1
|
Tresky R, Miyamoto Y, Nagayoshi Y, Yabuki Y, Araki K, Takahashi Y, Komohara Y, Ge H, Nishiguchi K, Fukuda T, Kaneko H, Maeda N, Matsuura J, Iwasaki S, Sakakida K, Shioda N, Wei FY, Tomizawa K, Chujo T. TRMT10A dysfunction perturbs codon translation of initiator methionine and glutamine and impairs brain functions in mice. Nucleic Acids Res 2024; 52:9230-9246. [PMID: 38950903 PMCID: PMC11347157 DOI: 10.1093/nar/gkae520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/09/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024] Open
Abstract
In higher eukaryotes, tRNA methyltransferase 10A (TRMT10A) is responsible for N1-methylguanosine modification at position nine of various cytoplasmic tRNAs. Pathogenic mutations in TRMT10A cause intellectual disability, microcephaly, diabetes, and short stature in humans, and generate cytotoxic tRNA fragments in cultured cells; however, it is not clear how TRMT10A supports codon translation or brain functions. Here, we generated Trmt10a null mice and showed that tRNAGln(CUG) and initiator methionine tRNA levels were universally decreased in various tissues; the same was true in a human cell line lacking TRMT10A. Ribosome profiling of mouse brain revealed that dysfunction of TRMT10A causes ribosome slowdown at the Gln(CAG) codon and increases translation of Atf4 due to higher frequency of leaky scanning of its upstream open reading frames. Broadly speaking, translation of a subset of mRNAs, especially those for neuronal structures, is perturbed in the mutant brain. Despite not showing discernable defects in the pancreas, liver, or kidney, Trmt10a null mice showed lower body weight and smaller hippocampal postsynaptic densities, which is associated with defective synaptic plasticity and memory. Taken together, our study provides mechanistic insight into the roles of TRMT10A in the brain, and exemplifies the importance of universal tRNA modification during translation of specific codons.
Collapse
Affiliation(s)
- Roland Tresky
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yuta Miyamoto
- Department of Anatomy and Neurobiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yu Nagayoshi
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yasushi Yabuki
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Kimi Araki
- Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yukie Takahashi
- Department of Anatomy and Neurobiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Huicong Ge
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kayo Nishiguchi
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Takaichi Fukuda
- Department of Anatomy and Neurobiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Hitomi Kaneko
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Nobuko Maeda
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Jin Matsuura
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Neurosurgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| | - Kourin Sakakida
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Norifumi Shioda
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Fan-Yan Wei
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Takeshi Chujo
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
2
|
Boyle CA, Hu B, Quaintance KL, Mastrud MR, Lei S. Ionic signalling mechanisms involved in neurokinin-3 receptor-mediated augmentation of fear-potentiated startle response in the basolateral amygdala. J Physiol 2022; 600:4325-4345. [PMID: 36030507 PMCID: PMC9529888 DOI: 10.1113/jp283433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/15/2022] [Indexed: 09/10/2023] Open
Abstract
The tachykinin peptides include substance P (SP), neurokinin A and neurokinin B, which interact with three G-protein-coupled neurokinin receptors, NK1Rs, NK2Rs and NK3Rs, respectively. Whereas high densities of NK3Rs have been detected in the basolateral amygdala (BLA), the functions of NK3Rs in this brain region have not been determined. We found that activation of NK3Rs by application of the selective agonist, senktide, persistently excited BLA principal neurons. NK3R-elicited excitation of BLA neurons was mediated by activation of a non-selective cation channel and depression of the inwardly rectifying K+ (Kir) channels. With selective channel blockers and knockout mice, we further showed that NK3R activation excited BLA neurons by depressing the G protein-activated inwardly rectifying K+ (GIRK) channels and activating TRPC4 and TRPC5 channels. The effects of NK3Rs required the functions of phospholipase Cβ (PLCβ), but were independent of intracellular Ca2+ release and protein kinase C. PLCβ-mediated depletion of phosphatidylinositol 4,5-bisphosphate was involved in NK3R-induced excitation of BLA neurons. Microinjection of senktide into the BLA of rats augmented fear-potentiated startle (FPS) and this effect was blocked by prior injection of the selective NK3R antagonist SB 218795, suggesting that activation of NK3Rs in the BLA increased FPS. We further showed that TRPC4/5 and GIRK channels were involved in NK3R-elicited facilitation of FPS. Our results provide a cellular and molecular mechanism whereby NK3R activation excites BLA neurons and enhances FPS. KEY POINTS: Activation of NK3 receptors (NK3Rs) facilitates the excitability of principal neurons in rat basolateral amygdala (BLA). NK3R-induced excitation is mediated by inhibition of GIRK channels and activation of TRPC4/5 channels. Phospholipase Cβ and depletion of phosphatidylinositol 4,5-bisphosphate are necessary for NK3R-mediated excitation of BLA principal neurons. Activation of NK3Rs in the BLA facilitates fear-potentiated startle response. GIRK channels and TRPC4/5 channels are involved in NK3R-mediated augmentation of fear-potentiated startle.
Collapse
Affiliation(s)
- Cody A. Boyle
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Binqi Hu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Kati L. Quaintance
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Morgan R. Mastrud
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Saobo Lei
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| |
Collapse
|
3
|
Eiden LE, Hernández VS, Jiang SZ, Zhang L. Neuropeptides and small-molecule amine transmitters: cooperative signaling in the nervous system. Cell Mol Life Sci 2022; 79:492. [PMID: 35997826 PMCID: PMC11072502 DOI: 10.1007/s00018-022-04451-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 12/17/2022]
Abstract
Neuropeptides are expressed in cell-specific patterns throughout mammalian brain. Neuropeptide gene expression has been useful for clustering neurons by phenotype, based on single-cell transcriptomics, and for defining specific functional circuits throughout the brain. How neuropeptides function as first messengers in inter-neuronal communication, in cooperation with classical small-molecule amine transmitters (SMATs) is a current topic of systems neurobiology. Questions include how neuropeptides and SMATs cooperate in neurotransmission at the molecular, cellular and circuit levels; whether neuropeptides and SMATs always co-exist in neurons; where neuropeptides and SMATs are stored in the neuron, released from the neuron and acting, and at which receptors, after release; and how neuropeptides affect 'classical' transmitter function, both directly upon co-release, and indirectly, via long-term regulation of gene transcription and neuronal plasticity. Here, we review an extensive body of data about the distribution of neuropeptides and their receptors, their actions after neuronal release, and their function based on pharmacological and genetic loss- and gain-of-function experiments, that addresses these questions, fundamental to understanding brain function, and development of neuropeptide-based, and potentially combinatorial peptide/SMAT-based, neurotherapeutics.
Collapse
Affiliation(s)
- Lee E Eiden
- Section On Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, 49 Convent Drive, Room 5A38, Bethesda, MD, 20892, USA.
| | - Vito S Hernández
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Sunny Z Jiang
- Section On Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, 49 Convent Drive, Room 5A38, Bethesda, MD, 20892, USA
| | - Limei Zhang
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico.
| |
Collapse
|
4
|
Miyamoto Y, Nagayoshi I, Nishi A, Fukuda T. Three divisions of the mouse caudal striatum differ in the proportions of dopamine D1 and D2 receptor-expressing cells, distribution of dopaminergic axons, and composition of cholinergic and GABAergic interneurons. Brain Struct Funct 2019; 224:2703-2716. [PMID: 31375982 PMCID: PMC6778543 DOI: 10.1007/s00429-019-01928-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 07/25/2019] [Indexed: 12/24/2022]
Abstract
The greater part of the striatum is composed of striosomes and matrix compartments, but we recently demonstrated the presence of a region that has a distinct structural organization in the ventral half of the mouse caudal striatum (Miyamoto et al. in Brain Struct Funct 223:4275-4291, 2018). This region, termed the tri-laminar part based upon its differential immunoreactivities for substance P and enkephalin, consists of medial, intermediate, and lateral divisions. In this study, we quantitatively analyzed the distributions of both projection neurons and interneurons in each division using immunohistochemistry. Two types of projection neurons expressing either the dopamine D1 receptor (D1R) or D2 receptor (D2R) showed complementary distributions throughout the tri-laminar part, but the proportions significantly differed among the three divisions. The proportion of D1R-expressing neurons in the medial, intermediate, and lateral divisions was 88.6 ± 8.2% (651 cells from 3 mice), 14.7 ± 3.8% (1025 cells), and 49.3 ± 4.5% (873 cells), respectively. The intermediate division was further characterized by poor innervation of tyrosine hydroxylase immunoreactive axons. The numerical density of choline acetyltransferase immunoreactive neurons differed among the three divisions following the order from the medial to lateral divisions. In contrast, PV-positive somata were distributed throughout all three divisions at a constant density. Two types of GABAergic interneurons labeled for nitric oxide synthase and calretinin showed the highest cell density in the medial division. The present results characterize the three divisions of the mouse caudal striatum as distinct structures, which will facilitate studies of novel functional loops in the basal ganglia.
Collapse
Affiliation(s)
- Yuta Miyamoto
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Issei Nagayoshi
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Akinori Nishi
- Department of Pharmacology, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Takaichi Fukuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
5
|
Islam MS, Wei FY, Ohta K, Shigematsu N, Fukuda T, Tomizawa K, Yoshizawa T, Yamagata K. Sirtuin 7 is involved in the consolidation of fear memory in mice. Biochem Biophys Res Commun 2018; 495:261-266. [DOI: 10.1016/j.bbrc.2017.10.159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 10/29/2017] [Indexed: 12/21/2022]
|
6
|
Endogenous opioids regulate moment-to-moment neuronal communication and excitability. Nat Commun 2017; 8:14611. [PMID: 28327612 PMCID: PMC5364458 DOI: 10.1038/ncomms14611] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 01/14/2017] [Indexed: 01/12/2023] Open
Abstract
Fear and emotional learning are modulated by endogenous opioids but the cellular basis for this is unknown. The intercalated cells (ITCs) gate amygdala output and thus regulate the fear response. Here we find endogenous opioids are released by synaptic stimulation to act via two distinct mechanisms within the main ITC cluster. Endogenously released opioids inhibit glutamate release through the δ-opioid receptor (DOR), an effect potentiated by a DOR-positive allosteric modulator. Postsynaptically, the opioids activate a potassium conductance through the μ-opioid receptor (MOR), suggesting for the first time that endogenously released opioids directly regulate neuronal excitability. Ultrastructural localization of endogenous ligands support these functional findings. This study demonstrates a new role for endogenously released opioids as neuromodulators engaged by synaptic activity to regulate moment-to-moment neuronal communication and excitability. These distinct actions through MOR and DOR may underlie the opposing effect of these receptor systems on anxiety and fear. The endogenous opioid system regulates fear and anxiety, but the underlying cellular mechanism is unclear. Winters et al. shows that in the intercalated cells (ITC) of the amygdala, endogenous opioids suppress glutamatergic inputs via the δ-opioid receptor presynaptically, and reduce the excitability of ITCs via the μ-opioid receptor postsynaptically.
Collapse
|
7
|
Sosulina L, Strippel C, Romo-Parra H, Walter AL, Kanyshkova T, Sartori SB, Lange MD, Singewald N, Pape HC. Substance P excites GABAergic neurons in the mouse central amygdala through neurokinin 1 receptor activation. J Neurophysiol 2015; 114:2500-8. [PMID: 26334021 DOI: 10.1152/jn.00883.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 08/19/2015] [Indexed: 11/22/2022] Open
Abstract
Substance P (SP) is implicated in stress regulation and affective and anxiety-related behavior. Particularly high expression has been found in the main output region of the amygdala complex, the central amygdala (CE). Here we investigated the cellular mechanisms of SP in CE in vitro, taking advantage of glutamic acid decarboxylase-green fluorescent protein (GAD67-GFP) knockin mice that yield a reliable labeling of GABAergic neurons, which comprise 95% of the neuronal population in the lateral section of CE (CEl). In GFP-positive neurons within CEl, SP caused a membrane depolarization and increase in input resistance, associated with an increase in action potential firing frequency. Under voltage-clamp conditions, the SP-specific membrane current reversed at -101.5 ± 2.8 mV and displayed inwardly rectifying properties indicative of a membrane K(+) conductance. Moreover, SP responses were blocked by the neurokinin type 1 receptor (NK1R) antagonist L-822429 and mimicked by the NK1R agonist [Sar(9),Met(O2)(11)]-SP. Immunofluorescence staining confirmed localization of NK1R in GFP-positive neurons in CEl, predominantly in PKCδ-negative neurons (80%) and in few PKCδ-positive neurons (17%). Differences in SP responses were not observed between the major types of CEl neurons (late firing, regular spiking, low-threshold bursting). In addition, SP increased the frequency and amplitude of GABAergic synaptic events in CEl neurons depending on upstream spike activity. These data indicate a NK1R-mediated increase in excitability and GABAergic activity in CEl neurons, which seems to mostly involve the PKCδ-negative subpopulation. This influence can be assumed to increase reciprocal interactions between CElon and CEloff pathways, thereby boosting the medial CE (CEm) output pathway and contributing to the anxiogenic-like action of SP in the amygdala.
Collapse
Affiliation(s)
- L Sosulina
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Münster, Germany; Neuronal Networks Group, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - C Strippel
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - H Romo-Parra
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - A L Walter
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - T Kanyshkova
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - S B Sartori
- Department of Pharmacology and Toxicology, Institute of Pharmacy, and Centre for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Insbruck, Austria; and
| | - M D Lange
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - N Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy, and Centre for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Insbruck, Austria; and
| | - H-C Pape
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Münster, Germany;
| |
Collapse
|
8
|
Miyamoto Y, Fukuda T. Immunohistochemical study on the neuronal diversity and three-dimensional organization of the mouse entopeduncular nucleus. Neurosci Res 2015; 94:37-49. [PMID: 25722090 DOI: 10.1016/j.neures.2015.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/13/2015] [Accepted: 02/14/2015] [Indexed: 10/23/2022]
Abstract
The entopeduncular nucleus (EPN) is one of the major output nuclei of the basal ganglia in rodents. Previous studies have divided it into rostral and caudal halves, with the former containing somatostatin (SOM)-immunoreactive neurons and the latter dominated by parvalbumin (PV)-containing neurons, respectively. However, it is unclear whether this simple rostrocaudal segmentation is appropriate, and the possibility of the existence of other neuronal populations remains to be investigated. In this study the cytoarchitecture of the mouse EPN was analyzed immunohistochemically. Substance P (SP)-immunoreactivity determined the extent of the EPN, which was 800 μm-long along the rostrocaudal axis. PV-positive neurons were concentrated in the caudal two-thirds of this range. PV-negative neurons were abundant in the rostral half but were further located caudally around the PV neuron-rich core. PV(+)/SOM(-) and PV(-)/SOM(+) neurons constituted 28.6% and 45.7% of EPN neurons, respectively, whereas the remaining population (25.7%) exhibited neither immunoreactivity. Eleven percent of EPN neurons lacked immunoreactivity for glutamic acid decarboxylase, indicating their non-GABAergic nature. Three-dimensional reconstruction revealed that PV-rich/SP-poor core was surrounded by PV-poor/SP-rich shell region. Therefore, presumptive thalamus-targeting PV neurons are outnumbered by other populations, and the regional heterogeneity shown here might be related to functionally distinct pathways through the basal ganglia.
Collapse
Affiliation(s)
- Yuta Miyamoto
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Takaichi Fukuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| |
Collapse
|
9
|
Tajima K, Fukuda T. Region-specific diversity of striosomes in the mouse striatum revealed by the differential immunoreactivities for mu-opioid receptor, substance P, and enkephalin. Neuroscience 2013; 241:215-28. [DOI: 10.1016/j.neuroscience.2013.03.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 03/07/2013] [Accepted: 03/08/2013] [Indexed: 11/17/2022]
|
10
|
Recent advances in quantitative colocalization analysis: Focus on neuroscience. ACTA ACUST UNITED AC 2009; 44:125-72. [DOI: 10.1016/j.proghi.2009.03.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Greco SJ, Zhou C, Ye JH, Rameshwar P. A method to generate human mesenchymal stem cell-derived neurons which express and are excited by multiple neurotransmitters. Biol Proced Online 2008; 10:90-101. [PMID: 19461957 PMCID: PMC2683550 DOI: 10.1251/bpo147] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 07/20/2008] [Accepted: 08/10/2008] [Indexed: 12/04/2022] Open
Abstract
The present study describes a protocol to generate heterogenous populations of neurotransmitter-producing neurons
from human mesenchymal stem cells (MSCs). MSCs are bone marrow (BM)-derived cells which undergo lineage-
specific differentiation to generate bone, fat, cartilage and muscle, but are also capable of transdifferentiating into
defined ectodermal and endodermal tissues. The purpose of this study is to evaluate the potential of MSCs as an
alternative source of customized neurons for experimental neurobiology or other regenerative approaches. Our
neuronal protocol utilizes freshly harvested human MSCs cultured on specific surfaces and exposed to an induction
cocktail consisting of low serum concentration, retinoic acid (RA), growth factors and supplements. Here we report on
the types of neurotransmitters produced by the neurons, and demonstrate that the cells are electrically responsive to
exogenous neurotransmitter administration.
Collapse
Affiliation(s)
- Steven J Greco
- Graduate School of Biomedical Sciences, UMDNJ-New Jersey Medical School, MSB, Rm. E-579 185 South Orange Ave, Newark, NJ 07103, USA
| | | | | | | |
Collapse
|
12
|
Singewald N, Chicchi GG, Thurner CC, Tsao KL, Spetea M, Schmidhammer H, Sreepathi HK, Ferraguti F, Singewald GM, Ebner K. Modulation of basal and stress-induced amygdaloid substance P release by the potent and selective NK1 receptor antagonist L-822429. J Neurochem 2008; 106:2476-88. [PMID: 18673452 DOI: 10.1111/j.1471-4159.2008.05596.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
It has been shown that anxiety and stress responses are modulated by substance P (SP) released within the amygdala. However, there is an important gap in our knowledge concerning the mechanisms regulating extracellular SP in this brain region. To study a possible self-regulating role of SP, we used a selective neurokinin-1 (NK1) receptor antagonist to investigate whether blockade of NK1 receptors results in altered basal and/or stress-evoked SP release in the medial amygdala (MeA), a critical brain area for a functional involvement of SP transmission in enhanced anxiety responses induced by stressor exposure. In vitro binding and functional receptor assays revealed that L-822429 represents a potent and selective rat NK1 receptor antagonist. Intra-amygdaloid administration of L-822429 via inverse microdialysis enhanced basal, but attenuated swim stress-induced SP release, while the low-affinity enantiomer of L-822429 had no effect. Using light and electron microscopy, synaptic contacts between SP-containing fibres and dendrites expressing NK1 receptors was demonstrated in the medial amygdala. Our findings suggest self-regulatory capacity of SP-mediated neurotransmission that differs in the effect on basal and stress-induced release of SP. Under basal conditions endogenous SP can serve as a signal that tonically inhibits its own release via a NK1 receptor-mediated negative feedback action, while under stress conditions SP release is further facilitated by activation of NK1 receptors, likely leading to high local levels of SP and activation of receptors to which SP binds with lower affinity.
Collapse
Affiliation(s)
- Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|