1
|
Joas S, Parrish EH, Gnanadurai CW, Lump E, Stürzel CM, Parrish NF, Learn GH, Sauermann U, Neumann B, Rensing KM, Fuchs D, Billingsley JM, Bosinger SE, Silvestri G, Apetrei C, Huot N, Garcia-Tellez T, Müller-Trutwin M, Hotter D, Sauter D, Stahl-Hennig C, Hahn BH, Kirchhoff F. Species-specific host factors rather than virus-intrinsic virulence determine primate lentiviral pathogenicity. Nat Commun 2018; 9:1371. [PMID: 29636452 PMCID: PMC5893559 DOI: 10.1038/s41467-018-03762-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/07/2018] [Indexed: 12/23/2022] Open
Abstract
HIV-1 causes chronic inflammation and AIDS in humans, whereas related simian immunodeficiency viruses (SIVs) replicate efficiently in their natural hosts without causing disease. It is currently unknown to what extent virus-specific properties are responsible for these different clinical outcomes. Here, we incorporate two putative HIV-1 virulence determinants, i.e., a Vpu protein that antagonizes tetherin and blocks NF-κB activation and a Nef protein that fails to suppress T cell activation via downmodulation of CD3, into a non-pathogenic SIVagm strain and test their impact on viral replication and pathogenicity in African green monkeys. Despite sustained high-level viremia over more than 4 years, moderately increased immune activation and transcriptional signatures of inflammation, the HIV-1-like SIVagm does not cause immunodeficiency or any other disease. These data indicate that species-specific host factors rather than intrinsic viral virulence factors determine the pathogenicity of primate lentiviruses.
Collapse
Affiliation(s)
- Simone Joas
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Erica H Parrish
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 372327, USA
| | - Clement W Gnanadurai
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
- Department of Veterinary Pathology, University of Georgia, Athens, GA, 30602, USA
| | - Edina Lump
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Christina M Stürzel
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Nicholas F Parrish
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Gerald H Learn
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | | | | | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter Innsbruck Medical University, Center for Chemistry and Biomedicine, A-6020, Innsbruck, Austria
| | - James M Billingsley
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30322, USA
| | - Steven E Bosinger
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30322, USA
| | - Guido Silvestri
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30322, USA
| | - Cristian Apetrei
- WA Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Nicolas Huot
- Institut Pasteur, Unité HIV, Inflammation and Persistence, Paris, 75015, France
- Vaccine Research Institute, Hôpital Henri Mondor, Créteil, 94010, France
| | | | | | - Dominik Hotter
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | | | - Beatrice H Hahn
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany.
| |
Collapse
|
2
|
Lendvai D, Morawski M, Brückner G, Négyessy L, Baksa G, Glasz T, Patonay L, Matthews RT, Arendt T, Alpár A. Perisynaptic aggrecan-based extracellular matrix coats in the human lateral geniculate body devoid of perineuronal nets. J Neurosci Res 2011; 90:376-87. [PMID: 21959900 DOI: 10.1002/jnr.22761] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/05/2011] [Accepted: 07/08/2011] [Indexed: 02/02/2023]
Abstract
The extracellular matrix surrounds different neuronal compartments in the mature nervous system. In a variety of vertebrates, most brain regions are loaded with a distinct type of extracellular matrix around the somatodendritic part of neurons, termed perineuronal nets. The present study reports that chondrotin sulfate proteoglycan-based matrix is structured differently in the human lateral geniculate body. Using various chondrotin sulfate proteoglycan-based extracellular matrix antibodies, we show that perisomatic matrix labeling is rather weak or absent, whereas dendrites are contacted by axonal coats appearing as small, oval structures. Confocal laser scanning microscopy and electron microscopy demonstrated that these typical structures are associated with synaptic loci on dendrites. Using multiple labelings, we show that different chondrotin sulfate proteoglycan components of the extracellular matrix do not associate exclusively with neuronal structures but possibly associate with glial structures as well. Finally, we confirm and extend previous findings in primates that intensity differences of various extracellular matrix markers between magno- and parvocellular layers reflect functional segregation between these layers in the human lateral geniculate body.
Collapse
Affiliation(s)
- D Lendvai
- Department of Anatomy, Histology and Embryology, Semmelweis University Medical School, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Xi D, Keeler B, Zhang W, Houle JD, Gao WJ. NMDA receptor subunit expression in GABAergic interneurons in the prefrontal cortex: application of laser microdissection technique. J Neurosci Methods 2009; 176:172-81. [PMID: 18845188 PMCID: PMC2740488 DOI: 10.1016/j.jneumeth.2008.09.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 08/28/2008] [Accepted: 09/09/2008] [Indexed: 11/16/2022]
Abstract
The selective involvement of a subset of neurons in many psychiatric disorders, such as gamma-aminobutyric acid (GABA)-ergic interneurons in schizophrenia, creates a significant need for in-depth analysis of these cells. Here we introduce a combination of techniques to examine the relative gene expression of N-methyl-d-aspartic acid (NMDA) receptor subtypes in GABAergic interneurons from the rat prefrontal cortex. Neurons were identified by immunostaining, isolated by laser microdissection and RNA was prepared for reverse transcription polymerase chain reaction (RT-PCR) and real-time PCR. These experimental procedures have been described individually; however, we found that this combination of techniques is powerful for the analysis of gene expression in individual identified neurons. This approach provides the means to analyze relevant molecular mechanisms that are involved in the neuropathological process of a devastating brain disorder.
Collapse
Affiliation(s)
- Dong Xi
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, United States
| | | | | | | | | |
Collapse
|
4
|
Molecular correlates of laminar differences in the macaque dorsal lateral geniculate nucleus. J Neurosci 2009; 28:12010-22. [PMID: 19005066 DOI: 10.1523/jneurosci.3800-08.2008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In anthropoid primates, cells in the magnocellular and parvocellular layers of the dorsal lateral geniculate nucleus (dLGN) are distinguished by unique retinal inputs, receptive field properties, and laminar terminations of their axons in visual cortex. To identify genes underlying these phenotypic differences, we screened RNA from magnocellular and parvocellular layers of adult macaque dLGN for layer-specific differences in gene expression. Real-time quantitative reverse transcription-PCR and in situ hybridization were used to confirm gene expression in adult and fetal macaque. Cellular localization of gene expression revealed 11 new layer-specific markers, of which 10 were enriched in magnocellular layers (BRD4, CAV1, EEF1A2, FAM108A1, INalpha, KCNA1, NEFH, NEFL, PPP2R2C, and SFRP2) and one was enriched in parvocellular and koniocellular layers (TCF7L2). These markers relate to functions involved in development, transcription, and cell signaling, with Wnt/beta-catenin and neurofilament pathways figuring prominently. A subset of markers was differentially expressed in the fetal dLGN during a developmental epoch critical for magnocellular and parvocellular pathway formation. These results provide new evidence for the molecular differentiation of magnocellular and parvocellular streams through the primate dLGN.
Collapse
|