1
|
Vėbraitė I, David-Pur M, Rand D, Głowacki ED, Hanein Y. Electrophysiological investigation of intact retina with soft printed organic neural interface. J Neural Eng 2021; 18. [PMID: 34736225 DOI: 10.1088/1741-2552/ac36ab] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/04/2021] [Indexed: 12/26/2022]
Abstract
Objective.Understanding how the retina converts a natural image or an electrically stimulated one into neural firing patterns is the focus of on-going research activities.Ex vivo, the retina can be readily investigated using multi electrode arrays (MEAs). However, MEA recording and stimulation from an intact retina (in the eye) has been so far insufficient.Approach.In the present study, we report new soft carbon electrode arrays suitable for recording and stimulating neural activity in an intact retina. Screen-printing of carbon ink on 20µm polyurethane (PU) film was used to realize electrode arrays with electrodes as small as 40µm in diameter. Passivation was achieved with a holey membrane, realized using laser drilling in a thin (50µm) PU film. Plasma polymerized 3.4-ethylenedioxythiophene was used to coat the electrode array to improve the electrode specific capacitance. Chick retinas, embryonic stage day 13, both explanted and intact inside an enucleated eye, were used.Main results.A novel fabrication process based on printed carbon electrodes was developed and yielded high capacitance electrodes on a soft substrate.Ex vivoelectrical recording of retina activity with carbon electrodes is demonstrated. With the addition of organic photo-capacitors, simultaneous photo-electrical stimulation and electrical recording was achieved. Finally, electrical activity recordings from an intact chick retina (inside enucleated eyes) were demonstrated. Both photosensitive retinal ganglion cell responses and spontaneous retina waves were recorded and their features analyzed.Significance.Results of this study demonstrated soft electrode arrays with unique properties, suitable for simultaneous recording and photo-electrical stimulation of the retina at high fidelity. This novel electrode technology opens up new frontiers in the study of neural tissuein vivo.
Collapse
Affiliation(s)
- Ieva Vėbraitė
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, 699780, Israel
| | - Moshe David-Pur
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, 699780, Israel
| | - David Rand
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, 699780, Israel
| | - Eric Daniel Głowacki
- Central European Institute of Technology, Brno University of Technology, Brno, 61200, Czech Republic
| | - Yael Hanein
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, 699780, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 699780, Israel
| |
Collapse
|
2
|
Tao Y, Hu B, Ma Z, Li H, Du E, Wang G, Xing B, Ma J, Song Z. Intravitreous delivery of melatonin affects the retinal neuron survival and visual signal transmission: in vivo and ex vivo study. Drug Deliv 2021; 27:1386-1396. [PMID: 33016801 PMCID: PMC7580852 DOI: 10.1080/10717544.2020.1818882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Intravitreal delivery can maximize the intensity of therapeutic agents and extend their residence time within ocular tissue. Melatonin is a lipophilic molecule that crosses freely biological barriers and cell membranes. This study intends to investigate the effects of intravitreally delivered melatonin on mouse retina. The visual function of administered mice is assessed by electrophysiological and behavior examinations three weeks after intravitreal delivery. Moreover, multi-electrode array (MEA) was used to assess the electrical activities of retinal ganglion cells (RGCs). We found that intravitreal delivery of high dosage melatonin (400-500 µg/kg) destroyed the retinal architecture and impaired the visual function of mice. Conversely, the melatonin administration at low dose (100-300 µg/kg) did not have any significant effects on the photoreceptor survival or visual function. As shown in the MEA recording, the photoreceptors activity of the central region was more severely disturbed by the high dose melatonin. A pronounced augment of the spontaneous firing frequency was recorded in these mice received high dosage melatonin, indicating that intravitreal delivery of high dosage melatonin would affect the electrical activity of RGCs. Immunostaining assay showed that the vitality of cone photoreceptor was impaired by high dose melatonin. These findings suggest that intravitreal melatonin is not always beneficial for ocular tissues, especially when it is administered at high dosage. These data add new perspectives to current knowledge about melatonin delivery at the ocular level. Further therapeutic strategies should take into consideration of these risks that caused by delivery approach.
Collapse
Affiliation(s)
- Ye Tao
- Department of Ophthalmology, People's hospital of Zhengzhou University, Zhengzhou, PR China.,Department of physiology and neuroscience, Basic college of medicine, Zhengzhou University Zhengzhou, PR China
| | - Bang Hu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Zhao Ma
- Department of Neurosurgery, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wu Han, PR China
| | - Haijun Li
- Department of Ophthalmology, People's hospital of Zhengzhou University, Zhengzhou, PR China.,Department of physiology and neuroscience, Basic college of medicine, Zhengzhou University Zhengzhou, PR China
| | - Enming Du
- Department of Ophthalmology, People's hospital of Zhengzhou University, Zhengzhou, PR China.,Department of physiology and neuroscience, Basic college of medicine, Zhengzhou University Zhengzhou, PR China
| | - Gang Wang
- Department of Ophthalmology, People's hospital of Zhengzhou University, Zhengzhou, PR China.,Department of physiology and neuroscience, Basic college of medicine, Zhengzhou University Zhengzhou, PR China
| | - Biao Xing
- Department of Neurosurgery, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wu Han, PR China
| | - Jie Ma
- Department of Neurosurgery, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wu Han, PR China
| | - Zongming Song
- Department of Ophthalmology, People's hospital of Zhengzhou University, Zhengzhou, PR China.,Department of physiology and neuroscience, Basic college of medicine, Zhengzhou University Zhengzhou, PR China
| |
Collapse
|
3
|
Ghahari A, Kumar SR, Badea TC. Identification of Retinal Ganglion Cell Firing Patterns Using Clustering Analysis Supplied with Failure Diagnosis. Int J Neural Syst 2018; 28:1850008. [PMID: 29631502 PMCID: PMC6160263 DOI: 10.1142/s0129065718500089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An important goal in visual neuroscience is to understand how neuronal population coding in vertebrate retina mediates the broad range of visual functions. Microelectrode arrays interface on isolated retina registers a collective measure of the spiking dynamics of retinal ganglion cells (RGCs) by probing them simultaneously and in large numbers. The recorded data stream is then processed to identify spike trains of individual RGCs by efficient and scalable spike detection and sorting routines. Most spike sorting software packages, available either commercially or as freeware, combine automated steps with judgment calls by the investigator to verify the quality of sorted spikes. This work focused on sorting spikes of RGCs into clusters using an integrated analytical platform for the data recorded during visual stimulation of wild-type mice retinas with whole field stimuli. After spike train detection, we projected each spike onto two feature spaces: a parametric space and a principal components space. We then applied clustering algorithms to sort spikes into separate clusters. To eliminate the need for human intervention, the initial clustering results were submitted to diagnostic tests that evaluated the results to detect the sources of failure in cluster assignment. This failure diagnosis formed a decision logic for diagnosable electrodes to enhance the clustering quality iteratively through rerunning the clustering algorithms. The new clustering results showed that the spike sorting accuracy was improved. Subsequently, the number of active RGCs during each whole field stimulation was found, and the light responsiveness of each RGC was identified. Our approach led to error-resilient spike sorting in both feature extraction methods; however, using parametric features led to less erroneous spike sorting compared to principal components, particularly for low signal-to-noise ratios. As our approach is reliable for retinal signal processing in response to simple visual stimuli, it could be applied to the evaluation of disrupted physiological signaling in retinal neurodegenerative diseases.
Collapse
Affiliation(s)
- Alireza Ghahari
- 1 Retinal Circuit Development and Genetics Unit, National Eye Institute, 6 Center Drive, Bethesda, MD 20892, USA
| | - Sumit R Kumar
- 1 Retinal Circuit Development and Genetics Unit, National Eye Institute, 6 Center Drive, Bethesda, MD 20892, USA
| | - Tudor C Badea
- 1 Retinal Circuit Development and Genetics Unit, National Eye Institute, 6 Center Drive, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Kireev D, Seyock S, Lewen J, Maybeck V, Wolfrum B, Offenhäusser A. Graphene Multielectrode Arrays as a Versatile Tool for Extracellular Measurements. Adv Healthc Mater 2017; 6. [PMID: 28371490 DOI: 10.1002/adhm.201601433] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/05/2017] [Indexed: 11/12/2022]
Abstract
Graphene multielectrode arrays (GMEAs) presented in this work are used for cardio and neuronal extracellular recordings. The advantages of the graphene as a part of the multielectrode arrays are numerous: from a general flexibility and biocompatibility to the unique electronic properties of graphene. The devices used for extensive in vitro studies of a cardiac-like cell line and cortical neuronal networks show excellent ability to extracellularly detect action potentials with signal to noise ratios in the range of 45 ± 22 for HL-1 cells and 48 ± 26 for spontaneous bursting/spiking neuronal activity. Complex neuronal bursting activity patterns as well as a variety of characteristic shapes of HL-1 action potentials are recorded with the GMEAs. This paper illustrates that the potential applications of the GMEAs in biological and medical research are still numerous and diverse.
Collapse
Affiliation(s)
- Dmitry Kireev
- Institute of Bioelectronics (PGI‐8/ICS‐8)Forschungszentrum Jülich 52425 Jülich Germany
| | - Silke Seyock
- Institute of Bioelectronics (PGI‐8/ICS‐8)Forschungszentrum Jülich 52425 Jülich Germany
| | - Johannes Lewen
- Institute of Bioelectronics (PGI‐8/ICS‐8)Forschungszentrum Jülich 52425 Jülich Germany
| | - Vanessa Maybeck
- Institute of Bioelectronics (PGI‐8/ICS‐8)Forschungszentrum Jülich 52425 Jülich Germany
| | - Bernhard Wolfrum
- NeuroelectronicsMunich Schnool of BioengineeringDepartment of Electrical and Computer EngineeringTechnical University of Munich (TUM) & BCCN Munich Boltzmannstr. 11 85748 Garching Germany
| | - Andreas Offenhäusser
- Institute of Bioelectronics (PGI‐8/ICS‐8)Forschungszentrum Jülich 52425 Jülich Germany
| |
Collapse
|
5
|
Walch OJ, Zhang LS, Reifler AN, Dolikian ME, Forger DB, Wong KY. Characterizing and modeling the intrinsic light response of rat ganglion-cell photoreceptors. J Neurophysiol 2015; 114:2955-66. [PMID: 26400257 PMCID: PMC4737408 DOI: 10.1152/jn.00544.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 09/18/2015] [Indexed: 12/20/2022] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) mediate both image-forming vision and non-image-forming visual responses such as pupillary constriction and circadian photoentrainment. Five types of ipRGCs, named M1-M5, have been discovered in rodents. To further investigate their photoresponse properties, we made multielectrode array spike recordings from rat ipRGCs, classified them into M1, M2/M4, and M3/M5 clusters, and measured their intrinsic, melanopsin-based responses to single and flickering light pulses. Results showed that ipRGC spiking can track flickers up to ∼0.2 Hz in frequency and that flicker intervals between 5 and 14 s evoke the most spikes. We also learned that melanopsin's integration time is intensity and cluster dependent. Using these data, we constructed a mathematical model for each cluster's intrinsic photoresponse. We found that the data for the M1 cluster are best fit by a model that assumes a large photoresponse, causing the cell to enter depolarization block. Our models also led us to hypothesize that the M2/M4 and M3/M5 clusters experience comparable photoexcitation but that the M3/M5 cascade decays significantly faster than the M2/M4 cascade, resulting in different response waveforms between these clusters. These mathematical models will help predict how each ipRGC cluster might respond to stimuli of any waveform and could inform the invention of lighting technologies that promote health through melanopsin stimulation.
Collapse
Affiliation(s)
- Olivia J Walch
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan
| | - L Samantha Zhang
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, Michigan
| | - Aaron N Reifler
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, Michigan
| | - Michael E Dolikian
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, Michigan
| | - Daniel B Forger
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan; Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, Michigan; and
| | - Kwoon Y Wong
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, Michigan; Department of Molecular, Cellular & Developmental Biology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
6
|
Bareket L, Waiskopf N, Rand D, Lubin G, David-Pur M, Ben-Dov J, Roy S, Eleftheriou C, Sernagor E, Cheshnovsky O, Banin U, Hanein Y. Semiconductor nanorod-carbon nanotube biomimetic films for wire-free photostimulation of blind retinas. NANO LETTERS 2014; 14:6685-92. [PMID: 25350365 PMCID: PMC4367200 DOI: 10.1021/nl5034304] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 10/25/2014] [Indexed: 05/22/2023]
Abstract
We report the development of a semiconductor nanorod-carbon nanotube based platform for wire-free, light induced retina stimulation. A plasma polymerized acrylic acid midlayer was used to achieve covalent conjugation of semiconductor nanorods directly onto neuro-adhesive, three-dimensional carbon nanotube surfaces. Photocurrent, photovoltage, and fluorescence lifetime measurements validate efficient charge transfer between the nanorods and the carbon nanotube films. Successful stimulation of a light-insensitive chick retina suggests the potential use of this novel platform in future artificial retina applications.
Collapse
Affiliation(s)
- Lilach Bareket
- School of Electrical Engineering, Tel Aviv University Center for Nanoscience
and Nanotechnology, and School of Chemistry, Tel
Aviv University, Tel Aviv 69978, Israel
| | - Nir Waiskopf
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - David Rand
- School of Electrical Engineering, Tel Aviv University Center for Nanoscience
and Nanotechnology, and School of Chemistry, Tel
Aviv University, Tel Aviv 69978, Israel
| | - Gur Lubin
- School of Electrical Engineering, Tel Aviv University Center for Nanoscience
and Nanotechnology, and School of Chemistry, Tel
Aviv University, Tel Aviv 69978, Israel
| | - Moshe David-Pur
- School of Electrical Engineering, Tel Aviv University Center for Nanoscience
and Nanotechnology, and School of Chemistry, Tel
Aviv University, Tel Aviv 69978, Israel
| | - Jacob Ben-Dov
- School of Electrical Engineering, Tel Aviv University Center for Nanoscience
and Nanotechnology, and School of Chemistry, Tel
Aviv University, Tel Aviv 69978, Israel
| | - Soumyendu Roy
- School of Electrical Engineering, Tel Aviv University Center for Nanoscience
and Nanotechnology, and School of Chemistry, Tel
Aviv University, Tel Aviv 69978, Israel
| | - Cyril Eleftheriou
- Institute
of Neuroscience, Faculty of Medical Sciences, Newcastle University, Newcastle
upon Tyne, NE2 4HH, United
Kingdom
| | - Evelyne Sernagor
- Institute
of Neuroscience, Faculty of Medical Sciences, Newcastle University, Newcastle
upon Tyne, NE2 4HH, United
Kingdom
| | - Ori Cheshnovsky
- School of Electrical Engineering, Tel Aviv University Center for Nanoscience
and Nanotechnology, and School of Chemistry, Tel
Aviv University, Tel Aviv 69978, Israel
| | - Uri Banin
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yael Hanein
- School of Electrical Engineering, Tel Aviv University Center for Nanoscience
and Nanotechnology, and School of Chemistry, Tel
Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
7
|
Kirkby LA, Feller MB. Intrinsically photosensitive ganglion cells contribute to plasticity in retinal wave circuits. Proc Natl Acad Sci U S A 2013; 110:12090-5. [PMID: 23821744 PMCID: PMC3718101 DOI: 10.1073/pnas.1222150110] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Correlated spontaneous activity in the developing nervous system is robust to perturbations in the circuits that generate it, suggesting that mechanisms exist to ensure its maintenance. We examine this phenomenon in the developing retina, where blockade of cholinergic circuits that mediate retinal waves during the first postnatal week leads to the generation of "recovered" waves through a distinct, gap junction-mediated circuit. Unlike cholinergic waves, these recovered waves were modulated by dopaminergic and glutamatergic signaling, and required the presence of the gap junction protein connexin 36. Moreover, in contrast to cholinergic waves, recovered waves were stimulated by ambient light via activation of melanopsin-expressing intrinsically photosensitive retinal ganglion cells. The involvement of intrinsically photosensitive retinal ganglion cells in this reconfiguration of wave-generating circuits offers an avenue of retinal circuit plasticity during development that was previously unknown.
Collapse
Affiliation(s)
| | - Marla B. Feller
- Department of Molecular and Cell Biology and the Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720
| |
Collapse
|
8
|
Perez-Leighton CE, Schmidt TM, Abramowitz J, Birnbaumer L, Kofuji P. Intrinsic phototransduction persists in melanopsin-expressing ganglion cells lacking diacylglycerol-sensitive TRPC subunits. Eur J Neurosci 2011; 33:856-67. [PMID: 21261756 PMCID: PMC3076293 DOI: 10.1111/j.1460-9568.2010.07583.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In mammals, intrinsically photosensitive retinal ganglion cells (ipRGCs) mediate various non-image-forming photic responses, such as circadian photoentrainment, pupillary light reflex and pineal melatonin suppression. ipRGCs directly respond to environmental light by activation of the photopigment melanopsin followed by the opening of an unidentified cation-selective channel. Studies in heterologous expression systems and in the native retina have strongly implicated diacylglycerol-sensitive transient receptor potential channels containing TRPC3, TRPC6 and TRPC7 subunits in melanopsin-evoked depolarization. Here we show that melanopsin-evoked electrical responses largely persist in ipRGCs recorded from early postnatal (P6-P8) and adult (P22-P50) mice lacking expression of functional TRPC3, TRPC6 or TRPC7 subunits. Multielectrode array (MEA) recordings performed at P6-P8 stages under conditions that prevent influences from rod/cone photoreceptors show comparable light sensitivity for the melanopsin-evoked responses in these mutant mouse lines in comparison to wild-type (WT) mice. Patch-clamp recordings from adult mouse ipRGCs lacking TRPC3 or TRPC7 subunits show intrinsic light-evoked responses equivalent to those recorded in WT mice. Persistence of intrinsic light-evoked responses was also noted in ipRGCs lacking TRPC6 subunits, although with significantly smaller magnitudes. These results demonstrate that the melanopsin-evoked depolarization in ipRGCs is not mediated by either TRPC3, TRPC6 or TRPC7 channel subunits alone. They also suggest that the melanopsin signaling pathway includes TRPC6-containing heteromeric channels in mature retinas.
Collapse
Affiliation(s)
| | - Tiffany M. Schmidt
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Joel Abramowitz
- Laboratory of Neurobiology, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health
| | - Lutz Birnbaumer
- Laboratory of Neurobiology, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health
| | - Paulo Kofuji
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
9
|
Blau A, Murr A, Wolff S, Sernagor E, Medini P, Iurilli G, Ziegler C, Benfenati F. Flexible, all-polymer microelectrode arrays for the capture of cardiac and neuronal signals. Biomaterials 2010; 32:1778-86. [PMID: 21145588 DOI: 10.1016/j.biomaterials.2010.11.014] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Accepted: 11/06/2010] [Indexed: 10/18/2022]
Abstract
Microelectrode electrophysiology has become a widespread technique for the extracellular recording of bioelectrical signals. To date, electrodes are made of metals or inorganic semiconductors, or hybrids thereof. We demonstrate that these traditional conductors can be completely substituted by highly flexible electroconductive polymers. Pursuing a two-level replica-forming strategy, conductive areas for electrodes, leads and contact pads are defined as microchannels in poly(dimethylsiloxane) (PDMS) as a plastic carrier and track insulation material. These channels are coated by films of organic conductors such as polystyrenesulfonate-doped poly(3,4-ethylenedioxy-thiophene) (PEDOT:PSS) or filled with a graphite-PDMS (gPDMS) composite, either alone or in combination. The bendable, somewhat stretchable, non-cytotoxic and biostable all-polymer microelectrode arrays (polyMEAs) with a thickness below 500 μm and up to 60 electrodes reliably capture action potentials (APs) and local field potentials (LFPs) from acute preparations of heart muscle cells and retinal whole mounts, in vivo epicortical and epidural recordings as well as during long-term in vitro recordings from cortico-hippocampal co-cultures.
Collapse
Affiliation(s)
- Axel Blau
- Dept. of Neuroscience and Brain Technologies, Italian Institute of Technology, Via Morego 30, 16163 Genoa, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Bailes HJ, Lucas RJ. Melanopsin and inner retinal photoreception. Cell Mol Life Sci 2010; 67:99-111. [PMID: 19865798 PMCID: PMC11115928 DOI: 10.1007/s00018-009-0155-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 09/07/2009] [Accepted: 09/07/2009] [Indexed: 10/20/2022]
Abstract
Over the last ten years there has been growing acceptance that retinal photoreception among mammals extends beyond rods and cones to include a small number of intrinsically photosensitive retinal ganglion cells (ipRGCs). These ipRGCs are capable of responding to light in the absence of rod/cone input thanks to expression of an opsin photopigment called melanopsin. They are specialised for measuring ambient levels of light (irradiance) for a wide variety of so-called non-image-forming light responses. These include synchronisation of circadian clocks to light:dark cycles and the regulation of pupil size, sleep propensity and pineal melatonin production. Here, we provide a review of some of the landmark discoveries in this fast developing field, paying particular emphasis to recent findings and key areas for future investigation.
Collapse
Affiliation(s)
- Helena J Bailes
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| | | |
Collapse
|