1
|
Neuroprotective Cationic Arginine-Rich Peptides (CARPs): An Assessment of Their Clinical Safety. Drug Saf 2020; 43:957-969. [DOI: 10.1007/s40264-020-00962-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
2
|
Ma X, Zhang Y, Zhu D, Chen Z, Xu M, He L, Shi T, Huang L, Zou J. Low dosage chloroquine protects retinal ganglion cells against glutamate-induced cell death. Exp Eye Res 2019; 181:285-293. [PMID: 30831085 DOI: 10.1016/j.exer.2019.02.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 01/17/2019] [Accepted: 02/25/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Xiaoyun Ma
- Department of Ophthalmology, Guanghua Integrative Medicine Hospital, Shanghai, China.
| | - Yun Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dan Zhu
- Department of Ophthalmology, Guanghua Integrative Medicine Hospital, Shanghai, China
| | - Zufeng Chen
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Manshan Xu
- Department of Ophthalmology, Guanghua Integrative Medicine Hospital, Shanghai, China
| | - Linping He
- Department of Ophthalmology, Guanghua Integrative Medicine Hospital, Shanghai, China
| | - Tingli Shi
- Department of Ophthalmology, Guanghua Integrative Medicine Hospital, Shanghai, China
| | - Lvzhen Huang
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Instistute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases College of Optometry, Peking University Health Science Center, China.
| | - Jun Zou
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China.
| |
Collapse
|
3
|
Tu Q, Ma C, Tian C, Yuan M, Han X, Wang DE, Cao C, Wang J. Quantum dots modified with quaternized poly(dimethylaminoethyl methacrylate) for selective recognition and killing of bacteria over mammalian cells. Analyst 2018; 141:3328-36. [PMID: 27111264 DOI: 10.1039/c6an00725b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Copper-free click chemistry has been used to graft quaternized poly(dimethylaminoethyl methacrylate) (QPA) modified with azide to the quantum dots (QDs) derived with dibenzocyclooctynes (DBCO). The success of the quaternary ammonium polymer-modified QDs was confirmed by ultraviolet-visible spectrophotometry (UV-Vis), fluorescence spectroscopy, zeta (ζ) potential, size distribution, and transmission electron microscopy (TEM). The QPA-modified QDs exhibited properties of selective recognition and killing of bacteria. The novelty of this study lies in fact that the synthesis method of the antimicrobial QPA-modified QDs is simple. Moreover, from another standpoint, QPA-modified QDs simultaneously possess abilities of selective recognition and killing of bacteria over mammalian cells, which is very different from the currently designed multifunctional antimicrobial systems composed of complicated systematic compositions.
Collapse
Affiliation(s)
- Qin Tu
- College of Science, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Chao Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Chang Tian
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Maosen Yuan
- College of Science, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Xiang Han
- College of Science, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Dong-En Wang
- College of Science, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Chenyu Cao
- College of Science, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Jinyi Wang
- College of Science, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China. and College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| |
Collapse
|
4
|
Zhao H, Chen Y, Feng H. P2X7 Receptor-Associated Programmed Cell Death in the Pathophysiology of Hemorrhagic Stroke. Curr Neuropharmacol 2018; 16:1282-1295. [PMID: 29766811 PMCID: PMC6251042 DOI: 10.2174/1570159x16666180516094500] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 07/17/2017] [Accepted: 02/28/2018] [Indexed: 12/20/2022] Open
Abstract
Hemorrhagic stroke is a life-threatening disease characterized by a sudden rupture of cerebral blood vessels, and cell death is widely believed to occur after exposure to blood metabolites or subsequently damaged cells. Recently, programmed cell death, such as apoptosis, autophagy, necroptosis, pyroptosis, and ferroptosis, has been demonstrated to play crucial roles in the pathophysiology of stroke. However, the detailed mechanisms of these novel kinds of cell death are still unclear. The P2X7 receptor, previously known for its cytotoxic activity, is an ATP-gated, nonselective cation channel that belongs to the family of ionotropic P2X receptors. Evolving evidence indicates that the P2X7 receptor plays a pivotal role in central nervous system pathology; genetic deletion and pharmacological blockade of the P2X7 receptor provide neuroprotection in various neurological disorders, including intracerebral hemorrhage and subarachnoid hemorrhage. The P2X7 receptor may regulate programmed cell death via (I) exocytosis of secretory lysosomes, (II) exocytosis of autophagosomes or autophagolysosomes during formation of the initial autophagic isolation membrane or omegasome, and (III) direct release of cytosolic IL-1β secondary to regulated cell death by pyroptosis or necroptosis. In this review, we present an overview of P2X7 receptor- associated programmed cell death for further understanding of hemorrhagic stroke pathophysiology, as well as potential therapeutic targets for its treatment.
Collapse
Affiliation(s)
- Hengli Zhao
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
| |
Collapse
|
5
|
Thornton C, Leaw B, Mallard C, Nair S, Jinnai M, Hagberg H. Cell Death in the Developing Brain after Hypoxia-Ischemia. Front Cell Neurosci 2017; 11:248. [PMID: 28878624 PMCID: PMC5572386 DOI: 10.3389/fncel.2017.00248] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/07/2017] [Indexed: 01/11/2023] Open
Abstract
Perinatal insults such as hypoxia–ischemia induces secondary brain injury. In order to develop the next generation of neuroprotective therapies, we urgently need to understand the underlying molecular mechanisms leading to cell death. The cell death mechanisms have been shown to be quite different in the developing brain compared to that in the adult. The aim of this review is update on what cell death mechanisms that are operating particularly in the setting of the developing CNS. In response to mild stress stimuli a number of compensatory mechanisms will be activated, most often leading to cell survival. Moderate-to-severe insults trigger regulated cell death. Depending on several factors such as the metabolic situation, cell type, nature of the stress stimulus, and which intracellular organelle(s) are affected, the cell undergoes apoptosis (caspase activation) triggered by BAX dependent mitochondrial permeabilzation, necroptosis (mixed lineage kinase domain-like activation), necrosis (via opening of the mitochondrial permeability transition pore), autophagic cell death (autophagy/Na+, K+-ATPase), or parthanatos (poly(ADP-ribose) polymerase 1, apoptosis-inducing factor). Severe insults cause accidental cell death that cannot be modulated genetically or by pharmacologic means. However, accidental cell death leads to the release of factors (damage-associated molecular patterns) that initiate systemic effects, as well as inflammation and (regulated) secondary brain injury in neighboring tissue. Furthermore, if one mode of cell death is inhibited, another route may step in at least in a scenario when upstream damaging factors predominate over protective responses. The provision of alternative routes through which the cell undergoes death has to be taken into account in the hunt for novel brain protective strategies.
Collapse
Affiliation(s)
- Claire Thornton
- Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, King's Health Partners, St. Thomas' HospitalLondon, United Kingdom
| | - Bryan Leaw
- The Ritchie Centre, Hudson Institute of Medical ResearchClayton, VIC, Australia
| | - Carina Mallard
- Department of Physiology, Perinatal Center, Institute of Physiology and Neuroscience, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Syam Nair
- Department of Physiology, Perinatal Center, Institute of Physiology and Neuroscience, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Masako Jinnai
- Department of Physiology, Perinatal Center, Institute of Physiology and Neuroscience, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Henrik Hagberg
- Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, King's Health Partners, St. Thomas' HospitalLondon, United Kingdom.,Department of Clinical Sciences and Physiology and Neuroscience, Perinatal Center, Sahlgrenska Academy, Gothenburg UniversityGothenburg, Sweden
| |
Collapse
|
6
|
Tu Q, Pang L, Chen Y, Zhang Y, Zhang R, Lu B, Wang J. Effects of surface charges of graphene oxide on neuronal outgrowth and branching. Analyst 2014; 139:105-15. [DOI: 10.1039/c3an01796f] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Tu Q, Pang L, Wang L, Zhang Y, Zhang R, Wang J. Biomimetic choline-like graphene oxide composites for neurite sprouting and outgrowth. ACS APPLIED MATERIALS & INTERFACES 2013; 5:13188-13197. [PMID: 24313218 DOI: 10.1021/am4042004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Neurodegenerative diseases or acute injuries of the nervous system always lead to neuron loss and neurite damage. Thus, the development of effective methods to repair these damaged neurons is necessary. The construction of biomimetic materials with specific physicochemical properties is a promising solution to induce neurite sprouting and guide the regenerating nerve. Herein, we present a simple method for constructing biomimetic graphene oxide (GO) composites by covalently bonding an acetylcholine-like unit (dimethylaminoethyl methacrylate, DMAEMA) or phosphorylcholine-like unit (2-methacryloyloxyethyl phosphorylcholine, MPC) onto GO surfaces to enhance neurite sprouting and outgrowth. The resulting GO composites were characterized by Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, UV-vis spectrometry, scanning electron microscopy, and contact angle analyses. Primary rat hippocampal neurons were used to investigate nerve cell adhesion, spreading, and proliferation on these biomimetic GO composites. GO-DMAEMA and GO-MPC composites provide the desired biomimetic properties for superior biocompatibility without affecting cell viability. At 2 to 7 days after cell seeding was performed, the number of neurites and average neurite length on GO-DMAEMA and GO-MPC composites were significantly enhanced compared with the control GO. In addition, analysis of growth-associate protein-43 (GAP-43) by Western blot showed that GAP-43 expression was greatly improved in biomimetic GO composite groups compared to GO groups, which might promote neurite sprouting and outgrowth. All the results demonstrate the potential of DMAEMA- and MPC-modified GO composites as biomimetic materials for neural interfacing and provide basic information for future biomedical applications of graphene oxide.
Collapse
Affiliation(s)
- Qin Tu
- College of Science and ‡College of Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi 712100, People's Republic of China
| | | | | | | | | | | |
Collapse
|
8
|
Anilkumar U, Weisová P, Düssmann H, Concannon CG, König HG, Prehn JHM. AMP-activated protein kinase (AMPK)-induced preconditioning in primary cortical neurons involves activation of MCL-1. J Neurochem 2012. [PMID: 23199202 DOI: 10.1111/jnc.12108] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neuronal preconditioning is a phenomenon where a previous exposure to a sub-lethal stress stimulus increases the resistance of neurons towards a second, normally lethal stress stimulus. Activation of the energy stress sensor, AMP-activated protein kinase (AMPK) has been shown to contribute to the protective effects of ischaemic and mitochondrial uncoupling-induced preconditioning in neurons, however, the molecular basis of AMPK-mediated preconditioning has been less well characterized. We investigated the effect of AMPK preconditioning using 5-aminoimidazole-4-carboxamide riboside (AICAR) in a model of NMDA-mediated excitotoxic injury in primary mouse cortical neurons. Activation of AMPK with low concentrations of AICAR (0.1 mM for 2 h) induced a transient increase in AMPK phosphorylation, protecting neurons against NMDA-induced excitotoxicity. Analysing potential targets of AMPK activation, demonstrated a marked increase in mRNA expression and protein levels of the anti-apoptotic BCL-2 family protein myeloid cell leukaemia sequence 1 (MCL-1) in AICAR-preconditioned neurons. Interestingly, over-expression of MCL-1 protected neurons against NMDA-induced excitotoxicity while MCL-1 gene silencing abolished the effect of AICAR preconditioning. Monitored intracellular Ca²⁺ levels during NMDA excitation revealed that MCL-1 over-expressing neurons exhibited improved bioenergetics and markedly reduced Ca²⁺ elevations, suggesting a potential mechanism through which MCL-1 confers neuroprotection. This study identifies MCL-1 as a key effector of AMPK-induced preconditioning in neurons.
Collapse
Affiliation(s)
- Ujval Anilkumar
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
9
|
Combined treatment with capsaicin and resveratrol enhances neuroprotection against glutamate-induced toxicity in mouse cerebral cortical neurons. Food Chem Toxicol 2012; 50:3877-85. [DOI: 10.1016/j.fct.2012.08.040] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/16/2012] [Accepted: 08/16/2012] [Indexed: 01/08/2023]
|
10
|
Abstract
Excitotoxicity resulting from excessive Ca(2+) influx through glutamate receptors contributes to neuronal injury after stroke, trauma, and seizures. Increased cytosolic Ca(2+) levels activate a family of calcium-dependent proteases with papain-like activity, the calpains. Here we investigated the role of calpain activation during NMDA-induced excitotoxic injury in embryonic (E16-E18) murine cortical neurons that (1) underwent excitotoxic necrosis, characterized by immediate deregulation of Ca(2+) homeostasis, a persistent depolarization of mitochondrial membrane potential (Δψ(m)), and insensitivity to bax-gene deletion, (2) underwent excitotoxic apoptosis, characterized by recovery of NMDA-induced cytosolic Ca(2+) increases, sensitivity to bax gene deletion, and delayed Δψ(m) depolarization and Ca(2+) deregulation, or (3) that were tolerant to excitotoxic injury. Interestingly, treatment with the calpain inhibitor calpeptin, overexpression of the endogenous calpain inhibitor calpastatin, or gene silencing of calpain protected neurons against excitotoxic apoptosis but did not influence excitotoxic necrosis. Calpeptin failed to exert a protective effect in bax-deficient neurons but protected bid-deficient neurons similarly to wild-type cells. To identify when calpains became activated during excitotoxic apoptosis, we monitored calpain activation dynamics by time-lapse fluorescence microscopy using a calpain-sensitive Förster resonance energy transfer probe. We observed a delayed calpain activation that occurred downstream of mitochondrial engagement and directly preceded neuronal death. In contrast, we could not detect significant calpain activity during excitotoxic necrosis or in neurons that were tolerant to excitotoxic injury. Oxygen/glucose deprivation-induced injury in organotypic hippocampal slice cultures confirmed that calpains were specifically activated during bax-dependent apoptosis and in this setting function as downstream cell-death executioners.
Collapse
|
11
|
Ji J, Tyurina YY, Tang M, Feng W, Stolz DB, Clark RSB, Meaney DF, Kochanek PM, Kagan VE, Bayır H. Mitochondrial injury after mechanical stretch of cortical neurons in vitro: biomarkers of apoptosis and selective peroxidation of anionic phospholipids. J Neurotrauma 2011; 29:776-88. [PMID: 21895519 DOI: 10.1089/neu.2010.1602] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mechanical injury of neurites accompanied by rupture of mitochondrial membranes may lead to immediate nonspecific release and spreading of pro-apoptotic factors and activation of proteases, that is, execution of apoptotic program. In the current work, we studied the time course of the major biomarkers of apoptosis as they are induced by exposure of rat cortical neurons to mechanical stretch. By using transmission electron microscopy, we found that mitochondria in the neurites were damaged early (1 h) after mechanical stretch injury whereas somal mitochondria were significantly more resistant and demonstrated structural damage and degenerative mitochondrial changes at a later time point after stretch (12 h). We also report that the stretch injury caused immediate activation of reactive oxygen species production followed by selective oxidation of a mitochondria-specific phospholipid, cardiolipin, whose individual peroxidized molecular species have been identified and quantified by electrospray ionization mass spectrometry analysis. Most abundant neuronal phospholipids - phosphatidylcholine, phophatidylethanolamine - did not undergo oxidative modification. Simultaneously, a small-scale release of cytochrome c was observed. Notably, caspase activation and phosphatidylserine externalization - two irreversible apoptotic events designating a point of no return - are substantially delayed and do not occur until 6-12 h after the initial impact. The early onset of reactive oxygen species production and cytochrome c release may be relevant to direct stretch-induced damage to mitochondria. The delayed emergence of apoptotic neuronal death after the immediate mechanical damage to mitochondria suggests a possible window of opportunity for targeted therapies.
Collapse
Affiliation(s)
- Jing Ji
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Dietz GPH. Protection by neuroglobin and cell-penetrating peptide-mediated delivery in vivo: a decade of research. Comment on Cai et al: TAT-mediated delivery of neuroglobin protects against focal cerebral ischemia in mice. Exp Neurol. 2011; 227(1): 224-31. Exp Neurol 2011; 231:1-10. [PMID: 21620833 DOI: 10.1016/j.expneurol.2011.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 05/04/2011] [Accepted: 05/10/2011] [Indexed: 12/09/2022]
Abstract
Over the last decade, numerous studies have suggested that neuroglobin is able to protect against the effects of ischemia. However, such results have mostly been based on models using transgenic overexpression or viral delivery. As a therapy, new technology would need to be applied to enable delivery of high concentrations of neuroglobin shortly after the patient suffers the stroke. An approach to deliver proteins in ischemia in vivo in a timely manner is the use of cell-penetrating peptides (CPP). CPP have been used in animal models for brain diseases for about a decade as well. In a recent issue of Experimental Neurology, Cai and colleagues test the effect of CPP-coupled neuroglobin in an in vivo stroke model. They find that the fusion protein protects the brain against the effect of ischemia when applied before stroke onset. Here, a concise review of neuroglobin research and the application of CPP peptides in hypoxia and ischemia is provided.
Collapse
Affiliation(s)
- Gunnar P H Dietz
- Dep. 851, Neurodegeneration II, H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark.
| |
Collapse
|
13
|
The effect of acetylcholine-like biomimetic polymers on neuronal growth. Biomaterials 2011; 32:3253-64. [DOI: 10.1016/j.biomaterials.2011.01.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 01/14/2011] [Indexed: 11/17/2022]
|
14
|
Anderton RS, Meloni BP, Mastaglia FL, Greene WK, Boulos S. Survival of motor neuron protein over-expression prevents calpain-mediated cleavage and activation of procaspase-3 in differentiated human SH-SY5Y cells. Neuroscience 2011; 181:226-33. [PMID: 21333717 DOI: 10.1016/j.neuroscience.2011.02.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 01/11/2011] [Accepted: 02/14/2011] [Indexed: 01/25/2023]
Abstract
Spinal muscular atrophy (SMA), a neurodegenerative disorder primarily affecting motor neurons, is the most common genetic cause of infant death. This incurable disease is caused by the absence of a functional SMN1 gene and a reduction in full length survival of motor neuron (SMN) protein. In this study, a neuroprotective function of SMN was investigated in differentiated human SH-SY5Y cells using an adenoviral vector to over-express SMN protein. The pro-survival capacity of SMN was assessed in an Akt/PI3-kinase inhibition (LY294002) model, as well as an oxidative stress (hydrogen peroxide) and excitotoxic (glutamate) model. SMN over-expression in SH-SY5Y cells protected against Akt/phosphatidylinositol 3-kinase (PI3-kinase) inhibition, but not oxidative stress, nor against excitotoxicity in rat cortical neurons. Western analysis of cell homogenates from SH-SY5Y cultures over-expressing SMN harvested pre- and post-Akt/PI3-kinase inhibition indicated that SMN protein inhibited caspase-3 activation via blockade of calpain-mediated procaspase-3 cleavage. This study has revealed a novel anti-apoptotic function for the SMN protein in differentiated SH-SY5Y cells. Finally, the cell death model described herein will allow the assessment of future therapeutic agents or strategies aimed at increasing SMN protein levels.
Collapse
Affiliation(s)
- R S Anderton
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, WA, Australia.
| | | | | | | | | |
Collapse
|
15
|
Kim BW, Yang S, Lee CH, Son H. A critical time window for the survival of neural progenitor cells by HDAC inhibitors in the hippocampus. Mol Cells 2011; 31:159-64. [PMID: 21191817 PMCID: PMC3932680 DOI: 10.1007/s10059-011-0019-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 10/29/2010] [Accepted: 11/10/2010] [Indexed: 01/20/2023] Open
Abstract
Histone deacetylase inhibitors (HDACIs) that modulate gene expression by inhibiting HDAC enzymes may contribute to the survival of immature hippocampal neurons. However, it remains unknown how and when HDACIs regulate the survival of newly generated immature hippocampal neurons. In the present study, if the treatment of valproic acid (VPA) and sodium butyrate (SBt) in the specific time window during the development of newly generated n eurons r esulted in the i ncreased survival of bromodeoxyuridine (BrdU)(+) neurons in the dentate gyrus (DG) of hippocampus in mice was investigated. It was found that the number of BrdU(+) cells, the expressions of anti-apoptotic Bcl-2 family members and pCREB [D1] were increased by HDACIs when HDACIs were treated no later than 2-3 weeks after BrdU labeling. This suggests that epigenetic modification within a specific time window is critical for the survival of newborn hippocampal neurons by inhibiting the apoptotic pathway.
Collapse
Affiliation(s)
- Byung-Woo Kim
- Department of Biochemistry and Molecular Biology, Hanyang University, Seoul 133-791, Korea
| | - Sera Yang
- Department of Biochemistry and Molecular Biology, Hanyang University, Seoul 133-791, Korea
| | - Chang Ho Lee
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul 133-791, Korea
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791, Korea
| | - Hyeon Son
- Department of Biochemistry and Molecular Biology, Hanyang University, Seoul 133-791, Korea
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791, Korea
| |
Collapse
|
16
|
Baratchi S, Kanwar RK, Kanwar JR. Survivin: A target from brain cancer to neurodegenerative disease. Crit Rev Biochem Mol Biol 2010; 45:535-54. [DOI: 10.3109/10409238.2010.516740] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Concannon CG, Tuffy LP, Weisová P, Bonner HP, Dávila D, Bonner C, Devocelle MC, Strasser A, Ward MW, Prehn JHM. AMP kinase-mediated activation of the BH3-only protein Bim couples energy depletion to stress-induced apoptosis. ACTA ACUST UNITED AC 2010; 189:83-94. [PMID: 20351066 PMCID: PMC2854380 DOI: 10.1083/jcb.200909166] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Disturbances in cellular ion gradients by excitotoxicity promote apoptosis through activation of the Bcl-2 family member Bim. Excitotoxicity after glutamate receptor overactivation induces disturbances in cellular ion gradients, resulting in necrosis or apoptosis. Excitotoxic necrosis is triggered by rapid, irreversible ATP depletion, whereas the ability to recover cellular bioenergetics is suggested to be necessary for the activation of excitotoxic apoptosis. In this study, we demonstrate that even a transient decrease in cellular bioenergetics and an associated activation of adenosine monophosphate–activated protein kinase (AMPK) is necessary for the activation of excitotoxic apoptosis. We show that the Bcl-2 homology domain 3 (BH3)–only protein Bim, a proapoptotic Bcl-2 family member, is activated in multiple excitotoxicity paradigms, mediates excitotoxic apoptosis, and inhibits delayed Ca2+ deregulation, mitochondrial depolarization, and apoptosis-inducing factor translocation. We demonstrate that bim activation required the activation of AMPK and that prolonged AMPK activation is sufficient to induce bim gene expression and to trigger a bim-dependent cell death. Collectively, our data demonstrate that AMPK activation and the BH3-only protein Bim couple transient energy depletion to stress-induced neuronal apoptosis.
Collapse
Affiliation(s)
- Caoimhín G Concannon
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland Research Institute, Dublin 2, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Doeppner TR, Dietz GPH, Weise J, Bähr M. Protection of hippocampal neurogenesis by TAT-Bcl-x(L) after cerebral ischemia in mice. Exp Neurol 2010; 223:548-56. [PMID: 20156439 DOI: 10.1016/j.expneurol.2010.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 01/12/2010] [Accepted: 02/05/2010] [Indexed: 12/30/2022]
Abstract
Endogenous neurogenesis persists in the subgranular zone (SGZ) of the adult rodent brain. Cerebral ischemia stimulates endogenous neurogenesis involving proliferation, migration and differentiation of SGZ-derived neural precursor cells (NPC). However, the biological meaning of this phenomenon is limited by poor survival of NPC. In order to study the effects of an acute neuroprotective treatment on hippocampal endogenous neurogenesis after transient cerebral ischemia in mice, we applied a fusion protein consisting of the TAT domain of the HI virus with the anti-apoptotic Bcl-x(L). Intravenous injection of TAT-Bcl-x(L) resulted in reduced hippocampal cell injury for up to 4weeks after stroke as assessed by TUNEL and NeuN staining. This was in line with a TAT-Bcl-x(L)-mediated reduced postischemic microglia activation. Analysis of endogenous hippocampal cell proliferation revealed an increased number of BrdU(+) cells in the TAT-Bcl-x(L) group 4weeks after stroke compared to animals treated with saline and TAT-HA (negative control). Cell proliferation in non-ischemic sham operated animals was not affected by TAT-Bcl-x(L). Twenty-eight days after stroke co-expression of BrdU(+) cells with the immature neuronal marker doublecortin was significantly increased in TAT-Bcl-x(L) animals. Although TAT-Bcl-x(L) treatment also resulted in an increased number of BrdU(+) cells expressing the mature neuronal marker NeuN, the total amount of these cells was low. These data show that TAT-Bcl-x(L) treatment yields both postischemic sustained hippocampal neuroprotection and increased survival of NPC rather than an induction of endogenous neurogenesis itself.
Collapse
Affiliation(s)
- Thorsten R Doeppner
- Department of Neurology, University of Goettingen Medical School, Robert-Koch-Str. 40, 37075 Goettingen, Germany.
| | | | | | | |
Collapse
|
19
|
Geng Y, Li C, Liu J, Xing G, Zhou L, Dong M, Li X, Niu Y. Beta-Asarone Improves Cognitive Function by Suppressing Neuronal Apoptosis in the Beta-Amyloid Hippocampus Injection Rats. Biol Pharm Bull 2010; 33:836-43. [DOI: 10.1248/bpb.33.836] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yutao Geng
- The Institute of Medicine, Qiqihar Medical University
| | - Chengchong Li
- The Institute of Medicine, Qiqihar Medical University
| | - Jicheng Liu
- The Institute of Medicine, Qiqihar Medical University
| | - Guihua Xing
- The Institute of Medicine, Qiqihar Medical University
| | - Li Zhou
- The Institute of Medicine, Qiqihar Medical University
| | - Miaoxian Dong
- The Institute of Medicine, Qiqihar Medical University
| | - Xueyan Li
- The Institute of Medicine, Qiqihar Medical University
| | - Yingcai Niu
- The Institute of Medicine, Qiqihar Medical University
| |
Collapse
|