1
|
Krieger JP, Daniels D, Lee S, Mastitskaya S, Langhans W. Glucagon-Like Peptide-1 Links Ingestion, Homeostasis, and the Heart. Compr Physiol 2025; 15:e7. [PMID: 39887844 PMCID: PMC11790259 DOI: 10.1002/cph4.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 02/01/2025]
Abstract
Glucagon-like peptide-1 (GLP-1), a hormone released from enteroendocrine cells in the distal small and large intestines in response to nutrients and other stimuli, not only controls eating and insulin release, but is also involved in drinking control as well as renal and cardiovascular functions. Moreover, GLP-1 functions as a central nervous system peptide transmitter, produced by preproglucagon (PPG) neurons in the hindbrain. Intestinal GLP-1 inhibits eating by activating vagal sensory neurons directly, via GLP-1 receptors (GLP-1Rs), but presumably also indirectly, by triggering the release of serotonin from enterochromaffin cells. GLP-1 enhances glucose-dependent insulin release via a vago-vagal reflex and by direct action on beta cells. Finally, intestinal GLP-1 acts on the kidneys to modulate electrolyte and water movements, and on the heart, where it provides numerous benefits, including anti-inflammatory, antiatherogenic, and vasodilatory effects, as well as protection against ischemia/reperfusion injury and arrhythmias. Hindbrain PPG neurons receive multiple inputs and project to many GLP-1R-expressing brain areas involved in reward, autonomic functions, and stress. PPG neuron-derived GLP-1 is involved in the termination of large meals and is implicated in the inhibition of water intake. This review details GLP-1's roles in these interconnected systems, highlighting recent findings and unresolved issues, and integrating them to discuss the physiological and pathological relevance of endogenous GLP-1 in coordinating these functions. As eating poses significant threats to metabolic, fluid, and immune homeostasis, the body needs mechanisms to mitigate these challenges while sustaining essential nutrient intake. Endogenous GLP-1 plays a crucial role in this "ingestive homeostasis."
Collapse
Affiliation(s)
- Jean-Philippe Krieger
- Jean-Philippe Krieger, Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 260, 8057 Zurich
| | - Derek Daniels
- Department of Biological Sciences and the Center for Ingestive Behavior Research, University at Buffalo, the State University of New York, Buffalo NY 14260 USA
| | - Shin Lee
- Shin J. Lee, Neurimmune AG, Wagistrasse 18, 8952 Schlieren, Switzerland
| | - Svetlana Mastitskaya
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, Dept. of Health Sciences and Technology, ETH Zurich, 8603 Schwerzenbach, Switzerland
| |
Collapse
|
2
|
Chen K, Ashtiani KC, Monfared RV, Baldi P, Alachkar A. Circadian cilia transcriptome in mouse brain across physiological and pathological states. Mol Brain 2024; 17:67. [PMID: 39304885 PMCID: PMC11414107 DOI: 10.1186/s13041-024-01143-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024] Open
Abstract
Primary cilia are dynamic sensory organelles that continuously undergo structural modifications in response to environmental and cellular signals, many of which exhibit rhythmic patterns. Building on our previous findings of rhythmic cilia-related gene expression in diurnal primates (baboon), this study extends the investigation to the nocturnal mouse brain to identify circadian patterns of cilia gene expression across brain regions. We used computational techniques and transcriptomic data from four publicly available databases, to examine the circadian expression of cilia-associated genes within six brain areas: brainstem, cerebellum, hippocampus, hypothalamus, striatum, and suprachiasmatic nucleus. Our analysis reveals that a substantial proportion of cilia transcripts exhibit circadian rhythmicity across the examined regions, with notable overrepresentation in the striatum, hippocampus, and cerebellum. We also demonstrate region-specific variations in the abundance and timing of circadian cilia genes' peaks, indicating an adaptation to the distinct physiological roles of each brain region. Additionally, we show that the rhythmic patterns of cilia transcripts are shifted under various physiological and pathological conditions, including modulation of the dopamine system, high-fat diet, and epileptic conditions, indicating the adaptable nature of cilia transcripts' oscillation. While limited to a few mouse brain regions, our study provides initial insights into the distinct circadian patterns of cilia transcripts and highlights the need for future research to expand the mapping across wider brain areas to fully understand the role of cilia's spatiotemporal dynamics in brain functions.
Collapse
Affiliation(s)
- Kiki Chen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, 356A Med Surge II, Irvine, CA, 92697-4625, USA
| | - Kousha Changizi Ashtiani
- Departments of Computer Science, School of Information and Computer Sciences, University of California, Irvine, CA, 92697-4625, USA
| | - Roudabeh Vakil Monfared
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, 356A Med Surge II, Irvine, CA, 92697-4625, USA
| | - Pierre Baldi
- Departments of Computer Science, School of Information and Computer Sciences, University of California, Irvine, CA, 92697-4625, USA.
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, CA, 92697, USA.
| | - Amal Alachkar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, 356A Med Surge II, Irvine, CA, 92697-4625, USA.
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
3
|
Mukherjee K, Xiao C. GLP-2 regulation of intestinal lipid handling. Front Physiol 2024; 15:1358625. [PMID: 38426205 PMCID: PMC10902918 DOI: 10.3389/fphys.2024.1358625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Lipid handling in the intestine is important for maintaining energy homeostasis and overall health. Mishandling of lipids in the intestine contributes to dyslipidemia and atherosclerotic cardiovascular diseases. Despite advances in this field over the past few decades, significant gaps remain. The gut hormone glucagon-like peptide-2 (GLP-2) has been shown to play pleotropic roles in the regulation of lipid handling in the intestine. Of note, GLP-2 exhibits unique actions on post-prandial lipid absorption and post-absorptive release of intestinally stored lipids. This review aims to summarize current knowledge in how GLP-2 regulates lipid processing in the intestine. Elucidating the mechanisms of GLP-2 regulation of intestinal lipid handling not only improves our understanding of GLP-2 biology, but also provides insights into how lipids are processed in the intestine, which offers opportunities for developing novel strategies towards prevention and treatment of dyslipidemia and atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
| | - Changting Xiao
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
4
|
Liberini CG, Koch-Laskowski K, Shaulson E, McGrath LE, Lipsky RK, Lhamo R, Ghidewon M, Ling T, Stein LM, Hayes MR. Combined Amylin/GLP-1 pharmacotherapy to promote and sustain long-lasting weight loss. Sci Rep 2019; 9:8447. [PMID: 31186439 PMCID: PMC6560126 DOI: 10.1038/s41598-019-44591-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/20/2019] [Indexed: 11/24/2022] Open
Abstract
A growing appreciation of the overlapping neuroendocrine mechanisms controlling energy balance has highlighted combination therapies as a promising strategy to enhance sustained weight loss. Here, we investigated whether amylin- and glucagon-like-peptide-1 (GLP-1)-based combination therapies produce greater food intake- and body weight-suppressive effects compared to monotherapies in both lean and diet-induced obese (DIO) rats. In chow-maintained rats, systemic amylin and GLP-1 combine to reduce meal size. Furthermore, the amylin and GLP-1 analogs salmon calcitonin (sCT) and liraglutide produce synergistic-like reductions in 24 hours energy intake and body weight. The administration of sCT with liraglutide also led to a significant enhancement in cFos-activation in the dorsal-vagal-complex (DVC) compared to mono-therapy, suggesting an activation of distinct, yet overlapping neural substrates in this critical energy balance hub. In DIO animals, long-term daily administration of this combination therapy, specifically in a stepwise manner, results in reduced energy intake and greater body weight loss over time when compared to chronic mono- and combined-treated groups, without affecting GLP-1 receptor, preproglucagon or amylin-receptor gene expression in the DVC.
Collapse
Affiliation(s)
- Claudia G Liberini
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 19104, Philadelphia, PA, USA
| | - Kieran Koch-Laskowski
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 19104, Philadelphia, PA, USA
| | - Evan Shaulson
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 19104, Philadelphia, PA, USA
| | - Lauren E McGrath
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 19104, Philadelphia, PA, USA
| | - Rachele K Lipsky
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 19104, Philadelphia, PA, USA
| | - Rinzin Lhamo
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 19104, Philadelphia, PA, USA
| | - Misgana Ghidewon
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 19104, Philadelphia, PA, USA
| | - Tyler Ling
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 19104, Philadelphia, PA, USA
| | - Lauren M Stein
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 19104, Philadelphia, PA, USA
| | - Matthew R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 19104, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Secher A, Jelsing J, Baquero AF, Hecksher-Sørensen J, Cowley MA, Dalbøge LS, Hansen G, Grove KL, Pyke C, Raun K, Schäffer L, Tang-Christensen M, Verma S, Witgen BM, Vrang N, Bjerre Knudsen L. The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss. J Clin Invest 2014; 124:4473-88. [PMID: 25202980 DOI: 10.1172/jci75276] [Citation(s) in RCA: 655] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 07/31/2014] [Indexed: 12/13/2022] Open
Abstract
Liraglutide is a glucagon-like peptide-1 (GLP-1) analog marketed for the treatment of type 2 diabetes. Besides lowering blood glucose, liraglutide also reduces body weight. It is not fully understood how liraglutide induces weight loss or to what degree liraglutide acts directly in the brain. Here, we determined that liraglutide does not activate GLP-1-producing neurons in the hindbrain, and liraglutide-dependent body weight reduction in rats was independent of GLP-1 receptors (GLP-1Rs) in the vagus nerve, area postrema, and paraventricular nucleus. Peripheral injection of fluorescently labeled liraglutide in mice revealed the presence of the drug in the circumventricular organs. Moreover, labeled liraglutide bound neurons within the arcuate nucleus (ARC) and other discrete sites in the hypothalamus. GLP-1R was necessary for liraglutide uptake in the brain, as liraglutide binding was not seen in Glp1r(-/-) mice. In the ARC, liraglutide was internalized in neurons expressing proopiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART). Electrophysiological measurements of murine brain slices revealed that GLP-1 directly stimulates POMC/CART neurons and indirectly inhibits neurotransmission in neurons expressing neuropeptide Y (NPY) and agouti-related peptide (AgRP) via GABA-dependent signaling. Collectively, our findings indicate that the GLP-1R on POMC/CART-expressing ARC neurons likely mediates liraglutide-induced weight loss.
Collapse
|
6
|
Salivary peptide tyrosine-tyrosine 3-36 modulates ingestive behavior without inducing taste aversion. J Neurosci 2014; 33:18368-80. [PMID: 24259562 DOI: 10.1523/jneurosci.1064-13.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hormone peptide tyrosine-tyrosine (PYY) is secreted into circulation from the gut L-endocrine cells in response to food intake, thus inducing satiation during interaction with its preferred receptor, Y2R. Clinical applications of systemically administered PYY for the purpose of reducing body weight were compromised as a result of the common side effect of visceral sickness. We describe here a novel approach of elevating PYY in saliva in mice, which, although reliably inducing strong anorexic responses, does not cause aversive reactions. The augmentation of salivary PYY activated forebrain areas known to mediate feeding, hunger, and satiation while minimally affecting brainstem chemoreceptor zones triggering nausea. By comparing neuronal pathways activated by systemic versus salivary PYY, we identified a metabolic circuit associated with Y2R-positive cells in the oral cavity and extending through brainstem nuclei into hypothalamic satiety centers. The discovery of this alternative circuit that regulates ingestive behavior without inducing taste aversion may open the possibility of a therapeutic application of PYY for the treatment of obesity via direct oral application.
Collapse
|
7
|
Panickar KS. Effects of dietary polyphenols on neuroregulatory factors and pathways that mediate food intake and energy regulation in obesity. Mol Nutr Food Res 2012; 57:34-47. [DOI: 10.1002/mnfr.201200431] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/08/2012] [Accepted: 08/22/2012] [Indexed: 12/20/2022]
Affiliation(s)
- Kiran S. Panickar
- Department of Pediatrics; University of Maryland School of Medicine; Baltimore MD USA
- Diet, Genomics, & Immunology Laboratory; Beltsville Human Nutrition Research Center; Agricultural Research Service; United States Department of Agriculture; Beltsville MD USA
| |
Collapse
|
8
|
Garfield AS, Patterson C, Skora S, Gribble FM, Reimann F, Evans ML, Myers MG, Heisler LK. Neurochemical characterization of body weight-regulating leptin receptor neurons in the nucleus of the solitary tract. Endocrinology 2012; 153:4600-7. [PMID: 22869346 PMCID: PMC3507354 DOI: 10.1210/en.2012-1282] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 07/12/2012] [Indexed: 11/19/2022]
Abstract
The action of peripherally released leptin at long-form leptin receptors (LepRb) within the brain represents a fundamental axis in the regulation of energy homeostasis and body weight. Efforts to delineate the neuronal mediators of leptin action have recently focused on extrahypothalamic populations and have revealed that leptin action within the nucleus of the solitary tract (NTS) is critical for normal appetite and body weight regulation. To elucidate the neuronal circuits that mediate leptin action within the NTS, we employed multiple transgenic reporter lines to characterize the neurochemical identity of LepRb-expressing NTS neurons. LepRb expression was not detected in energy balance-associated NTS neurons that express cocaine- and amphetamine-regulated transcript, brain-derived neurotrophic factor, neuropeptide Y, nesfatin, catecholamines, γ-aminobutyric acid, prolactin-releasing peptide, or nitric oxide synthase. The population of LepRb-expressing NTS neurons was comprised of subpopulations marked by a proopiomelanocortin-enhanced green fluorescent protein (EGFP) transgene and distinct populations that express proglucagon and/or cholecystokinin. The significance of leptin action on these three populations of NTS neurons was assessed in leptin-deficient Ob/Ob mice, revealing increased NTS proglucagon and cholecystokinin, but not proopiomelanocortin, expression. These data provide new insight into the appetitive brainstem circuits engaged by leptin.
Collapse
Affiliation(s)
- Alastair S Garfield
- University of Cambridge, Department of Pharmacology, Tennis Court Road, Cambridge CB2 1PD, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Weaver C, Turner N, Hall J. Review of the neuroanatomic landscape implicated in glucose sensing and regulation of nutrient signaling: immunophenotypic localization of diabetes gene Tcf7l2 in the developing murine brain. J Chem Neuroanat 2012; 45:1-17. [PMID: 22796301 DOI: 10.1016/j.jchemneu.2012.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 06/12/2012] [Accepted: 06/19/2012] [Indexed: 01/25/2023]
Abstract
Genetic variants in the transcription factor 7-like 2(Tcf7l2) gene have been found to confer a significant risk of type 2 diabetes and attenuated insulin secretion. Based on its genomic wide association Tcf7l2 is considered the single most important predictor of diabetes to date. Previous studies of Tcf7l2 mRNA localization in the adult brain suggest a putative role of Tcf7l2 in the CNS regulation of energy homeostasis. The present study further characterizes the immunophenotypic distribution of peptide expression in the brains of Tcf7l2 progeny during developmental time periods between E12.5 and P1. Tcf7l2(-/-) is lethal beyond P1. Results show that while negligible TCF7L2 expression is found in the developing brains of Tcf7l2(-/-)mice, TCF7L2 protein is relatively widespread and robustly expressed in the brain by E18.5 and exhibits specific expression within neuronal populations and regions of the brain in Tcf7l2(+/-) and Tcf7l2(+/+) progeny. Strong immunophenotypic labeling was found in the diencephalic structure of the thalamus that suggests a role of Tcf7l2 in the development and maintenance of thalamic activity. Strongly expressed TCF7L2 was localized in select hypothalamic and preoptic nuclei indicative of Tcf7l2 function within neurons controlling energy balance. Definitive neuronal staining for TCF7L2 within nuclei of the brain stem and circumventricular organs extends TCF7L2 localization within autonomic neurons and its potential integration with autonomic function. In addition robust TCF7L2 expression was found in the tectal and tegmental structures of the superior and inferior colliculi as well as transient expression in neuroepithelium of the cerebral and hippocampal cortices of E16 and E18.5. Patterns of TCF7L2 peptide localization when compared to the adult protein synthetic chemical/anatomical landscape of glucose sensing exhibit a good correlational fit between its expression and regions, nuclei, and pathways regulating energy homeostasis via integration and response to peripheral endocrine, metabolic and neuronal signaling. TCF was also found co-localized with peptides that regulate energy homeostasis including AgRP, POMC and NPY. TCF7l2, some variants of which have been shown to impair GLP-1-induced insulin secretion, was also found co-localize with GLP-1 in adult TCF wild type progeny. Impaired Tcf7l2-mediated neural regulation may contribute to the risk and/or underlying pathophysiology of type 2 diabetes that has found high expression in genomic studies of Tcf7l2 variants.
Collapse
Affiliation(s)
- Cyprian Weaver
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
10
|
Dalvi PS, Erbiceanu FD, Irwin DM, Belsham DD. Direct regulation of the proglucagon gene by insulin, leptin, and cAMP in embryonic versus adult hypothalamic neurons. Mol Endocrinol 2012; 26:1339-55. [PMID: 22669740 DOI: 10.1210/me.2012-1049] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The proglucagon gene is expressed not only in the pancreas and intestine but also in the hypothalamus. Proglucagon-derived peptides have emerged as potential regulators of energy homeostasis. Whether leptin, insulin, or cAMP activation controls proglucagon gene expression in the hypothalamus is not known. A key reason for this has been the inaccessibility of hypothalamic proglucagon-expressing neurons and the lack of suitable neuronal cell lines. Herein we describe the mechanisms involved in the direct regulation of the proglucagon gene by insulin, leptin, and cAMP in hypothalamic cell models. Insulin, through an Akt-dependent manner, significantly induced proglucagon mRNA expression by 70% in adult-derived mHypoA-2/10 neurons and significantly suppressed it by 45% in embryonic-derived mHypoE-39 neurons. Leptin, via the Janus kinase-2/ signal transducer and activator of transcription-3 pathway, caused an initial increase by 66 and 43% at 1 h followed by a decrease by 45 and 34% at 12 h in mHypoA-2/10 and mHypoE-39 cells, respectively. Furthermore, cAMP activation by forskolin up-regulated proglucagon expression by 87% in mHypoE-39 neurons and increased proglucagon mRNA, through Epac activation, in the mHypoE-20/2 neurons. Specific regions of the proglucagon promoter were regulated by cAMP signaling, as determined by transient transfections, whereas mRNA stability assays demonstrate that insulin and leptin increase proglucagon mRNA stability in the adult cells. These findings suggest that insulin, leptin, and cAMP act directly, but differentially, on specific hypothalamic neurons to regulate proglucagon gene expression. Because proglucagon-derived peptides are potential regulators of energy homeostasis, an understanding of hypothalamic proglucagon neurons is important to further expand our knowledge of alternative feeding circuits.
Collapse
Affiliation(s)
- Prasad S Dalvi
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
11
|
Abstract
Glucagon-like peptide 1 (GLP-1) is a gut hormone which directly binds to the GLP-1 receptor located at the surface of the pancreatic β-cells to enhance glucose-induced insulin secretion. In addition to its pancreatic effects, GLP-1 can induce metabolic actions by interacting with its receptors expressed on nerve cells in the gut and the brain. GLP-1 can also be considered as a neuropeptide synthesized by neuronal cells in the brain stem that release the peptide directly into the hypothalamus. In this environment, GLP-1 is assumed to control numerous metabolic and cardiovascular functions such as insulin secretion, glucose production and utilization, and arterial blood flow. However, the exact roles of these two locations in the regulation of glucose homeostasis are not well understood. In this review, we highlight the latest experimental data supporting the role of the gut-brain and brain-periphery axes in the control of glucose homeostasis. We also focus our attention on the relevance of β-cell and brain cell targeting by gut GLP-1 for the regulation of glucose homeostasis. In addition to its action on β-cells, we find that understanding the physiological role of GLP-1 will help to develop GLP-1-based therapies to control glycemia in type 2 diabetes by triggering the gut-brain axis or the brain directly. This pleiotropic action of GLP-1 is an important concept that may help to explain the observation that, during their treatment, type 2 diabetic patients can be identified as 'responders' and 'non-responders'.
Collapse
Affiliation(s)
- Cendrine Cabou
- INSERM (Institut National de la Sante et de la Recherche Medicale), U1048, Institute of Metabolic and Cardiovascular Diseases Rangueil, University of Toulouse III (Paul-Sabatier), Toulouse, France
| | | |
Collapse
|
12
|
Cabou C, Vachoux C, Campistron G, Drucker DJ, Burcelin R. Brain GLP-1 signaling regulates femoral artery blood flow and insulin sensitivity through hypothalamic PKC-δ. Diabetes 2011; 60:2245-56. [PMID: 21810595 PMCID: PMC3161335 DOI: 10.2337/db11-0464] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Glucagon-like peptide 1 (GLP-1) is a gut-brain hormone that regulates food intake, energy metabolism, and cardiovascular functions. In the brain, through a currently unknown molecular mechanism, it simultaneously reduces femoral artery blood flow and muscle glucose uptake. By analogy to pancreatic β-cells where GLP-1 activates protein kinase C (PKC) to stimulate insulin secretion, we postulated that PKC enzymes would be molecular targets of brain GLP-1 signaling that regulate metabolic and vascular function. RESEARCH DESIGN AND METHODS We used both genetic and pharmacological approaches to investigate the role of PKC isoforms in brain GLP-1 signaling in the conscious, free-moving mouse simultaneous with metabolic and vascular measurements. RESULTS In normal wild-type (WT) mouse brain, the GLP-1 receptor (GLP-1R) agonist exendin-4 selectively promotes translocation of PKC-δ (but not -βII, -α, or -ε) to the plasma membrane. This translocation is blocked in Glp1r(-/-) mice and in WT mice infused in the brain with exendin-9, an antagonist of the GLP-1R. This mechanism coordinates both blood flow in the femoral artery and whole-body insulin sensitivity. Consequently, in hyperglycemic, high-fat diet-fed diabetic mice, hypothalamic PKC-δ activity was increased and its pharmacological inhibition improved both insulin-sensitive metabolic and vascular phenotypes. CONCLUSIONS Our studies show that brain GLP-1 signaling activates hypothalamic glucose-dependent PKC-δ to regulate femoral artery blood flow and insulin sensitivity. This mechanism is attenuated during the development of experimental hyperglycemia and may contribute to the pathophysiology of type 2 diabetes.
Collapse
Affiliation(s)
- Cendrine Cabou
- INSERM U1048, Institute of Metabolic and Cardiovascular Diseases, Rangueil, Université Paul-Sabatier, Toulouse, France
- Faculty of Pharmacy, Chemin des Maraîchers, Toulouse, France
| | - Christelle Vachoux
- INSERM U1048, Institute of Metabolic and Cardiovascular Diseases, Rangueil, Université Paul-Sabatier, Toulouse, France
- Faculty of Pharmacy, Chemin des Maraîchers, Toulouse, France
| | - Gérard Campistron
- INSERM U1048, Institute of Metabolic and Cardiovascular Diseases, Rangueil, Université Paul-Sabatier, Toulouse, France
- Faculty of Pharmacy, Chemin des Maraîchers, Toulouse, France
| | - Daniel J. Drucker
- Department of Medicine, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Rémy Burcelin
- INSERM U1048, Institute of Metabolic and Cardiovascular Diseases, Rangueil, Université Paul-Sabatier, Toulouse, France
- Corresponding author: Rémy Burcelin,
| |
Collapse
|
13
|
Barrera JG, Sandoval DA, D'Alessio DA, Seeley RJ. GLP-1 and energy balance: an integrated model of short-term and long-term control. Nat Rev Endocrinol 2011; 7:507-16. [PMID: 21647189 PMCID: PMC4231434 DOI: 10.1038/nrendo.2011.77] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Glucagon-like peptide 1 (GLP-1), a peptide secreted from the intestine in response to nutrient ingestion, is perhaps best known for its effect on glucose-stimulated insulin secretion. GLP-1 is also secreted from neurons in the caudal brainstem, and it is well-established that, in rodents, central administration of GLP-1 potently reduces food intake. Over the past decade, GLP-1 has emerged not only as an essential component of the system that regulates blood glucose levels but also as a viable therapeutic target for the treatment of type 2 diabetes mellitus. However, although GLP-1 receptor agonists are known to produce modest but statistically significant weight loss in patients with diabetes mellitus, our knowledge of how endogenous GLP-1 regulates food intake and body weight remains limited. The purpose of this Review is to discuss the evolution of our understanding of how endogenous GLP-1 modulates energy balance. Specifically, we consider contributions of both central and peripheral GLP-1 and propose an integrated model of short-term and long-term control of energy balance. Finally, we discuss this model with respect to current GLP-1-based therapies and suggest ongoing research in order to maximize the effectiveness of GLP-1-based treatment of obesity.
Collapse
Affiliation(s)
- Jason G Barrera
- Department of Internal Medicine, University of Cincinnati, OH 45237, USA
| | | | | | | |
Collapse
|
14
|
Barrera JG, Jones KR, Herman JP, D'Alessio DA, Woods SC, Seeley RJ. Hyperphagia and increased fat accumulation in two models of chronic CNS glucagon-like peptide-1 loss of function. J Neurosci 2011; 31:3904-13. [PMID: 21389245 PMCID: PMC3700400 DOI: 10.1523/jneurosci.2212-10.2011] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 01/14/2011] [Accepted: 01/24/2011] [Indexed: 12/25/2022] Open
Abstract
Central administration of glucagon-like peptide-1 (GLP-1) causes a dose-dependent reduction in food intake, but the role of endogenous CNS GLP-1 in the regulation of energy balance remains unclear. Here, we tested the hypothesis that CNS GLP-1 activity is required for normal energy balance by using two independent methods to achieve chronic CNS GLP-1 loss of function in rats. Specifically, lentiviral-mediated expression of RNA interference was used to knock down nucleus of the solitary tract (NTS) preproglucagon (PPG), and chronic intracerebroventricular (ICV) infusion of the GLP-1 receptor (GLP-1r) antagonist exendin (9-39) (Ex9) was used to block CNS GLP-1r. NTS PPG knockdown caused hyperphagia and exacerbated high-fat diet (HFD)-induced fat accumulation and glucose intolerance. Moreover, in control virus-treated rats fed the HFD, NTS PPG expression levels correlated positively with fat mass. Chronic ICV Ex9 also caused hyperphagia; however, increased fat accumulation and glucose intolerance occurred regardless of diet. Collectively, these data provide the strongest evidence to date that CNS GLP-1 plays a physiologic role in the long-term regulation of energy balance. Moreover, they suggest that this role is distinct from that of circulating GLP-1 as a short-term satiation signal. Therefore, it may be possible to tailor GLP-1-based therapies for the prevention and/or treatment of obesity.
Collapse
Affiliation(s)
- Jason G Barrera
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio 45237, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Two major biological players in the regulation of body weight are the gut and the brain. Peptides released from the gut convey information about energy needs to areas of the brain involved in homeostatic control of food intake. There is emerging evidence that human food intake is also under the control of cortical and subcortical areas related to reward and cognition. The extent to which gut hormones influence these brain areas is not fully understood. Novel methods combining the study of neural activity and hormonal signalling promise to advance our understanding of gut-brain interactions. Here, we review a growing number of animal and human studies using neuroimaging methods (functional magnetic resonance imaging, positron emission tomography) to measure brain activation in relation to nutrient loads and infusion of gut peptides. Implications for current and future pharmacological treatments for obesity are discussed.
Collapse
Affiliation(s)
- C D Gibson
- New York Obesity Research Center, St Luke's-Roosevelt Hospital Center, Columbia University College of Physicians and Surgeons, New York, NY, USA.
| | | | | | | |
Collapse
|
16
|
Vrang N, Larsen PJ. Preproglucagon derived peptides GLP-1, GLP-2 and oxyntomodulin in the CNS: role of peripherally secreted and centrally produced peptides. Prog Neurobiol 2010; 92:442-62. [PMID: 20638440 DOI: 10.1016/j.pneurobio.2010.07.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 07/01/2010] [Accepted: 07/10/2010] [Indexed: 12/16/2022]
Abstract
The scientific understanding of preproglucagon derived peptides has provided people with type 2 diabetes with two novel classes of glucose lowering agents, the dipeptidyl peptidase IV (DPP-IV) inhibitors and GLP-1 receptor agonists. For the scientists, the novel GLP-1 agonists, and DPP-IV inhibitors have evolved as useful tools to understand the role of the preproglucagon derived peptides in normal physiology and disease. However, the overwhelming interest attracted by GLP-1 analogues as potent incretins has somewhat clouded the efforts to understand the importance of preproglucagon derived peptides in other physiological contexts. In particular, our neurobiological understanding of the preproglucagon expressing neuronal pathways in the central nervous system as well as the degree to which central GLP-1 receptors are targeted by peripherally administered GLP-1 receptor agonists is still fairly limited. The role of GLP-1 as an anorectic neurotransmitter is well recognized, but clarification of the neuronal targets and physiological basis of this response is further warranted, as is the mapping of GLP-1 sensitive neurons involved in a variety of neuroendocrine and behavioral responses. Further recent evidence points to GLP-1 as a central neuropeptide with neuroprotective capabilities potentially mitigating a wide array of neurodegenerative conditions. It is the aim of the present review to summarize our current understanding of preproglucagon derived peptides as neurotransmitters in the central nervous system.
Collapse
Affiliation(s)
- Niels Vrang
- Gubra ApS, Ridebanevej 12, 1870 Frederiksberg, Denmark.
| | | |
Collapse
|
17
|
Hayes MR, Bradley L, Grill HJ. Endogenous hindbrain glucagon-like peptide-1 receptor activation contributes to the control of food intake by mediating gastric satiation signaling. Endocrinology 2009; 150:2654-9. [PMID: 19264875 PMCID: PMC2689794 DOI: 10.1210/en.2008-1479] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 02/24/2009] [Indexed: 01/27/2023]
Abstract
Exogenous activation of central nervous system glucagon-like peptide-1 (GLP-1) receptors (GLP-1Rs) reduces food intake. Experiments addressed whether endogenous central GLP-1R activity is involved in the control of normal feeding and examined which gastrointestinal satiation signals contribute to this control. Given that nucleus tractus solitarius (NTS) neurons are the source of central GLP-1, that caudal brainstem circuits mediate the intake suppression triggered by exogenous hindbrain GLP-1R activation, and that these neurons process gastrointestinal vagal signals, the role of endogenous hindbrain GLP-1R activation to intake control was the focus of the analysis. Food intake increased with GLP-1R antagonist [Exendin-(9-39) (Ex-9)] [10 microg, fourth intracerebroventricular (icv)] delivery to overnight food-deprived rats after ingestion of 9 ml Ensure diet. Direct medial NTS injection of a ventricle subthreshold dose (1.0 microg) of Ex-9 increased food intake and established the contribution of this GLP-1R population to the effect observed with ventricular administration. To determine whether satiation signals of gastric vs. intestinal origin drive the GLP-1R-mediated NTS effect on food intake, two experiments were performed in overnight-fasted rats. In one, Ensure was infused intraduodenally (0.4 ml/min for 20 min); in another, the stomach was distended (9 ml SILASTIC brand balloon) for 15 min before fourth icv Ex-9. The intake suppression by duodenal nutrient infusion was not affected by GLP-1R blockade, but the feeding suppression after gastric distension was significantly attenuated by fourth icv Ex-9. We conclude that endogenous NTS GLP-1R activation driven by gastric satiation signals contributes to the control of normal feeding.
Collapse
Affiliation(s)
- Matthew R Hayes
- Graduate Groups of Psychology and Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
18
|
Abstract
Endogenous glucagon-like peptide-1 (GLP-1) is an incretin hormone that plays an important role in maintaining pancreatic function as well as caloric intake. Since the advent of GLP-1 receptor agonists resistant to dipeptidyl peptidase-4 (DPP-4) (degradation, it has become clear that their chronic use promotes negative energy balance. With regard to their effects on body weight, the principal action of GLP-1 agonists is mediated via their inhibition of eating. In searching for the underlying mechanism of GLP-1 receptor agonist-induced anorexic effect, scientists have discovered pathways in the central nervous system, as well as in the periphery. This review describes emerging knowledge of a peripheral endocrine GLP-1 system mediating its activity through a central ascending GLP-1 pathway and targeting hypothalamic sites involved in the regulation of energy homeostasis. Thus peripheral and central GLP-1 sensitive pathways appear to be organised to co-operatively help control food intake and body weight.Br J Diabetes Vasc Dis 2008;8 (Suppl 2): S34—S41
Collapse
|
19
|
Richards MP, McMurtry JP. Expression of proglucagon and proglucagon-derived peptide hormone receptor genes in the chicken. Gen Comp Endocrinol 2008; 156:323-38. [PMID: 18299131 DOI: 10.1016/j.ygcen.2008.01.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Revised: 12/13/2007] [Accepted: 01/16/2008] [Indexed: 11/24/2022]
Abstract
To better understand how the proglucagon system functions in birds, we utilized a molecular cloning strategy to sequence and characterize the chicken proglucagon gene that encodes glucagon, glucagon-like peptide (GLP)-1 and GLP-2. This gene has seven exons and six introns with evidence for an additional (alternate) first exon and two promoter regions. We identified two distinct classes of proglucagon mRNA transcripts (PGA and PGB) produced by alternative splicing at their 3'-ends. These were co-expressed in all tissues examined with pancreas and proventriculus showing the highest levels of each. Although both mRNA classes contained coding sequence for glucagon and GLP-1, class A mRNA lacked that portion of the coding region (CDS) containing GLP-2; whereas, class B mRNA had a larger CDS that included GLP-2. Both classes of mRNA transcripts exhibited two variants, each with a different 5'-end arising from alternate promoter and alternate first exon usage. Fasting and refeeding had no effect on proglucagon mRNA expression despite significant changes in plasma glucagon levels. To investigate potential differences in proglucagon precursor processing among tissues, mRNA expression for two prohormone convertase (PC) genes was analyzed. PC2 mRNA was predominantly expressed in pancreas and proventriculus, whereas PC1/3 mRNA was more highly expressed in duodenum and brain. We also determined mRNA expression of the specific receptor genes for glucagon, GLP-1 and GLP-2 to help define major sites of hormone action. Glucagon receptor mRNA was most highly expressed in liver and abdominal fat, whereas GLP-1 and GLP-2 receptor genes were highly expressed in the gastrointestinal tract, brain, pancreas and abdominal fat. These results offer new insights into structure and function of the chicken proglucagon gene, processing of the precursor proteins produced from it and potential activity sites for proglucagon-derived peptide hormones mediated by their cognate receptors.
Collapse
Affiliation(s)
- Mark P Richards
- Animal Biosciences and Biotechnology Laboratory, USDA, ARS, Animal and Natural Resources Institute, Beltsville Agricultural Research Center, BARC-East, Beltsville, MD 20705-2350, USA.
| | | |
Collapse
|