenol (PHTPP), and a selective G-protein-coupled receptor 30 (GPR30) antagonist, 3aS(∗),4R(∗),9bR(∗))-4-(6-Bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-3H-cyclopenta[c]quinoline (G15), reversed the daidzein-mediated inhibition of glutamate-induced loss of membrane mitochondrial potential, caspase-3 activity, and LDH release. A selective ERα antagonist, methyl-piperidino-pyrazole (MPP), did not influence any anti-apoptotic effect of daidzein. However, a high-affinity estrogen receptor antagonist, 7α,17β-[9-[(4,4,5,5,5-pentafluoropentyl)sulfinyl]nonyl]estra-1,3,5(10)-triene-3,17-diol (ICI) 182,780, and a selective GPR30 agonist, (±)-1-[(3aR(∗),4S(∗),9bS(∗))-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-8-yl]-ethanone (G1), intensified the protective action of daidzein against glutamate-induced loss of membrane mitochondrial potential and LDH release. In siRNA ERβ- and siRNA GPR30-transfected cells, daidzein did not inhibit the glutamate-induced effects. Twenty-four hour exposure to glutamate did not affect the cellular distribution of ERβ and GPR30, but caused greater than 100% increase in the levels of the receptors. Co-treatment with daidzein decreased the level of ERβ without significant changing of the GPR30 protein level. Here, we elucidated neuroprotective effects of daidzein at low micromolar concentrations and demonstrated that the phytoestrogens may exert their effects through novel extranuclear GPR30 and the classical transcriptionally acting ERβ. These studies uncover key roles of the ERβ and GPR30 intracellular signaling pathways in mediating the anti-apoptotic action of daidzein and may provide insight into new strategies to treat or prevent neural degeneration.
Collapse
Affiliation(s)
- M Kajta
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland.
| | | | | | | | | | | | | |
Collapse
|
24
|
Effects of long-term treatment with estrogen and medroxyprogesterone acetate on synapse number in the medial prefrontal cortex of aged female rats. Menopause 2012; 19:804-11. [PMID: 22617337 DOI: 10.1097/gme.0b013e31824d1fc4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The present study investigated the effects of long-term hormone treatment, including the most commonly prescribed progestin, medroxyprogesterone acetate, during aging on synaptophysin-labeled boutons, a marker of synapses, in the medial prefrontal cortex (mPFC) of rats. METHODS Female Long Evans hooded rats were ovariectomized at middle age (12-13 mo) and were placed in one of four groups: no replacement (n = 5), 17β-estradiol alone (n = 6), estradiol and progesterone (n = 7), or estradiol and medroxyprogesterone acetate (n = 4). Estradiol was administered in the drinking water and progestogens were administered via subcutaneous pellets that were replaced every 90 days. After 7 months of hormone replacement, the animals were euthanized, and the brains were stained for synaptophysin, a membrane component of synaptic vesicles. The density of synaptophysin-labeled boutons was quantified in the mPFC using unbiased stereology and multiplied by the volume of the mPFC to obtain the total number. RESULTS Animals receiving estradiol and medroxyprogesterone acetate had significantly more synaptophysin-labeled boutons in the mPFC than did animals not receiving replacement (P < 0.03) and those receiving estradiol and progesterone (P < 0.02). In addition, there was a nonsignificant trend for animals receiving estradiol alone to have more synapses than those receiving estradiol and progesterone. CONCLUSIONS This study is the first to examine the effects of estradiol and medroxyprogesterone acetate during rat aging on cortical synaptic number. Estradiol with medroxyprogesterone acetate, but not progesterone, resulted in a greater number of synapses in the mPFC during aging than did no replacement.
Collapse
|
25
|
Frick KM. Building a better hormone therapy? How understanding the rapid effects of sex steroid hormones could lead to new therapeutics for age-related memory decline. Behav Neurosci 2012; 126:29-53. [PMID: 22289043 DOI: 10.1037/a0026660] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A wealth of data collected in recent decades has demonstrated that ovarian sex-steroid hormones, particularly 17β-estradiol (E2), are important trophic factors that regulate the function of cognitive regions of the brain such as the hippocampus. The loss of hormone cycling at menopause is associated with cognitive decline and dementia in women, and the onset of memory decline in animal models. However, hormone therapy is not currently recommended to prevent or treat cognitive decline, in part because of its detrimental side effects. In this article, it is proposed that investigations of the rapid effects of E2 on hippocampal function be used to further the design of new drugs that mimic the beneficial effects of E2 on memory without the side effects of current therapies. A conceptual model is presented for elucidating the molecular and biochemical mechanisms through which sex-steroid hormones modulate memory, and a specific hypothesis is proposed to account for the rapid memory-enhancing effects of E2. Empirical support for this hypothesis is discussed as a means of stimulating the consideration of new directions for the development of hormone-based therapies to preserve memory function in menopausal women.
Collapse
Affiliation(s)
- Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, 2441 East Hartford Avenue, Milwaukee, WI 53211, USA.
| |
Collapse
|
26
|
Abstract
Oestrogen has important roles not only in the regulation of reproductive function, but also with respect to other functions, such as cognition, emotion and cardiovascular regulation. Oestrogen acts mainly via its oestrogen receptor (ER), namely, ERα and ERβ in target tissues, including the brain. During ageing, the actions of oestrogen are altered in both females and males, raising the possibility that the expression level of ER may be altered with age. Age-related changes in ER expression in female rat brain have been well demonstrated with regard to reproductive ageing, whereas very little is known about the effects of age on the expression of ERs, especially ERβ, in males. In the present study, which aimed to elucidate the effects of ageing on ERβ expression in the male brain at the transcriptional level, we performed in situ hybridisation using young (10weeks), middle-aged (12months) and old (24 months) gonadally-intact male rats. We revealed a wide distribution of ERβ mRNA-positive cells throughout the brain, and found that the number of ERβ mRNA-positive cells was reduced in several brain regions in males with ageing. ERβ mRNA-positive cells were decreased with age in layer 6 of the cerebral cortex, hippocampal CA1/CA3 regions, the dorsal endopiriform nucleus, the medial septal nucleus, various subregions of the amygdala (central, lateral, anterior cortical and posterolateral cortical subnuclei), the anteroventral periventricular nucleus, the substantia nigra pars compacta, the raphe magnus nucleus and the locus coeruleus. These results suggest that ERβ expression in male rat brain decreases with age at the transcriptional level and that these ageing effects are region-specific.
Collapse
Affiliation(s)
- N Yamaguchi
- Department of Neurobiology and Anatomy, Kochi Medical School, Kochi University, Kohasu, Nankoku, Japan
| | | |
Collapse
|
27
|
Izumo N, Ishibashi Y, Ohba M, Morikawa T, Manabe T. Decreased voluntary activity and amygdala levels of serotonin and dopamine in ovariectomized rats. Behav Brain Res 2012; 227:1-6. [DOI: 10.1016/j.bbr.2011.10.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 10/14/2011] [Accepted: 10/21/2011] [Indexed: 01/04/2023]
|
28
|
Abstract
During aging, there is an increase in neurodegenerative diseases and a decrease in cognitive performance. Postmenopausal women are more vulnerable as their estrogen levels decline, but most hormone replacement therapies do not prevent cognitive decline. One potential reason is that the timing of hormone replacement is critical and changes in the estrogen receptor expression may over-ride hormonal intervention. In rodents, estrogen receptor β (ERβ) mRNA decreases in the cortex with age. One mechanism by which ERβ mRNA could be regulated is by epigenetic modification of ERβ promoter. Here, we show an increase in methylation of ERβ promoter corresponding to decrease in ERβ mRNA in the cortex of an aging female.
Collapse
|
29
|
Inoue T, Miki Y, Abe K, Hatori M, Hosaka M, Kariya Y, Kakuo S, Fujimura T, Hachiya A, Aiba S, Sasano H. The role of estrogen-metabolizing enzymes and estrogen receptors in human epidermis. Mol Cell Endocrinol 2011; 344:35-40. [PMID: 21740958 DOI: 10.1016/j.mce.2011.06.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 05/16/2011] [Accepted: 06/18/2011] [Indexed: 10/18/2022]
Abstract
Local estrogen metabolism and its sensitivities in the skin have been also suggested to contribute to skin homeostasis in addition to age- and/or gender-dependent circulating estrogen, even though their local mechanisms have been largely unknown. To characterize their potential correlations, age- and gender-dependencies were evaluated focusing on 5 pivotal estrogen-metabolizing enzymes including aromatase, estrogen sulfotransferase, steroid sulfatase, and 17β-hydroxysteroid dehydrogenases and estrogen receptors (ERα and ERβ) using immunohistochemistry of 100 human skin specimens. When their epidermal expression levels were compared among 7 age groups, ranging from the teens to the seventies, the highest expression in the teens group and the lowest expression in the seventies group were found in the expression of aromatase and ERβ, respectively, while no significant differences between the male and the female groups were found in the immunoreactivities of our interested proteins. Our results suggest that age-related differences in aromatase and ERβ expressions impact epidermal homeostasis.
Collapse
Affiliation(s)
- Takayoshi Inoue
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Boulware MI, Kent BA, Frick KM. The impact of age-related ovarian hormone loss on cognitive and neural function. Curr Top Behav Neurosci 2011; 10:165-84. [PMID: 21533680 DOI: 10.1007/7854_2011_122] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
On average, women now live one-third of their lives after menopause. Because menopause has been associated with an elevated risk of dementia, an increasing body of research has studied the effects of reproductive senescence on cognitive function. Compelling evidence from humans, nonhuman primates, and rodents suggests that ovarian sex-steroid hormones can have rapid and profound effects on memory, attention, and executive function, and on regions of the brain that mediate these processes, such as the hippocampus and prefrontal cortex. This chapter will provide an overview of studies in humans, nonhuman primates, and rodents that examine the effects of ovarian hormone loss and hormone replacement on cognitive functions mediated by the hippocampus and prefrontal cortex. For humans and each animal model, we outline the effects of aging on reproductive function, describe how ovarian hormones (primarily estrogens) modulate hippocampal and prefrontal physiology, and discuss the effects of both reproductive aging and hormone treatment on cognitive function. Although this review will show that much has been learned about the effects of reproductive senescence on cognition, many critical questions remain for future investigation.
Collapse
Affiliation(s)
- Marissa I Boulware
- Department of Psychology, University of Wisconsin-Milwaukee, 2441 E. Hartford Ave, Milwaukee, WI 53211, USA
| | | | | |
Collapse
|
31
|
Alonso A, González-Pardo H, Garrido P, Conejo NM, Llaneza P, Díaz F, del Rey CG, González C. Acute effects of 17 β-estradiol and genistein on insulin sensitivity and spatial memory in aged ovariectomized female rats. AGE (DORDRECHT, NETHERLANDS) 2010; 32:421-434. [PMID: 20467821 PMCID: PMC2980599 DOI: 10.1007/s11357-010-9148-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 04/26/2010] [Indexed: 05/29/2023]
Abstract
Aging is characterized by decline in metabolic function and insulin resistance, and both seem to be in the basis of neurodegenerative diseases and cognitive dysfunction. Estrogens prevent age-related changes, and phytoestrogens influence learning and memory. Our hypothesis was that estradiol and genistein, using rapid-action mechanisms, are able to modify insulin sensitivity, process of learning, and spatial memory. Young and aged ovariectomized rats received acute treatment with estradiol or genistein. Aged animals were more insulin-resistant than young. In each age, estradiol and genistein-treated animals were less insulin-resistant than the others, except in the case of young animals treated with high doses of genistein. In aged rats, no differences between groups were found in spatial memory test, showing a poor performance in the water maze task. However, young females treated with estradiol or high doses of genistein performed well in spatial memory task like the control group. Only rats treated with high doses of genistein showed an optimal spatial memory similar to the control group. Conversely, acute treatment with high doses of phytoestrogens improved spatial memory consolidation only in young rats, supporting the critical period hypothesis for the beneficial effects of estrogens on memory. Therefore, genistein treatment seems to be suitable treatment in aged rats in order to prevent insulin resistance but not memory decline associated with aging. Acute genistein treatment is not effective to restore insulin resistance associated to the early loss of ovarian function, although it can be useful to improve memory deficits in this condition.
Collapse
Affiliation(s)
- Ana Alonso
- Department of Functional Biology. Physiology Area, University of Oviedo, C/Julián Clavería s/n, 33006 Oviedo, Spain
| | - Héctor González-Pardo
- Psychology Department, Laboratory of Psychobiology, University of Oviedo, Oviedo, Spain
| | - Pablo Garrido
- Department of Functional Biology. Physiology Area, University of Oviedo, C/Julián Clavería s/n, 33006 Oviedo, Spain
| | - Nélida M. Conejo
- Psychology Department, Laboratory of Psychobiology, University of Oviedo, Oviedo, Spain
| | - Plácido Llaneza
- Gynaecology Department, Central University Hospital of Asturias, Oviedo, Spain
| | - Fernando Díaz
- Department of Functional Biology. Physiology Area, University of Oviedo, C/Julián Clavería s/n, 33006 Oviedo, Spain
| | | | - Celestino González
- Department of Functional Biology. Physiology Area, University of Oviedo, C/Julián Clavería s/n, 33006 Oviedo, Spain
| |
Collapse
|
32
|
Abstract
The use of estrogenic compounds as antidepressants or as coadjuvants to facilitate the effect of antidepressants has reported controversial results, suggesting that many factors could influence their actions. This review analyzes, from a basic research perspective, the possible factors that may underlie the antidepressant action of estrogens alone or in combination. The possible mechanisms of action of estrogens alone and in combination with the selective serotonin reuptake inhibitor, fluoxetine, the selective noradrenaline reuptake inhibitor, desipramine, and the mixed serotonin/noradrenaline reuptake inhibitor, venlafaxine are reviewed, focusing on monoaminergic systems and estrogen receptors as main targets. The antidepressant effect of estrogens depends on the type of estrogen, treatment duration, doses, sex, time after ovariectomy, and age. Estrogens potentiate the antidepressant-like action of fluoxetine, venlafaxine, and desipramine and drastically shorten their latency of action. The antidepressant-like effect of estrogens alone or in combination with antidepressants seems to be mediated by monoaminergic and classic estrogen receptors, as WAY100635, an antagonist to the serotonin 1A receptor, idaxozan, an antagonist to alpha2 adrenergic receptors, and RU 58668, an estrogen receptor antagonist, blocked their antidepressant-like effect. In conclusion, estrogens produce antidepressant-like actions by themselves and importantly facilitate the action of clinically used antidepressants.
Collapse
|
33
|
Abstract
OBJECTIVE The cognitive benefit of postmenopausal hormone use is controversial; however, timing of treatment close to menopause may increase the likelihood of preserving cognitive function. We examined the effects of early-initiation hormone use on visual working memory, hypothesizing that long-term hormone use is associated with greater brain activation during visual working memory. METHODS This was a cross-sectional comparison of long-term early hormone users-current (n = 13) and past (n = 24; 2.1 +/- 1.0 years off hormones)-with never users (n = 18), using a visual memory task and functional magnetic resonance imaging (MRI). We evaluated 55 women older than 60 years at the University of Michigan's General Clinical Research Center. Hormone users had completed at least 10 continuous years of conjugated equine estrogens with or without medroxyprogesterone acetate, begun within 2 years of menopause. Women were excluded for illness, medication, intermittent estrogen use, phytoestrogen use, recent smoking, and MRI contraindications. The primary outcome was functional MRI-detected brain activity during the visual memory task. RESULTS Compared with never users, both groups of hormone users had increased activation in the frontal and parietal cortices, insula, hippocampus, and cingulate; combined hormone users also had increased activation in the putamen and raphe (corrected P < 0.05 or uncorrected P < 0.001 with a priori hypothesis). Across the entire sample, the medial temporal cortex (P < 0.0001 right; P < 0.018 left) and right hippocampus (P < 0.0001) positively correlated with task performance. CONCLUSIONS Hormone use was associated with increased brain activation during the visual memory task, in regions used for visual working memory. A positive correlation between activation and task performance suggests that early-initiation, long-term postmenopausal hormone use may benefit visual working memory.
Collapse
|
34
|
Gillies GE, McArthur S. Estrogen actions in the brain and the basis for differential action in men and women: a case for sex-specific medicines. Pharmacol Rev 2010; 62:155-98. [PMID: 20392807 PMCID: PMC2879914 DOI: 10.1124/pr.109.002071] [Citation(s) in RCA: 502] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The classic view of estrogen actions in the brain was confined to regulation of ovulation and reproductive behavior in the female of all mammalian species studied, including humans. Burgeoning evidence now documents profound effects of estrogens on learning, memory, and mood as well as neurodevelopmental and neurodegenerative processes. Most data derive from studies in females, but there is mounting recognition that estrogens play important roles in the male brain, where they can be generated from circulating testosterone by local aromatase enzymes or synthesized de novo by neurons and glia. Estrogen-based therapy therefore holds considerable promise for brain disorders that affect both men and women. However, as investigations are beginning to consider the role of estrogens in the male brain more carefully, it emerges that they have different, even opposite, effects as well as similar effects in male and female brains. This review focuses on these differences, including sex dimorphisms in the ability of estradiol to influence synaptic plasticity, neurotransmission, neurodegeneration, and cognition, which, we argue, are due in a large part to sex differences in the organization of the underlying circuitry. There are notable sex differences in the incidence and manifestations of virtually all central nervous system disorders, including neurodegenerative disease (Parkinson's and Alzheimer's), drug abuse, anxiety, and depression. Understanding the cellular and molecular basis of sex differences in brain physiology and responses to estrogen and estrogen mimics is, therefore, vitally important for understanding the nature and origins of sex-specific pathological conditions and for designing novel hormone-based therapeutic agents that will have optimal effectiveness in men or women.
Collapse
Affiliation(s)
- Glenda E Gillies
- Centre for Neuroscience, Department of Medicine, Hammersmith Hospital, Imperial College Faculty of Medicine, DuCane Road, London W12ONN, UK.
| | | |
Collapse
|
35
|
Maruska KP, Fernald RD. Reproductive status regulates expression of sex steroid and GnRH receptors in the olfactory bulb. Behav Brain Res 2010; 213:208-17. [PMID: 20466023 DOI: 10.1016/j.bbr.2010.04.058] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 04/29/2010] [Accepted: 04/30/2010] [Indexed: 10/19/2022]
Abstract
Neuromodulators including gonadotropin-releasing hormone (GnRH) and sex steroids help integrate an animal's internal physiological state with incoming external cues, and can have profound effects on the processing of behaviorally relevant information, particularly from the olfactory system. While GnRH and steroid receptors are present in olfactory processing regions across vertebrates, little is known about whether their expression levels change with internal physiological state or external social cues. We used qRT-PCR to measure mRNA levels of two GnRH receptors (GnRH-R1, GnRH-R2), five sex steroid receptors (estrogen receptors: ERalpha, ERbetaa, ERbetab; androgen receptors: ARalpha, ARbeta), and aromatase in the olfactory bulb of the highly social African cichlid fish Astatotilapia burtoni. We asked whether these receptor levels changed with reproductive condition in females, or with social status, which regulates reproductive capacity in males. Our results reveal that mRNA levels of multiple sex steroid, GnRH receptor subtypes, and aromatase in the olfactory bulb vary with sex, social status in males, and reproductive condition in females, which highlights the potential importance of changing receptor levels in fine-tuning the olfactory system during the reproductive cycle. Further, steroid receptor mRNA levels were positively correlated with circulating steroid levels in males, but negatively correlated in females, suggesting different regulatory control between sexes. These results provide support for the hypothesis that the first-order olfactory relay station is a substrate for both GnRH and sex steroid modulation, and suggest that changes in receptor levels could be an important mechanism for regulating reproductive, social, and seasonal plasticity in olfactory perception observed across vertebrates.
Collapse
Affiliation(s)
- Karen P Maruska
- Biology Department, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA.
| | | |
Collapse
|
36
|
Estradiol-induced object memory consolidation in middle-aged female mice requires dorsal hippocampal extracellular signal-regulated kinase and phosphatidylinositol 3-kinase activation. J Neurosci 2010; 30:4390-400. [PMID: 20335475 DOI: 10.1523/jneurosci.4333-09.2010] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We previously demonstrated that dorsal hippocampal extracellular signal-regulated kinase (ERK) activation is necessary for 17beta-estradiol (E(2)) to enhance novel object recognition in young ovariectomized mice (Fernandez et al., 2008). Here, we asked whether E(2) has similar memory-enhancing effects in middle-aged and aged ovariectomized mice, and whether these effects depend on ERK and phosphatidylinositol 3-kinase (PI3K)/Akt activation. We first demonstrated that intracerebroventricular or intrahippocampal E(2) infusion immediately after object recognition training enhanced memory consolidation in middle-aged, but not aged, females. The E(2)-induced enhancement in middle-aged females was blocked by intrahippocampal inhibition of ERK or PI3K activation. Intrahippocampal or intracerebroventricular E(2) infusion in middle-aged females increased phosphorylation of p42 ERK in the dorsal hippocampus 15 min, but not 5 min, after infusion, an effect that was blocked by intrahippocampal inhibition of ERK or PI3K activation. Dorsal hippocampal PI3K and Akt phosphorylation was increased 5 min after intrahippocampal or intracerebroventricular E(2) infusion in middle-aged, but not aged, females. Intracerebroventricular E(2) infusion also increased PI3K phosphorylation after 15 min, and this effect was blocked by intrahippocampal PI3K, but not ERK, inhibition. These data demonstrate for the first time that activation of dorsal hippocampal PI3K/Akt and ERK signaling pathways is necessary for E(2) to enhance object recognition memory in middle-aged females. They also reveal that similar dorsal hippocampal signaling pathways mediate E(2)-induced object recognition memory enhancement in young and middle-aged females and that the inability of E(2) to activate these pathways may underlie its failure to enhance object recognition in aged females.
Collapse
|
37
|
Alvarez-Delgado C, Mendoza-Rodríguez CA, Picazo O, Cerbón M. Different expression of alpha and beta mitochondrial estrogen receptors in the aging rat brain: interaction with respiratory complex V. Exp Gerontol 2010; 45:580-5. [PMID: 20096765 DOI: 10.1016/j.exger.2010.01.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 01/11/2010] [Accepted: 01/14/2010] [Indexed: 01/11/2023]
Abstract
Recent evidence suggests that hormonal effects on mitochondria could be mediated by mitochondrial estrogen receptors (mtERs). These receptors are new candidates for the beneficial estrogenic effects on mitochondria in different physiological conditions. The aim of this investigation was to study mtER expression during brain aging. We analyzed mtERalpha and mtERbeta expression in cortical, hippocampal and hypothalamic mitochondria of young adult (3months) and aged (18 months) female Wistar rats by Western blot. In addition, we explored the interaction of mtERbeta with respiratory complex V by using coimmunoprecipitation assays. The results show that mtERalpha and mtERbeta are present in young and aged brain mitochondria. We also demonstrate that mtERs are expressed as variants and have a brain region specific distribution. The predominant mtER variants detected were of 61 and 55KDa for mtERalpha and of 63 and 52KDa for mtERbeta. However, we did not observe differences in the mtERalpha or beta content between the two age groups studied. Additionally, we show that mtERbeta interacts with complex V. The overall results demonstrate that there is a differential expression of mtERalpha and mtERbeta variants in different brain areas, indicating that they may participate in different functions in the brain during aging.
Collapse
Affiliation(s)
- Carolina Alvarez-Delgado
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, México D.F., Mexico
| | | | | | | |
Collapse
|
38
|
Liang K, Yang L, Yin C, Xiao Z, Zhang J, Liu Y, Huang J. Estrogen stimulates degradation of beta-amyloid peptide by up-regulating neprilysin. J Biol Chem 2010; 285:935-942. [PMID: 19897485 PMCID: PMC2801294 DOI: 10.1074/jbc.m109.051664] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 10/12/2009] [Indexed: 02/05/2023] Open
Abstract
Postmenopausal estrogen depletion is a characterized risk factor for Alzheimer disease (AD), a human disorder linked to high levels of beta-amyloid peptide (Abeta) in brain tissue. Previous studies suggest that estrogen negatively regulates the level of Abeta in the brain, but the molecular mechanism is unknown. Here, we provide evidence that estrogen promotes Abeta degradation mainly through a principal Abeta degrading enzyme, neprilysin, in neuroblastoma SH-SY5Y cells. We also demonstrate that up-regulation of neprilysin by estrogen is dependent on both estrogen receptor alpha and beta (ERalpha and ERbeta), and ligand-activated ER regulates expression of neprilysin through physical interactions between ER and estrogen response elements (EREs) identified in the neprilysin gene. These results were confirmed by in vitro gel shift and in vivo chromatin immunoprecipitation analyses, which demonstrate specific binding of ERalpha and ERbeta to two putative EREs in the neprilysin gene. The EREs also enhance ERalpha- and ERbeta-dependent reporter gene expression in a yeast model system. Therefore, the study described here provides a putative mechanism by which estrogen positively regulates expression of neprilysin to promote degradation of Abeta, reducing risk for AD. These results may lead to novel approaches to prevent or treat AD.
Collapse
Affiliation(s)
- Kaiwei Liang
- From the State Key Lab of Virology, College of Life Sciences, and
| | - Liuqing Yang
- From the State Key Lab of Virology, College of Life Sciences, and
| | - Chen Yin
- From the State Key Lab of Virology, College of Life Sciences, and
| | - Zhimin Xiao
- From the State Key Lab of Virology, College of Life Sciences, and
| | - Junjian Zhang
- Department of Neurology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430072, China
| | - Yumin Liu
- Department of Neurology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430072, China
| | - Jian Huang
- From the State Key Lab of Virology, College of Life Sciences, and
| |
Collapse
|
39
|
Solomon MB, Herman JP. Sex differences in psychopathology: of gonads, adrenals and mental illness. Physiol Behav 2009; 97:250-8. [PMID: 19275906 DOI: 10.1016/j.physbeh.2009.02.033] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 02/10/2009] [Accepted: 02/20/2009] [Indexed: 10/21/2022]
Abstract
Stress-related disorders such as anxiety and depression are disproportionately prevalent in women. Women are more likely to experience depression and anxiety disorders during periods of marked hormonal fluctuations, suggesting that gonadal hormones are involved in stress pathology. Depression and anxiety are both associated with aberrant secretion of glucocorticoids, which also show marked fluctuations across the reproductive cycle and in response to gonadal steroids. Thus, interactions between gonadal and stress hormones may play a major role in predisposing females to stress-related disease. The purpose of this brief review is to highlight preclinical data regarding the role of estrogens in depression and anxiety-like behaviors. While it is evident the exogenous estrogens modulate affective behavior in rodents, there is some disagreement in the literature, perhaps related to experimental designs that vary with respect to administration parameters and stress. Beneficial effects of estrogens on mood are most likely due to estrogen receptor (ER)beta signaling. The antidepressant and anxiolytic effects of ERbeta are consistent with its role in attenuating glucocorticoid responses to stress, suggesting that estrogens, acting at ERbeta, may improve mood by suppressing glucocorticoid hyperactivity. However, additional studies demonstrate that ERbeta signaling in the hippocampus is sufficient to induce antidepressant and anxiolytic behaviors. Thus, ERbeta may improve mood via primary actions on hypothalamic (i.e., paraventricular nucleus) and/or extra-hypothalamic sites. Overall, the preclinical research suggests that selective ER modulators targeting ERbeta may be an attractive alternative or adjunct treatment to currently prescribed antidepressants or anxiolytics.
Collapse
Affiliation(s)
- Matia B Solomon
- Department of Psychiatry, University of Cincinnati, Genome, Research Institute, Reading, OH 45237, USA.
| | | |
Collapse
|
40
|
Harburger LL, Saadi A, Frick KM. Dose-dependent effects of post-training estradiol plus progesterone treatment on object memory consolidation and hippocampal extracellular signal-regulated kinase activation in young ovariectomized mice. Neuroscience 2009; 160:6-12. [PMID: 19223011 DOI: 10.1016/j.neuroscience.2009.02.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 02/11/2009] [Accepted: 02/12/2009] [Indexed: 10/21/2022]
Abstract
Previous work from our laboratory has shown that the ability of estradiol to enhance object memory consolidation in young ovariectomized mice is dependent on dorsal hippocampal activation of the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) signaling pathway [Fernandez SM, Lewis MC, Pechenino AS, Harburger LL, Orr PT, Gresack JE, Schafe GE, Frick KM (2008) Estradiol-induced enhancement of object memory consolidation involves hippocampal extracellular signal-regulated kinase activation and membrane-bound estrogen receptors. J Neurosci 28:8660-8667]. However, it is unclear if estradiol modulates memory or ERK activation similarly in the presence of progesterone. Therefore, the present study investigated effects of combined estradiol and progesterone treatment on object memory consolidation and dorsal hippocampal ERK activation in young ovariectomized C57BL/6 mice. Object memory was tested in a novel object recognition task. Immediately after training, mice received intraperiotoneal (i.p.) injections of vehicle, 17beta-estradiol (E(2); 0.2 mg/kg), or E(2) plus 5, 10, or 20 mg/kg progesterone (P). Forty-eight hours later, mice receiving E(2) alone or E(2) plus 10 or 20 mg/kg P exhibited significantly enhanced memory for the novel object relative to chance, whereas those receiving vehicle or E(2) plus 5 mg/kg P spent no more time than chance with the novel object. Two weeks later, ERK phosphorylation was measured in the dorsal hippocampus 1 h after i.p. injection of vehicle, E(2), or E(2) plus P. Consistent with our previous work [Fernandez SM, Lewis MC, Pechenino AS, Harburger LL, Orr PT, Gresack JE, Schafe GE, Frick KM (2008) Estradiol-induced enhancement of object memory consolidation involves hippocampal extracellular signal-regulated kinase activation and membrane-bound estrogen receptors. J Neurosci 28:8660-8667], E(2) alone significantly increased phospho-p42 ERK protein levels in the dorsal hippocampus relative to vehicle controls. In contrast, no combination of E(2) and P affected dorsal hippocampal phospho-ERK levels. These data indicate that, unlike E(2) alone, the beneficial effects of combined E(2) plus P treatment on memory are not associated with ERK activation in the dorsal hippocampus 1 h after treatment, and suggest that E(2) alone and combined E(2) plus P may influence ERK activation in different time frames or enhance memory through different mechanisms.
Collapse
Affiliation(s)
- L L Harburger
- Department of Psychology, Stern College for Women, Yeshiva University, New York, NY 10016, USA
| | | | | |
Collapse
|
41
|
Frick KM. Estrogens and age-related memory decline in rodents: what have we learned and where do we go from here? Horm Behav 2009; 55:2-23. [PMID: 18835561 PMCID: PMC2664384 DOI: 10.1016/j.yhbeh.2008.08.015] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 08/28/2008] [Accepted: 08/29/2008] [Indexed: 01/20/2023]
Abstract
The question of whether ovarian hormone therapy can prevent or reduce age-related memory decline in menopausal women has been the subject of much recent debate. Although numerous studies have demonstrated a beneficial effect of estrogen and/or progestin therapy for certain types of memory in menopausal women, recent clinical trials suggest that such therapy actually increases the risk of cognitive decline and dementia. Because rodent models have been frequently used to examine the effects of age and/or ovarian hormone deficiency on mnemonic function, rodent models of age-related hormone and memory decline may be useful in helping to resolve this issue. This review will focus on evidence suggesting that estradiol modulates memory, particularly hippocampal-dependent memory, in young and aging female rats and mice. Various factors affecting the mnemonic response to estradiol in aging females will be highlighted to illustrate the complications inherent to studies of estrogen therapy in aging females. Avenues for future development of estradiol-based therapies will also be discussed, and it is argued that an approach to drug development based on identifying the molecular mechanisms underlying estrogenic modulation of memory may lead to promising future treatments for reducing age-related mnemonic decline.
Collapse
Affiliation(s)
- Karyn M Frick
- Department of Psychology, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|