1
|
Bao J, Zhang X, Zhao X. MR imaging and outcome in neonatal HIBD models are correlated with sex: the value of diffusion tensor MR imaging and diffusion kurtosis MR imaging. Front Neurosci 2023; 17:1234049. [PMID: 37790588 PMCID: PMC10543095 DOI: 10.3389/fnins.2023.1234049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/30/2023] [Indexed: 10/05/2023] Open
Abstract
Objective Hypoxic-ischemic encephalopathy can lead to lifelong morbidity and premature death in full-term newborns. Here, we aimed to determine the efficacy of diffusion kurtosis (DK) [mean kurtosis (MK)] and diffusion tensor (DT) [fractional anisotropy (FA), mean diffusion (MD), axial diffusion (AD), and radial diffusion (RD)] parameters for the early diagnosis of early brain histopathological changes and the prediction of neurodegenerative events in a full-term neonatal hypoxic-ischemic brain injury (HIBD) rat model. Methods The HIBD model was generated in postnatal day 7 Sprague-Dawley rats to assess the changes in DK and DT parameters in 10 specific brain structural regions involving the gray matter, white matter, and limbic system during acute (12 h) and subacute (3 d and 5 d) phases after hypoxic ischemia (HI), which were validated against histology. Sensory and cognitive parameters were assessed by the open field, novel object recognition, elevated plus maze, and CatWalk tests. Results Repeated-measures ANOVA revealed that specific brain structures showed similar trends to the lesion, and the temporal pattern of MK was substantially more varied than DT parameters, particularly in the deep gray matter. The change rate of MK in the acute phase (12 h) was significantly higher than that of DT parameters. We noted a delayed pseudo-normalization for MK. Additionally, MD, AD, and RD showed more pronounced differences between males and females after HI compared to MK, which was confirmed in behavioral tests. HI females exhibited anxiolytic hyperactivity-like baseline behavior, while the memory ability of HI males was affected in the novel object recognition test. CatWalk assessments revealed chronic deficits in limb gait parameters, particularly the left front paw and right hind paw, as well as poorer performance in HI males than HI females. Conclusions Our results suggested that DK and DT parameters were complementary in the immature brain and provided great value in assessing early tissue microstructural changes and predicting long-term neurobehavioral deficits, highlighting their ability to detect both acute and long-term changes. Thus, the various diffusion coefficient parameters estimated by the DKI model are powerful tools for early HIBD diagnosis and prognosis assessment, thus providing an experimental and theoretical basis for clinical treatment.
Collapse
Affiliation(s)
- Jieaoxue Bao
- Department of Imaging, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Neuroimaging, Zhengzhou, China
| | - Xiaoan Zhang
- Department of Imaging, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Neuroimaging, Zhengzhou, China
| | - Xin Zhao
- Department of Imaging, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Neuroimaging, Zhengzhou, China
| |
Collapse
|
2
|
Suarez LM, Diaz-Del Cerro E, Felix J, Gonzalez-Sanchez M, Ceprian N, Guerra-Perez N, G Novelle M, Martinez de Toda I, De la Fuente M. Sex differences in neuroimmunoendocrine communication. Involvement on longevity. Mech Ageing Dev 2023; 211:111798. [PMID: 36907251 DOI: 10.1016/j.mad.2023.111798] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Endocrine, nervous, and immune systems work coordinately to maintain the global homeostasis of the organism. They show sex differences in their functions that, in turn, contribute to sex differences beyond reproductive function. Females display a better control of the energetic metabolism and improved neuroprotection and have more antioxidant defenses and a better inflammatory status than males, which is associated with a more robust immune response than that of males. These differences are present from the early stages of life, being more relevant in adulthood and influencing the aging trajectory in each sex and may contribute to the different life lifespan between sexes.
Collapse
Affiliation(s)
- Luz M Suarez
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain.
| | - Estefania Diaz-Del Cerro
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain
| | - Judith Felix
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain
| | - Monica Gonzalez-Sanchez
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain
| | - Noemi Ceprian
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain
| | - Natalia Guerra-Perez
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain
| | - Marta G Novelle
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain
| | - Irene Martinez de Toda
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain
| | - Monica De la Fuente
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain.
| |
Collapse
|
3
|
Becegato M, Silva RH. Object recognition tasks in rats: Does sex matter? Front Behav Neurosci 2022; 16:970452. [PMID: 36035023 PMCID: PMC9412164 DOI: 10.3389/fnbeh.2022.970452] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Novelty recognition tasks based on object exploration are frequently used for the evaluation of cognitive abilities and investigation of neurobiological and molecular aspects of memory in rodents. This is an interesting approach because variations of the object recognition tasks focus on different aspects of the memory events such as novelty, location, context, and combinations of these elements. Nevertheless, as in most animal neuroscience research, female subjects are underrepresented in object recognition studies. When studies include females, the particularities of this sex are not always considered. For example, appropriate controls for manipulations conducted exclusively in females (such as estrous cycle verification) are not included. In addition, interpretation of data is often based on standardizations conducted with male subjects. Despite that, females are frequently reported as deficient and unable to adequately perform some memory tests. Thus, our study aims to review studies that describe similarities and differences between male and female performances in the different variations of object recognition tasks. In summary, although females are commonly described with deficits and the articles emphasize sex differences, most published data reveal similar performances when sexes are compared.
Collapse
Affiliation(s)
- Marcela Becegato
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil
| | - Regina H. Silva
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil
- MaternaCiência, Federal University of São Paulo, São Paulo, Brazil
- *Correspondence: Regina H. Silva,
| |
Collapse
|
4
|
Martini APR, Hoeper E, Pedroso TA, Carvalho AVS, Odorcyk FK, Fabres RB, Pereira NDSC, Netto CA. Effects of acrobatic training on spatial memory and astrocytic scar in CA1 subfield of hippocampus after chronic cerebral hypoperfusion in male and female rats. Behav Brain Res 2022; 430:113935. [PMID: 35605797 DOI: 10.1016/j.bbr.2022.113935] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/07/2022] [Accepted: 05/17/2022] [Indexed: 12/22/2022]
Abstract
Chronic cerebral hypoperfusion leads to neuronal loss in the hippocampus and spatial memory impairments. Physical exercise is known to prevent cognitive deficits in animal models; and there is evidence of sex differences in behavioral neuroprotective approaches. The aim of present study was to investigate the effects of acrobatic training in male and female rats submitted to chronic cerebral hypoperfusion. Males and females rats underwent 2VO (two-vessel occlusion) surgery and were randomly allocated into 4 groups of males and 4 groups of females, as follows: 2VO acrobatic, 2VO sedentary, Sham acrobatic and Sham sedentary. The acrobatic training started 45 days after surgery and lasted 4 weeks; animals were then submitted to object recognition and water maze testing. Brain samples were collected for histological and morphological assessment and flow cytometry. 2VO causes cognitive impairments and acrobatic training prevented spatial memory deficits assessed in the water maze, mainly for females. Morphological analysis showed that 2VO animals had less NeuN labeling and acrobatic training prevented it. Increased number of GFAP positive cells was observerd in females; moreover, males had more branched astrocytes and acrobatic training prevented the branching after 2VO. Flow cytometry showed higher mitochondrial potential in trained animals and more reactive oxygen species production in males. Acrobatic training promoted neuronal survival and improved mitochondrial function in both sexes, and influenced the glial scar in a sex-dependent manner, associated to greater cognitive benefit to females after chronic cerebral hypoperfusion.
Collapse
Affiliation(s)
- Ana Paula Rodrigues Martini
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Eduarda Hoeper
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduation in Biological Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Thales Avila Pedroso
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduation in Physical Therapy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Andrey Vinicios Soares Carvalho
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Felipe Kawa Odorcyk
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rafael Bandeira Fabres
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Natividade de Sá Couto Pereira
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Carlos Alexandre Netto
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
5
|
Schmitz F, Ferreira FS, Silveira JS, V. R. Júnior O, T. S. Wyse A. Effects of methylphenidate after a long period of discontinuation include changes in exploratory behavior and increases brain activities of Na+,K+-ATPase and acetylcholinesterase. Neurobiol Learn Mem 2022; 192:107637. [DOI: 10.1016/j.nlm.2022.107637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/04/2022] [Accepted: 05/13/2022] [Indexed: 11/28/2022]
|
6
|
Durán-Carabali LE, Odorcyk FK, Sanches EF, de Mattos MM, Anschau F, Netto CA. Effect of environmental enrichment on behavioral and morphological outcomes following neonatal hypoxia-ischemia in rodent models: A systematic review and meta-analysis. Mol Neurobiol 2022; 59:1970-1991. [PMID: 35040041 DOI: 10.1007/s12035-022-02730-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/02/2022] [Indexed: 02/06/2023]
Abstract
Neonatal hypoxia-ischemia (HI) is a major cause of mortality and morbidity in newborns and, despite recent advances in neonatal intensive care, there is no definitive treatment for this pathology. Once preclinical studies have shown that environmental enrichment (EE) seems to be a promising therapy for children with HI, the present study conducts a systematic review and meta-analysis of articles with EE in HI rodent models focusing on neurodevelopmental reflexes, motor and cognitive function as well as brain damage. The protocol was registered a priori at PROSPERO. The search was conducted in PubMed, Embase and PsycINFO databases, resulting in the inclusion of 22 articles. Interestingly, EE showed a beneficial impact on neurodevelopmental reflexes (SMD= -0.73, CI= [-0.98; -0.47], p< 0.001, I2= 0.0%), motor function (SMD= -0.55, CI= [-0.81; -0.28], p< 0.001, I2= 62.6%), cognitive function (SMD= -0.93, CI= [-1.14; -0.72], p< 0.001, I2= 27.8%) and brain damage (SMD= -0.80, CI= [-1.03; -0.58], p< 0.001, I2= 10.7%). The main factors that potentiate EE positive effects were enhanced study quality, earlier age at injury as well as earlier start and longer duration of EE exposure. Overall, EE was able to counteract the behavioral and histological damage induced by the lesion, being a promising therapeutic strategy for HI.
Collapse
Affiliation(s)
- L E Durán-Carabali
- Graduate Program in Biological Sciences: Physiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - F K Odorcyk
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - E F Sanches
- Division of Child Development and Growth, Department of Pediatrics, Gynecology and Obstetrics, School of Medicine, University of Geneva, Geneva, Switzerland
| | - M M de Mattos
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, anexo, Porto Alegre, RS, CEP 90035-003, Brazil
| | - F Anschau
- Medicine school, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Graduation Program on Evaluation and Production of Technologies for the Brazilian National Health System, Porto Alegre, Brazil
| | - C A Netto
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, anexo, Porto Alegre, RS, CEP 90035-003, Brazil. .,Department of Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
7
|
Wolf VL, Ergul A. Progress and challenges in preclinical stroke recovery research. Brain Circ 2021; 7:230-240. [PMID: 35071838 PMCID: PMC8757504 DOI: 10.4103/bc.bc_33_21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/16/2021] [Accepted: 10/22/2021] [Indexed: 01/29/2023] Open
Abstract
Significant innovations in the management of acute ischemic stroke have led to an increased incidence in the long-term complications of stroke. Therefore, there is an urgent need for improvements in and refinement of rehabilitation interventions that can lead to functional and neuropsychological recovery. The goal of this review is to summarize the current progress and challenges involved with preclinical stroke recovery research. Moving forward, stroke recovery research should be placing an increased emphasis on the incorporation of comorbid diseases and biological variables in preclinical models in order to overcome translational roadblocks to establishing successful clinical rehabilitation interventions.
Collapse
Affiliation(s)
- Victoria Lea Wolf
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, USA
| | - Adviye Ergul
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, USA
| |
Collapse
|
8
|
Umbilical cord blood therapy modulates neonatal hypoxic ischemic brain injury in both females and males. Sci Rep 2021; 11:15788. [PMID: 34349144 PMCID: PMC8338979 DOI: 10.1038/s41598-021-95035-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Preclinical and clinical studies have shown that sex is a significant risk factor for perinatal morbidity and mortality, with males being more susceptible to neonatal hypoxic ischemic (HI) brain injury. No study has investigated sexual dimorphism in the efficacy of umbilical cord blood (UCB) cell therapy. HI injury was induced in postnatal day 10 (PND10) rat pups using the Rice-Vannucci method of carotid artery ligation. Pups received 3 doses of UCB cells (PND11, 13, 20) and underwent behavioural testing. On PND50, brains were collected for immunohistochemical analysis. Behavioural and neuropathological outcomes were assessed for sex differences. HI brain injury resulted in a significant decrease in brain weight and increase in tissue loss in females and males. Females and males also exhibited significant cell death, region-specific neuron loss and long-term behavioural deficits. Females had significantly smaller brains overall compared to males and males had significantly reduced neuron numbers in the cortex compared to females. UCB administration improved multiple aspects of neuropathology and functional outcomes in males and females. Females and males both exhibited injury following HI. This is the first preclinical evidence that UCB is an appropriate treatment for neonatal brain injury in both female and male neonates.
Collapse
|
9
|
Early environmental enrichment rescues memory impairments provoked by mild neonatal hypoxia-ischemia in adolescent mice. Behav Brain Res 2021; 407:113237. [PMID: 33798820 DOI: 10.1016/j.bbr.2021.113237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/28/2021] [Accepted: 03/08/2021] [Indexed: 12/27/2022]
Abstract
Hypoxia-ischemia (HI) is a consequence of a lack of oxygen and glucose support to the developing brain, which causes several neurodevelopmental impairments. Environmental enrichment (EE) is considered an option to recover the alterations observed in rodents exposed to HI. The aim of this study was to investigate the impact of early EE on memory, hippocampal volume and brain-derived neurotrophic factor (Bbnf) and glucocorticoid receptor (Nr3c1) gene expression of mice exposed to HI. At P10, pups underwent right carotid artery permanent occlusion followed by 35 min of 8% O2 hypoxic environment. Starting at P11, animals were reared in EE or in standard cage (HI-SC or SHAM-SC) conditions until behavioral testing (P45). SHAM pups did not undergo carotid ligation and hypoxic exposure. Memory performance was assessed in the Y-maze, Novel object recognition, and Barnes maze. Animals were then sacrificed for analysis of hippocampal volume and Bdnf and Nr3c1 gene expression. We observed that animals exposed to HI performed worse in all three tests compared to SHAM animals. Furthermore, HI animals exposed to EE did not differ from SHAM animals in all tasks. Moreover, HI decreased hippocampal volume, while animals reared in early EE were not different compared to SHAM animals. Animals exposed to HI also showed upregulated hippocampal Bdnf expression compared to SHAM animals. We conclude that early EE from P11 to P45 proved to be effective in recovering memory impairments and hippocampal volume loss elicited by HI. Nevertheless, Bdnf expression was not associated with the improvements in memory performance observed in animals exposed to EE after a hypoxic-ischemic event.
Collapse
|
10
|
Bradford A, Hernandez M, Kearney E, Theriault L, Lim YP, Stonestreet BS, Threlkeld SW. Effects of Juvenile or Adolescent Working Memory Experience and Inter-Alpha Inhibitor Protein Treatment after Neonatal Hypoxia-Ischemia. Brain Sci 2020; 10:E999. [PMID: 33348631 PMCID: PMC7765798 DOI: 10.3390/brainsci10120999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/04/2020] [Accepted: 12/15/2020] [Indexed: 12/24/2022] Open
Abstract
Hypoxic-Ischemic (HI) brain injury in the neonate contributes to life-long cognitive impairment. Early diagnosis and therapeutic interventions are critical but limited. We previously reported in a rat model of HI two interventional approaches that improve cognitive and sensory function: administration of Inter-alpha Inhibitor Proteins (IAIPs) and early experience in an eight-arm radial water maze (RWM) task. Here, we expanded these studies to examine the combined effects of IAIPs and multiple weeks of RWM assessment beginning with juvenile or adolescent rats to evaluate optimal age windows for behavioral interventions. Subjects were divided into treatment groups; HI with vehicle, sham surgery with vehicle, and HI with IAIPs, and received either juvenile (P31 initiation) or adolescent (P52 initiation) RWM testing, followed by adult retesting. Error rates on the RWM decreased across weeks for all conditions. Whereas, HI injury impaired global performance as compared to shams. IAIP-treated HI subjects tested as juveniles made fewer errors as compared to their untreated HI counterparts. The juvenile group made significantly fewer errors on moderate demand trials and showed improved retention as compared to the adolescent group during the first week of adult retesting. Together, results support and extend our previous findings that combining behavioral and anti-inflammatory interventions in the presence of HI improves subsequent learning performance. Results further indicate sensitive periods for behavioral interventions to improve cognitive outcomes. Specifically, early life cognitive experience can improve long-term learning performance even in the presence of HI injury. Results from this study provide insight into typical brain development and the impact of developmentally targeted therapeutics and task-specific experience on subsequent cognitive processing.
Collapse
Affiliation(s)
- Aaron Bradford
- Neuroscience Program, School of Health Sciences, Regis College, 235 Wellesley Street, Weston, MA 02493, USA; (A.B.); (M.H.); (E.K.); (L.T.)
| | - Miranda Hernandez
- Neuroscience Program, School of Health Sciences, Regis College, 235 Wellesley Street, Weston, MA 02493, USA; (A.B.); (M.H.); (E.K.); (L.T.)
| | - Elaine Kearney
- Neuroscience Program, School of Health Sciences, Regis College, 235 Wellesley Street, Weston, MA 02493, USA; (A.B.); (M.H.); (E.K.); (L.T.)
| | - Luke Theriault
- Neuroscience Program, School of Health Sciences, Regis College, 235 Wellesley Street, Weston, MA 02493, USA; (A.B.); (M.H.); (E.K.); (L.T.)
| | - Yow-Pin Lim
- ProThera Biologics, Inc., 349 Eddy Street, Providence, RI 02903, USA;
- Department of Pathology and Laboratory Medicine, The Alpert Medical School of Brown University, 222 Richmond Street, Providence, RI 02903, USA
| | - Barbara S. Stonestreet
- Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, 101 Dudley Street, Providence, RI 02905, USA;
| | - Steven W. Threlkeld
- Neuroscience Program, School of Health Sciences, Regis College, 235 Wellesley Street, Weston, MA 02493, USA; (A.B.); (M.H.); (E.K.); (L.T.)
| |
Collapse
|
11
|
de Almeida W, Confortim HD, Deniz BF, Miguel PM, Vieira MC, Bronauth L, Dos Santos AS, Bertoldi K, Siqueira IR, Pereira LO. Acrobatic exercise recovers object recognition memory impairment in hypoxic-ischemic rats. Int J Dev Neurosci 2020; 81:60-70. [PMID: 33135304 DOI: 10.1002/jdn.10075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/17/2020] [Accepted: 10/28/2020] [Indexed: 11/08/2022] Open
Abstract
Neonatal hypoxia-ischemia (HI) can lead to cognitive impairments and motor dysfunction. Acrobatic exercises (AE) were proposing as therapeutic option to manage HI motor deficits, however, the cognitive effects after this treatment are still poorly understood. Therefore, we evaluated the effects of AE protocol on memory impairments and brain plasticity markers after Rice-Vannucci HI rodent model. Wistar rats on the 7th postnatal day (PND) were submitted to HI model and after weaning (PND22) were trained for 5 weeks with AE protocol, then subsequently submitted to cognitive tests. Our results showed recovery in novel object recognition (NOR) memory, but not, spatial Morris Water Maze (WM) memory after AE treatment in HI rats. BDNF and synaptophysin neuroplasticity markers indicate plastic alterations in the hippocampus and striatum, with maintenance of synaptophysin despite the reduction of total volume tissue, besides, hippocampal HI-induced ipsilateral BDNF increased, and striatum contralateral BDNF decreased were noted. Nevertheless, the exercise promoted functional recovery and seems to be a promising strategy for HI treatment, however, future studies identifying neuroplastic pathway for this improvement are needed.
Collapse
Affiliation(s)
- Wellington de Almeida
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Heloísa Deola Confortim
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,UNIVEL Centro Universitário, Cascavel, Brazil
| | - Bruna Ferrary Deniz
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Patrícia Maidana Miguel
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Milene Cardoso Vieira
- Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Loise Bronauth
- Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Adriana Souza Dos Santos
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Karine Bertoldi
- Departamento de Farmacologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ionara Rodrigues Siqueira
- Departamento de Farmacologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Ciências Biológicas, Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lenir Orlandi Pereira
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
12
|
Sakhaie N, Sadegzadeh F, Mohammadnia A, Dadkhah M, Saadati H. Sex-dependent effects of postweaning exposure to an enriched environment on novel objective recognition memory and anxiety-like behaviors: The role of hippocampal BDNF level. Int J Dev Neurosci 2020; 80:396-408. [PMID: 32416621 DOI: 10.1002/jdn.10038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 01/18/2023] Open
Abstract
Exposure to enriched environment (EE) has been indicated to enhance cognitive functions, hippocampal neural plasticity, neurogenesis, long-term potentiation, and levels of the brain-derived neurotrophic factor (BDNF) in laboratory animals. Also, studies on the sex-dependent effects of exposure to EE during adolescence on adult cognitive functions are less. This is important because the beneficial effects of EE may be predominant in the adolescence stage. Therefore, the present study was designed to compare the effects of EE during adolescence (PND21-PND60) on novel objective recognition memory (NORM), anxiety-like behaviors, and hippocampal BDNF mRNA level in the adult male and female rats. Assessment of NORM and anxiety-like behaviors has been done by novel objective recognition task, open field (OF), and elevated plus maze (EPM), respectively. The expression of BDNF mRNA level was also evaluated by quantitative RT-PCR. Our findings demonstrated that housing in the EE during adolescence improves NORM in adult male rats. Also, exposure to EE during adolescence had a different effect on anxiety-like behaviors in both sexes. Additionally, our results indicated an augmented BDNF level in the hippocampus of male and female rats. In conclusion, adolescent exposure to EE has sex-dependent effects on cognitive functions and anxiety-like behaviors and increases BDNF mRNA expression in the hippocampus of both male and female rats; thus, BDNF is an important factor that can mediate the beneficial effects of EE and running exercise on cognitive functions and psychiatric traits.
Collapse
Affiliation(s)
- Nona Sakhaie
- Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farshid Sadegzadeh
- Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Alireza Mohammadnia
- Faculty of Medicine, Department of Basic Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Masoumeh Dadkhah
- Pharmaceutical Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hakimeh Saadati
- Faculty of Medicine, Department of Physiology, Ardabil University of Medical Sciences, Ardabil, Iran
- Physiological Studies Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
13
|
Effects of a potassium channel opener on brain injury and neurologic outcomes in an animal model of neonatal hypoxic-ischemic injury. Pediatr Res 2020; 88:202-208. [PMID: 31896131 PMCID: PMC7329576 DOI: 10.1038/s41390-019-0734-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Hypoxia-ischemia (HI) is the most common cause of brain injury in newborns and the survivors often develop cognitive and sensorimotor disabilities that undermine the quality of life. In the current study, we examined the effectiveness of flupirtine, a potassium channel opener, shown previously in an animal model to have strong anti-neonatal-seizure efficacy, to provide neuroprotection and alleviate later-life disabilities caused by neonatal hypoxic-ischemic injury. METHODS The rats were treated with a single dose of flupirtine for 4 days following HI induction in 7-day-old rats. The first dose of flupirtine was given after the induction of HI and during the reperfusion period. The effect of treatment was examined on acute and chronic brain injury, motor functions, and cognitive abilities. RESULTS Flupirtine treatment significantly reduced HI-induced hippocampal and cortical tissue loss at acute time point. Furthermore, at chronic time point, flupirtine reduced contralateral hippocampal volume loss and partially reversed learning and memory impairments but failed to improve motor deficits. CONCLUSION The flupirtine treatment regimen used in the current study significantly reduced brain injury at acute time point in an animal model of neonatal hypoxic-ischemic encephalopathy. However, these neuroprotective effects were not persistent and only modest improvement in functional outcomes were observed at chronic time points.
Collapse
|
14
|
Miguel PM, Deniz BF, Confortim HD, de Almeida W, Bronauth LP, Vieira MC, Bertoldi K, Siqueira IR, Silveira PP, Pereira LO. Methylphenidate treatment increases hippocampal BDNF levels but does not improve memory deficits in hypoxic-ischemic rats. J Psychopharmacol 2020; 34:750-758. [PMID: 32255391 DOI: 10.1177/0269881120913153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Methylphenidate (MPH) is a stimulant drug mainly prescribed to treat cognitive impairments in attention-deficit/hyperactivity disorder (ADHD). We demonstrated that neonatal hypoxia-ischemia (HI) induced attentional deficits in rats and MPH administration reversed these deficits. However, MPH effects on memory deficits after the HI procedure have not been evaluated yet. AIMS We aimed to analyze learning and memory performance of young hypoxic-ischemic rats after MPH administration and associate their performance with brain-derived neurotrophic factor (BDNF) levels in the prefrontal cortex and hippocampus. METHODS Male Wistar rats were divided into four groups (n=11-13/group): control saline (CTS), control MPH (CTMPH), HI saline (HIS) and HIMPH. The HI procedure was conducted at post-natal day (PND) 7 and memory tasks between PND 30 and 45. MPH administration (2.5 mg/kg, i.p.) occurred 30 min prior to each behavioral session and daily, for 15 days, for the BDNF assay (n=5-7/group). RESULTS As expected, hypoxic-ischemic animals demonstrated learning and memory deficits in the novel-object recognition (NOR) and Morris water maze (MWM) tasks. However, MPH treatment did not improve learning and memory deficits of these animals in the MWM-and even disrupted the animals' performance in the NOR task. Increased BDNF levels were found in the hippocampus of HIMPH animals, which seem to have been insufficient to improve memory deficits observed in this group. CONCLUSIONS The MPH treatment was not able to improve memory deficits resulting from the HI procedure considering a dose of 2.5 mg/kg. Further studies investigating different MPH doses would be necessary to determine a dose-response relationship in this model.
Collapse
Affiliation(s)
- Patrícia Maidana Miguel
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Ciências Morfológicas, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Bruna Ferrary Deniz
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Ciências Morfológicas, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Heloísa Deola Confortim
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Ciências Morfológicas, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Wellington de Almeida
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Ciências Morfológicas, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Loise Peres Bronauth
- Departamento de Ciências Morfológicas, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Milene Cardoso Vieira
- Departamento de Ciências Morfológicas, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Karine Bertoldi
- Departamento de Farmacologia, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ionara Rodrigues Siqueira
- Departamento de Farmacologia, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Ciências Biológicas, Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Patrícia Pelufo Silveira
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Canada.,Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Canada.,Sackler Program for Epigenetics & Psychobiology at McGill University, Montreal, Canada
| | - Lenir Orlandi Pereira
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Ciências Morfológicas, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
15
|
Vaghef L, Farajdokht F, Erfani M, Majdi A, Sadigh-Eteghad S, Karimi P, Sandoghchian Shotorbani S, Seyedi Vafaee M, Mahmoudi J. Cerebrolysin attenuates ethanol-induced spatial memory impairments through inhibition of hippocampal oxidative stress and apoptotic cell death in rats. Alcohol 2019; 79:127-135. [PMID: 30981808 DOI: 10.1016/j.alcohol.2019.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 03/23/2019] [Accepted: 03/27/2019] [Indexed: 02/07/2023]
Abstract
The present study investigates the potential neuroprotective effect of cerebrolysin (CBL), a combination of neurotrophic factors, on the cognitive and biochemical alterations induced by chronic ethanol administration in rats. The animals were divided into five groups as follows: control; ethanol (4 g/kg, for 30 days) plus normal saline (Ethanol + NS); ethanol plus CBL 1 mL/kg (Ethanol + CBL 1), ethanol plus CBL 2.5 mL/kg (Ethanol + CBL 2.5); and ethanol plus CBL 5 mL/kg (Ethanol + CBL 5). The Morris water maze (MWM) test was performed to assess cognitive impairment. The status of the lipid peroxidation marker MDA, antioxidant capacity, as well as alterations of the apoptotic factors such as Bcl-2, BAX, and cleaved caspase-9 and -3, were evaluated in the hippocampus. The results showed that CBL treatment not only normalized the increased MDA levels in the alcoholic rats and enhanced antioxidant defense, but also reduced the Bax/Bcl-2 ratio and cleaved caspase-9 and -3 in the hippocampus. These results were parallel with improvement in spatial memory performance in the MWM test. The findings of the present study provide evidence for the promising therapeutic effect of CBL in chronic ethanol consumption through counteracting oxidative stress and apoptosis markers.
Collapse
|
16
|
Muntsant A, Shrivastava K, Recasens M, Giménez-Llort L. Severe Perinatal Hypoxic-Ischemic Brain Injury Induces Long-Term Sensorimotor Deficits, Anxiety-Like Behaviors and Cognitive Impairment in a Sex-, Age- and Task-Selective Manner in C57BL/6 Mice but Can Be Modulated by Neonatal Handling. Front Behav Neurosci 2019; 13:7. [PMID: 30814939 PMCID: PMC6381068 DOI: 10.3389/fnbeh.2019.00007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/09/2019] [Indexed: 12/13/2022] Open
Abstract
Perinatal brain injury (PBI) leads to neurological disabilities throughout life, from motor deficits, cognitive limitations to severe cerebral palsy. Yet, perinatal brain damage has limited therapeutic outcomes. Besides, the immature brain of premature children is at increased risk of hypoxic/ischemic (HI) injury, with males being more susceptible to it and less responsive to protective/therapeutical interventions. Here, we model in male and female C57BL/6 mice, the impact of neonatal HI and the protective effects of neonatal handling (NH), an early life tactile and proprioceptive sensory stimulation. From postnatal day 1 (PND1, modeling pre-term) to PND21 randomized litters received either NH or left undisturbed. HI brain damage occurred by permanent left carotid occlusion followed by hypoxia at PND7 (modeling full-term) in half of the animals. The behavioral and functional screening of the pups at weaning (PND23) and their long-term outcomes (adulthood, PND70) were evaluated in a longitudinal study, as follows: somatic development (weight), sensorimotor functions (reflexes, rods and hanger tests), exploration [activity (ACT) and open-field (OF) test], emotional and anxiety-like behaviors [corner, open-field and dark-light box (DLB) tests], learning and memory [T-maze (TM) and Morris Water-Maze (MWM)]. HI induced similar brain damage in both sexes but affected motor development, sensorimotor functions, induced hyperactivity at weaning, and anxiety-like behaviors and cognitive deficits at adulthood, in a sex- and age-dependent manner. Thus, during ontogeny, HI affected equilibrium especially in females and prehensility in males, but only reflexes at adulthood. Hyperactivity of HI males was normalized at adulthood. HI increased neophobia and other anxiety-like behaviors in males but emotionality in females. Both sexes showed worse short/long-term learning, but memory was more affected in males. Striking neuroprotective effects of NH were found, with significantly lower injury scores, mostly in HI males. At the functional level, NH reversed the impaired reflex responses and improved memory performances in hippocampal-dependent spatial-learning tasks, especially in males. Finally, neuropathological correlates referred to atrophy, neuronal densities and cellularity in the affected areas [hippocampal-CA, caudate/putamen, thalamus, neocortex and corpus callosum (CC)] point out distinct neuronal substrates underlying the sex- and age- functional impacts of these risk/protection interventions on sensorimotor, behavioral and cognitive outcomes from ontogeny to adulthood.
Collapse
Affiliation(s)
- Aida Muntsant
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Kalpana Shrivastava
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology & Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mireia Recasens
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology & Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lydia Giménez-Llort
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
17
|
Durán-Carabali L, Arcego D, Sanches E, Odorcyk F, Marques M, Tosta A, Reichert L, Carvalho A, Dalmaz C, Netto C. Preventive and therapeutic effects of environmental enrichment in Wistar rats submitted to neonatal hypoxia-ischemia. Behav Brain Res 2019; 359:485-497. [DOI: 10.1016/j.bbr.2018.11.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/14/2018] [Accepted: 11/24/2018] [Indexed: 12/27/2022]
|
18
|
Confortim HD, Deniz BF, de Almeida W, Miguel PM, Bronauth L, Vieira MC, de Oliveira BC, Pereira LO. Neonatal hypoxia-ischemia caused mild motor dysfunction, recovered by acrobatic training, without affecting morphological structures involved in motor control in rats. Brain Res 2018; 1707:27-44. [PMID: 30448443 DOI: 10.1016/j.brainres.2018.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/29/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
Abstract
The aim of this study was to evaluated motor function and morphological aspects of the components involved in motor control (sensorimotor cortex, spinal cord, sciatic nerve, neuromuscular junctions and skeletal muscle) in male Wistar rats exposed to a model of neonatal hypoxic-ischemic encephalopathy (HIE) and the possible influence of different physical exercise protocols - treadmill and acrobatic. Male Wistar rats at the 7th post-natal day (PND) were submitted to the HIE model and from the 22nd until 60th PND the exercise protocols (treadmill or acrobatic training) were running. After the training, the animals were evaluated in Open Field, Ladder Rung Walking and Rotarod tasks and after samples of the motor control components were collected. Our results evidenced that the acrobatic training reversed the hyperactivity and anxiety, caused locomotion improvement and decreased brain atrophy in HIE animals. We did not find morphological differences on sensorimotor cortex, spinal cord, sciatic nerve, neuromuscular junctions and skeletal muscle in the animals submitted to HIE model. These intriguing data support the statement of the Rice-Vannucci model does not seem to reproduce, in structures involved in control function, the damage found in humans that suffer HIE. Regarding the protocols of exercise, we proposed that the acrobatic exercise could be a good therapeutic option especially in children affected by neonatal HIE and can be responsible for good results in cognitive and motor aspects.
Collapse
Affiliation(s)
- Heloísa Deola Confortim
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 107, 90050-170 Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - Bruna Ferrary Deniz
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 107, 90050-170 Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - Wellington de Almeida
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 107, 90050-170 Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - Patrícia Maidana Miguel
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 107, 90050-170 Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - Loise Bronauth
- Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - Milene Cardoso Vieira
- Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - Bruna Chaves de Oliveira
- Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - Lenir Orlandi Pereira
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 107, 90050-170 Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil.
| |
Collapse
|
19
|
Mason B, Rollins LG, Asumadu E, Cange C, Walton N, Donaldson ST. Nesting Environment Provides Sex-Specific Neuroprotection in a Rat Model of Neonatal Hypoxic-Ischemic Injury. Front Behav Neurosci 2018; 12:221. [PMID: 30356904 PMCID: PMC6190890 DOI: 10.3389/fnbeh.2018.00221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/03/2018] [Indexed: 11/17/2022] Open
Abstract
Hypoxic-ischemic (HI) encephalopathy is a devastating injury that occurs when the fetal brain is deprived of oxygen and blood to a degree that may lead to neurological damage, seizing and cerebral palsy. In rodents, early environmental enrichment that promotes maternal care-taking behavior (mCTB) can improve neurobehavioral outcomes and protect against neurological decline. We hypothesized that an enhanced nesting environment would improve mCTB as measured by pup weight gain, and support greater HI recovery in developing rats. Pregnant dams (E15-16) were introduced to either control Standard Facility (SF) housing or closed nestbox (CN) conditions and maintained in larger cages through pup weaning. On postnatal day (PND) 7, male and female Long-Evans rat pups (N = 73) were randomly sorted into one of two surgical conditions: control and HI. HI pups received isoflurane anesthesia and right carotid artery ligation, a 2-h rest followed by 90 min exposure to a moist hypoxic (92% N, 8% O2) chamber. Pups (PND 8) were weighed daily, and tested on the Morris Water Maze (MWM) task (PND 35-50). Results demonstrate significant differences afforded to male and female pups based on weight measure, where CN-rearing modifies pre-weaning adolescent weights in females and increases post-weaning weights in males and females by an average of 10 g. Following successful MWM training and acquisition (PND 35-37), both male and female CN-raised animals demonstrated faster latency to find the hidden platform (HP) during HP trials (PND 38-42) and appeared to freely explore the MWM pool during an additional probe trial (PND 43). Moreover, after sacrifice (PND 60), CN rearing created sex-specific alterations in brain-derived neurotrophic factor (BDNF), glial-derived neurotrophic factor (GDNF) immunopositive cell staining of the dorsomedial striatum and CA1 of the hippocampus. CN-rearing afforded HI males higher BDNF levels in the striatum and produced greater GDNF levels in the hippocampus of HI-injured females. These results suggest that early life environmental enrichment positively modifies nesting environment, increases weight gain, as well as spatial learning and memory in a sex-specific directionality. Our findings also implicate correlative changes in corticolimbic neurotrophin protein levels in the CN-reared animals that may contribute to these benefits.
Collapse
Affiliation(s)
- Briana Mason
- Developmental and Brain Sciences, Department of Psychology, University of Massachusetts Boston, Boston, MA, United States
| | - L. G. Rollins
- Clinical Psychology Program, Department of Psychology, University of Massachusetts Boston, Boston, MA, United States
- Warren Alpert Medical School, Department of Psychiatry, Brown University, Providence, RI, United States
| | - Evans Asumadu
- Developmental and Brain Sciences, Department of Psychology, University of Massachusetts Boston, Boston, MA, United States
| | - Christina Cange
- Developmental and Brain Sciences, Department of Psychology, University of Massachusetts Boston, Boston, MA, United States
| | - Najah Walton
- Developmental and Brain Sciences, Department of Psychology, University of Massachusetts Boston, Boston, MA, United States
| | - S. Tiffany Donaldson
- Developmental and Brain Sciences, Department of Psychology, University of Massachusetts Boston, Boston, MA, United States
| |
Collapse
|
20
|
Charriaut-Marlangue C, Leconte C, Csaba Z, Chafa L, Pansiot J, Talatizi M, Simon K, Moretti R, Marchand-Leroux C, Baud O, Besson VC. Sex differences in the effects of PARP inhibition on microglial phenotypes following neonatal stroke. Brain Behav Immun 2018; 73:375-389. [PMID: 29852289 DOI: 10.1016/j.bbi.2018.05.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/25/2018] [Accepted: 05/27/2018] [Indexed: 12/13/2022] Open
Abstract
Neonatal acute ischemic stroke is a cause of neonatal brain injury that occurs more frequently in males, resulting in associated neurobehavioral disorders. The bases for these sex differences are poorly understood but might include the number, morphology and activation of microglia in the developing brain when subjected to stroke. Interestingly, poly (ADP-ribose) polymerase (PARP) inhibition preferentially protects males against neonatal ischemia. This study aims to examine the effects of PJ34, a PARP inhibitor, on microglial phenotypes at 3 and 8 days and on neurobehavioral disorders in adulthood for both male and female P9 mice subjected to permanent middle cerebral artery occlusion (pMCAo). PJ34 significantly reduced the lesion size by 78% and reduced the density of CX3CR1gfp-labeled microglial cells by 46% when examined 3 days after pMCAo in male but not in female mice. Eight days after pMCAo, the number of Iba1+/Cox-2+ cells did not differ between male and female mice in the cortical peri-infarct region. In the amygdala, Iba1+/Cox-2+ (M1-like) cell numbers were significantly decreased in PJ34-treated males but not in females. Conversely, Iba1+/Arg-1+ (M2-like) and Arg-1+/Cox-2+ (Mtransitional) cell numbers were significantly increased in PJ34-treated females. Regarding neurobehavioral disorders during adulthood, pMCAo induced a motor coordination deficit and a spatial learning deficit in female mice only. PJ34 prevented MBP fibers, motor coordination and learning disorders during adulthood in female mice. Our data show significant sex differences in the effects of PARP inhibition on microglia phenotypes following neonatal ischemia, associated with improved behavior and myelination during adulthood in females only. Our findings suggest that modulating microglial phenotypes may play key roles in behavior disorders and white matter injury following neonatal stroke.
Collapse
Affiliation(s)
- Christiane Charriaut-Marlangue
- U1141 PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, 48 boulevard Sérurier, 75019 Paris, France
| | - Claire Leconte
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Zsolt Csaba
- U1141 PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, 48 boulevard Sérurier, 75019 Paris, France
| | - Linda Chafa
- U1141 PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, 48 boulevard Sérurier, 75019 Paris, France
| | - Julien Pansiot
- U1141 PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, 48 boulevard Sérurier, 75019 Paris, France
| | - Mustapha Talatizi
- U1141 PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, 48 boulevard Sérurier, 75019 Paris, France
| | - Kristin Simon
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Raffaella Moretti
- U1141 PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, 48 boulevard Sérurier, 75019 Paris, France
| | - Catherine Marchand-Leroux
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Olivier Baud
- U1141 PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, 48 boulevard Sérurier, 75019 Paris, France; Division of Neonatology and Pediatric Intensive Care, Children's University Hospital of Geneva and University of Geneva, Geneva, Switzerland
| | - Valérie C Besson
- U1141 PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, 48 boulevard Sérurier, 75019 Paris, France; EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006 Paris, France.
| |
Collapse
|
21
|
Sanches EF, Valentim L, de Almeida Sassi F, Bernardi L, Arteni N, Weis SN, Odorcyk FK, Pranke P, Netto CA. Intracardiac Injection of Dental Pulp Stem Cells After Neonatal Hypoxia-Ischemia Prevents Cognitive Deficits in Rats. Neurochem Res 2018; 43:2268-2276. [PMID: 30255215 DOI: 10.1007/s11064-018-2647-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/05/2018] [Accepted: 09/19/2018] [Indexed: 12/22/2022]
Abstract
Neonatal hypoxia-ischemia (HI) is associated to cognitive and motor impairments and until the moment there is no proven treatment. The underlying neuroprotective mechanisms of stem cells are partially understood and include decrease in excitotoxicity, apoptosis and inflammation suppression. This study was conducted in order to test the effects of intracardiac transplantation of human dental pulp stem cells (hDPSCs) for treating HI damage. Seven-day-old Wistar rats were divided into four groups: sham-saline, sham-hDPSCs, HI-saline, and HI-hDPSCs. Motor and cognitive tasks were performed from postnatal day 30. HI-induced cognitive deficits in the novel-object recognition test and in spatial reference memory impairment which were prevented by hDPSCs. No motor impairments were observed in HI animals. Immunofluorescence analysis showed human-positive nuclei in hDPSC-treated animals closely associated with anti-GFAP staining in the lesion scar tissue, suggesting that these cells were able to migrate to the injury site and could be providing support to CNS cells. Our study evidence novel evidence that hDPSC can contribute to the recovery following hypoxia-ischemia and highlight the need of further investigation in order to better understand the exact mechanisms underlying its neuroprotective effects.
Collapse
Affiliation(s)
- Eduardo Farias Sanches
- Brain Ischemia and Neuroprotection Laboratory, Departament of Biochemistry, Universidade Federal do Rio Grande do Sul, Av. Ramiro Barcelos, 2600, Porto Alegre, RS, CEP 91035-003, Brazil.
| | - Lauren Valentim
- Haematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Brain Ischemia and Neuroprotection Laboratory, Departament of Biochemistry, Universidade Federal do Rio Grande do Sul, Av. Ramiro Barcelos, 2600, Porto Alegre, RS, CEP 91035-003, Brazil
| | - Felipe de Almeida Sassi
- Haematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Brain Ischemia and Neuroprotection Laboratory, Departament of Biochemistry, Universidade Federal do Rio Grande do Sul, Av. Ramiro Barcelos, 2600, Porto Alegre, RS, CEP 91035-003, Brazil
| | - Lisiane Bernardi
- Haematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Nice Arteni
- Brain Ischemia and Neuroprotection Laboratory, Departament of Biochemistry, Universidade Federal do Rio Grande do Sul, Av. Ramiro Barcelos, 2600, Porto Alegre, RS, CEP 91035-003, Brazil
| | - Simone Nardin Weis
- Brain Ischemia and Neuroprotection Laboratory, Departament of Biochemistry, Universidade Federal do Rio Grande do Sul, Av. Ramiro Barcelos, 2600, Porto Alegre, RS, CEP 91035-003, Brazil
| | - Felipe Kawa Odorcyk
- Brain Ischemia and Neuroprotection Laboratory, Departament of Biochemistry, Universidade Federal do Rio Grande do Sul, Av. Ramiro Barcelos, 2600, Porto Alegre, RS, CEP 91035-003, Brazil
| | - Patricia Pranke
- Haematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Stem Cell Research Institute, Porto Alegre, Brazil
| | - Carlos Alexandre Netto
- Brain Ischemia and Neuroprotection Laboratory, Departament of Biochemistry, Universidade Federal do Rio Grande do Sul, Av. Ramiro Barcelos, 2600, Porto Alegre, RS, CEP 91035-003, Brazil
| |
Collapse
|
22
|
Gonçalves LV, Herlinger AL, Ferreira TAA, Coitinho JB, Pires RGW, Martins-Silva C. Environmental enrichment cognitive neuroprotection in an experimental model of cerebral ischemia: biochemical and molecular aspects. Behav Brain Res 2018; 348:171-183. [DOI: 10.1016/j.bbr.2018.04.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/07/2018] [Accepted: 04/16/2018] [Indexed: 01/25/2023]
|
23
|
McDonald MW, Hayward KS, Rosbergen ICM, Jeffers MS, Corbett D. Is Environmental Enrichment Ready for Clinical Application in Human Post-stroke Rehabilitation? Front Behav Neurosci 2018; 12:135. [PMID: 30050416 PMCID: PMC6050361 DOI: 10.3389/fnbeh.2018.00135] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/14/2018] [Indexed: 11/13/2022] Open
Abstract
Environmental enrichment (EE) has been widely used as a means to enhance brain plasticity mechanisms (e.g., increased dendritic branching, synaptogenesis, etc.) and improve behavioral function in both normal and brain-damaged animals. In spite of the demonstrated efficacy of EE for enhancing brain plasticity, it has largely remained a laboratory phenomenon with little translation to the clinical setting. Impediments to the implementation of enrichment as an intervention for human stroke rehabilitation and a lack of clinical translation can be attributed to a number of factors not limited to: (i) concerns that EE is actually the "normal state" for animals, whereas standard housing is a form of impoverishment; (ii) difficulty in standardizing EE conditions across clinical sites; (iii) the exact mechanisms underlying the beneficial actions of enrichment are largely correlative in nature; (iv) a lack of knowledge concerning what aspects of enrichment (e.g., exercise, socialization, cognitive stimulation) represent the critical or active ingredients for enhancing brain plasticity; and (v) the required "dose" of enrichment is unknown, since most laboratory studies employ continuous periods of enrichment, a condition that most clinicians view as impractical. In this review article, we summarize preclinical stroke recovery studies that have successfully utilized EE to promote functional recovery and highlight the potential underlying mechanisms. Subsequently, we discuss how EE is being applied in a clinical setting and address differences in preclinical and clinical EE work to date. It is argued that the best way forward is through the careful alignment of preclinical and clinical rehabilitation research. A combination of both approaches will allow research to fully address gaps in knowledge and facilitate the implementation of EE to the clinical setting.
Collapse
Affiliation(s)
- Matthew W McDonald
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada
| | - Kathryn S Hayward
- Stroke Division, Florey Institute of Neuroscience and Mental Health, Heidelberg, VIC, Australia.,NHMRC Centre for Research Excellence in Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia
| | - Ingrid C M Rosbergen
- Division of Physiotherapy, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, Australia.,Allied Health Services, Sunshine Coast Hospital and Health Service, Birtinya, QLD, Australia
| | - Matthew S Jeffers
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada
| | - Dale Corbett
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada
| |
Collapse
|
24
|
Deniz BF, Confortim HD, Deckmann I, Miguel PM, Bronauth L, de Oliveira BC, Barbosa S, Cechinel LR, Siqueira IR, Pereira LO. Folic acid supplementation during pregnancy prevents cognitive impairments and BDNF imbalance in the hippocampus of the offspring after neonatal hypoxia-ischemia. J Nutr Biochem 2018; 60:35-46. [PMID: 30064014 DOI: 10.1016/j.jnutbio.2018.06.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/30/2018] [Accepted: 06/25/2018] [Indexed: 12/01/2022]
Abstract
Folic acid (FA) supplementation (400 μg/day) has been recommended during pregnancy to prevent neural tube defects. However, in some countries, flours are required to be fortified with FA, possibly increasing the levels of this vitamin in pregnant women. Our previous studies have evidenced a dual effect of the FA treatment in a rat model of neonatal hypoxia-ischemia (HI). Aiming to better correlate with humans, this paper evaluated the effects of two different levels of FA supplementation during pregnancy on memory parameters and neuronal survival and plasticity in the hippocampus of rats submitted to the neonatal HI. During pregnancy, female Wistar rats received one of these diets: standard (SD), supplemented with 2 mg/kg of FA or with 20 mg/kg of FA. At the 7th PND, rats suffered the HI procedure. At the 60th PND rats were evaluated in the open field, Morris water maze, novel-object recognition and inhibitory avoidance tasks. Furthermore, neuronal density, synaptophysin densitometry and BDNF concentration were assessed in the hippocampus. Both doses of FA prevented the HI-induced memory impairments. The supplementation reversed the BDNF late increase in the hippocampus of the HI rats, but did not inhibit the neuronal death. In conclusion, FA supplementation during pregnancy prevented memory deficits and BDNF imbalance after neonatal HI. These findings are particularly relevant because neuroprotection was achieved even in the high level of FA supplementation during pregnancy, indicating that this intervention would be considered secure for the offspring development.
Collapse
Affiliation(s)
- Bruna Ferrary Deniz
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 107, 90050- 170, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050- 170, Porto Alegre, RS, Brazil
| | - Heloísa Deola Confortim
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 107, 90050- 170, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050- 170, Porto Alegre, RS, Brazil
| | - Iohanna Deckmann
- Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050- 170, Porto Alegre, RS, Brazil
| | - Patrícia Maidana Miguel
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 107, 90050- 170, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050- 170, Porto Alegre, RS, Brazil
| | - Loise Bronauth
- Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050- 170, Porto Alegre, RS, Brazil
| | - Bruna Chaves de Oliveira
- Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050- 170, Porto Alegre, RS, Brazil
| | - Sílvia Barbosa
- Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050- 170, Porto Alegre, RS, Brazil
| | - Laura Reck Cechinel
- Programa de Pós-Graduação em Ciências Biológicas, Fisiologia, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 320, 90050- 170, Porto Alegre, RS, Brazil; Departamento de Farmacologia, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050- 170, Porto Alegre, RS, Brazil
| | - Ionara Rodrigues Siqueira
- Programa de Pós-Graduação em Ciências Biológicas, Fisiologia, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 320, 90050- 170, Porto Alegre, RS, Brazil; Departamento de Farmacologia, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050- 170, Porto Alegre, RS, Brazil
| | - Lenir Orlandi Pereira
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 107, 90050- 170, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050- 170, Porto Alegre, RS, Brazil.
| |
Collapse
|
25
|
Long-term effects of enriched environment following neonatal hypoxia-ischemia on behavior, BDNF and synaptophysin levels in rat hippocampus: Effect of combined treatment with G-CSF. Brain Res 2017; 1667:55-67. [DOI: 10.1016/j.brainres.2017.05.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 04/13/2017] [Accepted: 05/01/2017] [Indexed: 12/12/2022]
|
26
|
Hypoxic postconditioning improves behavioural deficits at 6 weeks following hypoxic-ischemic brain injury in neonatal rats. Behav Brain Res 2017. [PMID: 28647597 DOI: 10.1016/j.bbr.2017.06.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hypoxic-ischemic (HI) brain injury in newborns is associated with high morbidity and mortality, with many babies suffering neurological deficits. Recently, we showed that hypoxic postconditioning (PostC) immediately post injury can protect against HI up to one week in neonatal rats. Here, we aimed to examine whether long term functional deficits were also improved by PostC. Sprague-Dawley rats were assigned to control (C) or HI group on postnatal day 7 (P7). The HI group underwent unilateral carotid artery occlusion followed by hypoxia (7% oxygen, 3h). Half of each group were randomly assigned to the PostC group (8% oxygen, 1h/day for 5days post-injury), or normoxic group, where animals were kept under ambient conditions. Righting reflex and negative geotaxis tests were performed on P8 and P14. On P42, rats underwent further behavioural tests of motor function and memory (forelimb grip strength, grid walking and novel object recognition tasks). Brain injury was assessed using histological scoring of brain sections. At P14, PostC reduced the righting reflex deficit compared to HI alone. Long-term (6 weeks) behavioural deficits were observed in grid walking and novel object recognition tests after HI alone, with both functions improved following PostC. Following HI, there was an increase in brain injury assessed by histological scoring compared to control, and this damage was reduced by PostC. This novel finding of long-term histological neuroprotection accompanied by functional improvements by PostC further demonstrates the clinical potential of mild hypoxia for the treatment of HI brain injury.
Collapse
|
27
|
Tang S, Xu S, Lu X, Gullapalli RP, McKenna MC, Waddell J. Neuroprotective Effects of Acetyl-L-Carnitine on Neonatal Hypoxia Ischemia-Induced Brain Injury in Rats. Dev Neurosci 2017; 38:384-396. [PMID: 28226317 DOI: 10.1159/000455041] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/12/2016] [Indexed: 12/17/2022] Open
Abstract
Perinatal hypoxia ischemia (HI) is a significant cause of brain injury in surviving infants. Although hypothermia improves outcomes in some infants, additional therapies are needed since about 40% of infants still have a poor outcome. Acetyl-L-carnitine (ALCAR), an acetylated derivative of L-carnitine, protected against early changes in brain metabolites and mitochondrial function after HI on postnatal day (PND) 7 in a rat pup model of near-term HI injury. However, its efficacy in long-term structural and functional outcomes remains unexplored. We determined the efficacy of ALCAR therapy administered to rat pups after HI at PND 7, using both longitudinal in vivo magnetic resonance imaging and behavioral tests, in male and female rats. HI led to sex-specific behavioral impairment, with males exhibiting more global functional deficits than females. Interestingly, HI reduced the volume of the contralateral hemisphere in males only, suggesting that the brain injury is more diffuse in males than in females. Treatment with ALCAR improved both morphological and functional outcomes in both male and female rats. These results suggest that ALCAR may be a potential therapy for clinical use since the treatment attenuated the moderate injury produced under the experimental conditions used and improved the functional outcome in preclinical studies.
Collapse
Affiliation(s)
- Shiyu Tang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
28
|
Morán J, Stokowska A, Walker FR, Mallard C, Hagberg H, Pekna M. Intranasal C3a treatment ameliorates cognitive impairment in a mouse model of neonatal hypoxic-ischemic brain injury. Exp Neurol 2017; 290:74-84. [PMID: 28062175 DOI: 10.1016/j.expneurol.2017.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/12/2016] [Accepted: 01/02/2017] [Indexed: 10/20/2022]
Abstract
Perinatal asphyxia-induced brain injury is often associated with irreversible neurological complications such as intellectual disability and cerebral palsy but available therapies are limited. Novel neuroprotective therapies as well as approaches stimulating neural plasticity mechanism that can compensate for cell death after hypoxia-ischemia (HI) are urgently needed. We previously reported that single i.c.v. injection of complement-derived peptide C3a 1h after HI induction prevented HI-induced cognitive impairment when mice were tested as adults. Here, we tested the effects of intranasal treatment with C3a on HI-induced cognitive deficit. Using the object recognition test, we found that intranasal C3a treated mice were protected from HI-induced impairment of memory function assessed 6weeks after HI induction. C3a treatment ameliorated HI-induced reactive gliosis in the hippocampus, while it did not affect the extent of hippocampal tissue loss, neuronal cell density, expression of the pan-synaptic marker synapsin I or the expression of growth associated protein 43. In conclusion, our results reveal that brief pharmacological treatment with C3a using a clinically feasible non-invasive mode of administration ameliorates HI-induced cognitive impairment. Intranasal administration is a plausible route to deliver C3a into the brain of asphyxiated infants at high risk of developing hypoxic-ischemic encephalopathy.
Collapse
Affiliation(s)
- Javier Morán
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Anna Stokowska
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Frederik R Walker
- School of Biomedical Sciences and Pharmacy, University of Newcastle, New South Wales, Australia
| | - Carina Mallard
- Perinatal Center, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Hagberg
- Perinatal Center, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Centre for the Developing Brain, King's College, London, UK; Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marcela Pekna
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Hunter Medical Research Institute, University of Newcastle, New South Wales, Australia.
| |
Collapse
|
29
|
Netto CA, Sanches E, Odorcyk FK, Duran-Carabali LE, Weis SN. Sex-dependent consequences of neonatal brain hypoxia-ischemia in the rat. J Neurosci Res 2016; 95:409-421. [DOI: 10.1002/jnr.23828] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/14/2016] [Accepted: 06/20/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Carlos Alexandre Netto
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde; Universidade Federal do Rio Grande do Sul; Porto Alegre Rio Grande do Sul Brazil
| | - Eduardo Sanches
- Division of Child Development and Growth, Department of Pediatrics; University of Geneva; Geneva Switzerland
| | - Felipe Kawa Odorcyk
- Postgraduate Program of Neurosciences, Instituto de Ciências Básicas da Saúde; Universidade Federal do Rio Grande do Sul; Porto Alegre Rio Grande do Sul Brazil
| | - Luz Elena Duran-Carabali
- Postgraduate Program of Physiology, Instituto de Ciências Básicas da Saúde; Universidade Federal do Rio Grande do Sul; Porto Alegre Rio Grande do Sul Brazil
| | - Simone Nardin Weis
- Department of Cellular Biology; Universidade de Brasília; Brasilia Distrito Federal Brazil
| |
Collapse
|
30
|
Diaz R, Miguel PM, Deniz BF, Confortim HD, Barbosa S, Mendonça MCP, Cruz‐Höfling MA, Pereira LO. Environmental enrichment attenuates the blood brain barrier dysfunction induced by the neonatal hypoxia‐ischemia. Int J Dev Neurosci 2016; 53:35-45. [DOI: 10.1016/j.ijdevneu.2016.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/08/2016] [Accepted: 06/16/2016] [Indexed: 12/27/2022] Open
Affiliation(s)
- Ramiro Diaz
- Programa de Pós Graduação em NeurociênciasUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| | - Patrícia Maidana Miguel
- Programa de Pós Graduação em NeurociênciasUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| | - Bruna Ferrary Deniz
- Programa de Pós Graduação em NeurociênciasUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| | - Heloísa Deola Confortim
- Programa de Pós Graduação em NeurociênciasUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| | - Sílvia Barbosa
- Programa de Pós Graduação em NeurociênciasUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazil
- Departamento de Ciências MorfológicasUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| | - Monique Culturato Padilha Mendonça
- Departamento de Farmacologia, Faculdade de Ciências MédicasUniversidade Estadual de Campinas (UNICAMP)CampinasSPBrazil
- Departamento de Bioquímica e Biologia TecidualInstituto de Biologia (IB), Universidade Estadual de Campinas (UNICAMP)CampinasSPBrazil
| | - Maria Alice Cruz‐Höfling
- Departamento de Farmacologia, Faculdade de Ciências MédicasUniversidade Estadual de Campinas (UNICAMP)CampinasSPBrazil
- Departamento de Bioquímica e Biologia TecidualInstituto de Biologia (IB), Universidade Estadual de Campinas (UNICAMP)CampinasSPBrazil
| | - Lenir Orlandi Pereira
- Programa de Pós Graduação em NeurociênciasUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazil
- Departamento de Ciências MorfológicasUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| |
Collapse
|
31
|
Marcelino TB, de Lemos Rodrigues PI, Klein CP, Santos BGD, Miguel PM, Netto CA, Silva LOP, Matté C. Behavioral benefits of maternal swimming are counteracted by neonatal hypoxia-ischemia in the offspring. Behav Brain Res 2016; 312:30-8. [PMID: 27283975 DOI: 10.1016/j.bbr.2016.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/01/2016] [Accepted: 06/05/2016] [Indexed: 12/22/2022]
Abstract
Hypoxia-ischemia (HI) represents one of the most common causes of neonatal encephalopathy. The central nervous system injury comprises several mechanisms, including inflammatory, excitotoxicity, and redox homeostasis unbalance leading to cell death and cognitive impairment. Exercise during pregnancy is a potential therapeutic tool due to benefits offered to mother and fetus. Swimming during pregnancy elicits a strong metabolic programming in the offspring's brain, evidenced by increased antioxidant enzymes, mitochondrial biogenesis, and neurogenesis. This article aims to evaluate whether the benefits of maternal exercise are able to prevent behavioral brain injury caused by neonatal HI. Female adult Wistar rats swam before and during pregnancy (30min/day, 5 days/week, 4 weeks). At 7(th) day after birth, the offspring was submitted to HI protocol and, in adulthood (60(th) day), it performed the behavioral tests. It was observed an increase in motor activity in the open field test in HI-rats, which was not prevented by maternal exercise. The rats subjected to maternal swimming presented an improved long-term memory in the object recognition task, which was totally reversed by neonatal HI encephalopathy. BDNF brain levels were not altered; suggesting that HI or maternal exercise effects were BDNF-independent. In summary, our data suggest a beneficial long-term effect of maternal swimming, despite not being robust enough to protect from HI injury.
Collapse
Affiliation(s)
- Thiago Beltram Marcelino
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, ICBS Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Caroline Peres Klein
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, ICBS Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bernardo Gindri Dos Santos
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, ICBS Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrícia Maidana Miguel
- Programa de Pós-graduação em Neurociências, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos Alexandre Netto
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, ICBS Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas de Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-graduação em Neurociências, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lenir Orlandi Pereira Silva
- Programa de Pós-graduação em Neurociências, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Cristiane Matté
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, ICBS Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas de Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
32
|
Rodrigues AF, Biasibetti H, Zanotto BS, Sanches EF, Pierozan P, Schmitz F, Parisi MM, Barbé‐Tuana F, Netto CA, Wyse AT. Intracerebroventricular
d
‐galactose administration impairs memory and alters activity and expression of acetylcholinesterase in the rat. Int J Dev Neurosci 2016; 50:1-6. [DOI: 10.1016/j.ijdevneu.2016.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 12/16/2022] Open
Affiliation(s)
- André Felipe Rodrigues
- Programa de Pós‐Graduação em Ciências Biológicas: Bioquímica, Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600‐AnexoCEP 90035‐003Porto AlegreRSBrazil
| | - Helena Biasibetti
- Programa de Pós‐Graduação em Ciências Biológicas: Bioquímica, Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600‐AnexoCEP 90035‐003Porto AlegreRSBrazil
| | - Bruna Stela Zanotto
- Programa de Pós‐Graduação em Ciências Biológicas: Bioquímica, Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600‐AnexoCEP 90035‐003Porto AlegreRSBrazil
| | - Eduardo Farias Sanches
- Programa de Pós‐Graduação em Ciências Biológicas: Bioquímica, Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600‐AnexoCEP 90035‐003Porto AlegreRSBrazil
| | - Paula Pierozan
- Programa de Pós‐Graduação em Ciências Biológicas: Bioquímica, Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600‐AnexoCEP 90035‐003Porto AlegreRSBrazil
| | - Felipe Schmitz
- Programa de Pós‐Graduação em Ciências Biológicas: Bioquímica, Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600‐AnexoCEP 90035‐003Porto AlegreRSBrazil
| | - Mariana Migliorini Parisi
- Programa de Pós‐Graduação em Ciências Biológicas: Bioquímica, Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600‐AnexoCEP 90035‐003Porto AlegreRSBrazil
| | - Florencia Barbé‐Tuana
- Programa de Pós‐Graduação em Ciências Biológicas: Bioquímica, Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600‐AnexoCEP 90035‐003Porto AlegreRSBrazil
| | - Carlos Alexandre Netto
- Programa de Pós‐Graduação em Ciências Biológicas: Bioquímica, Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600‐AnexoCEP 90035‐003Porto AlegreRSBrazil
- Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600‐AnexoCEP 90035‐003Porto AlegreRSBrazil
| | - Angela T.S. Wyse
- Programa de Pós‐Graduação em Ciências Biológicas: Bioquímica, Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600‐AnexoCEP 90035‐003Porto AlegreRSBrazil
- Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600‐AnexoCEP 90035‐003Porto AlegreRSBrazil
| |
Collapse
|
33
|
Su Q, Pu H, Hu C. Neuroprotection by combination of resveratrol and enriched environment against ischemic brain injury in rats. Neurol Res 2016; 38:60-8. [PMID: 26883584 DOI: 10.1080/01616412.2015.1133027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVES Both resveratrol (RV) and enriched environment (EE) exert beneficial effects on neurological functional recovery after an ischemic brain injury. METHODS The neuroprotective effect of combined treatment of RV and EE was examined in a rat model of middle cerebral artery occlusion (MCAO), aiming to further promote neurological functional recovery. RESULTS The combined therapy of RV and EE clearly improved locomotor activity and behaviour examination, compared to the monotherapy of RV or EE alone. Stroke severity was also markedly ameliorated by the co-treatment. Mechanistic study revealed that the combined treatment reduced oxidative stress. Moreover, the detrimental ERK1/2 signalling upregulated by MCAO injury was markedly suppressed by the co-treatment, compared to RV or EE monotherapy. DISCUSSION Altogether, the combined therapy of RV and EE showed a clearly enhanced neuroprotective effect, compared to RV or EE monotherapy, which might be a new strategy for the treatment of ischemic brain injury.
Collapse
Affiliation(s)
- Qi Su
- a Department of Rehabilitation Medicine , Nanjing Medical University Affiliated Wuxi Second Hospital , 68 Zhongshan Road, Wuxi 214002 , China
| | - Huaifang Pu
- b Department of Neurology , Nanjing Medical University Affiliated Wuxi Second Hospital , 68 Zhongshan Road, Wuxi 214002 , China
| | - Cailian Hu
- c Department of Pediatrics , Nanjing Medical University Affiliated Wuxi Second Hospital , 68 Zhongshan Road, Wuxi 214002 , China
| |
Collapse
|
34
|
Schuch CP, Jeffers MS, Antonescu S, Nguemeni C, Gomez-Smith M, Pereira LO, Morshead CM, Corbett D. Enriched rehabilitation promotes motor recovery in rats exposed to neonatal hypoxia-ischemia. Behav Brain Res 2016; 304:42-50. [PMID: 26876139 DOI: 10.1016/j.bbr.2016.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/05/2016] [Accepted: 02/07/2016] [Indexed: 01/21/2023]
Abstract
Despite continuous improvement in neonatology there is no clinically effective treatment for perinatal hypoxia ischemia (HI). Therefore, development of a new therapeutic intervention to minimize the resulting neurological consequences is urgently needed. The immature brain is highly responsive to environmental stimuli, such as environmental enrichment but a more effective paradigm is enriched rehabilitation (ER), which combines environmental enrichment with daily reach training. Another neurorestorative strategy to promote tissue repair and functional recovery is cyclosporine A (CsA). However, potential benefits of CsA after neonatal HI have yet to be investigated. The aim of this study was to investigate the effects of a combinational therapy of CsA and ER in attempts to promote cognitive and motor recovery in a rat model of perinatal hypoxic-ischemic injury. Seven-day old rats were submitted to the HI procedure and divided into 4 groups: CsA+Rehabilitation; CsA+NoRehabilitation; Vehicle+Rehabilitation; Vehicle+NoRehabilitation. Behavioural parameters were evaluated pre (experiment 1) and post 4 weeks of combinational therapy (experiment 2). Results of experiment 1 demonstrated reduced open field activity of HI animals and increased foot faults relative to shams in the ladder rung walking test. In experiment 2, we showed that ER facilitated acquisition of a staircase skilled-reaching task, increased number of zone crosses in open-field exploration and enhanced coordinated limb use during locomotion on the ladder rung task. There were no evident deficits in novel object recognition testing. Delayed administration of CsA, had no effect on functional recovery after neonatal HI. There was a significant reduction of cortical and hemispherical volume and hippocampal area, ipsilateral to arterial occlusion in HI animals; combinational therapy had no effect on these morphological measurements. In conclusion, the present study demonstrated that ER, but not CsA was the main contributor to enhanced recovery of motor ability after neonatal HI.
Collapse
Affiliation(s)
- Clarissa Pedrini Schuch
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Matthew Strider Jeffers
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada
| | - Sabina Antonescu
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada
| | - Carine Nguemeni
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada
| | - Mariana Gomez-Smith
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada
| | | | - Cindi M Morshead
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Surgery, University of Toronto, Toronto, ON, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Dale Corbett
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Faculty of Medicine, Memorial University, St. John's, NL, Canada; Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada.
| |
Collapse
|
35
|
Early environmental enrichment affects neurobehavioral development and prevents brain damage in rats submitted to neonatal hypoxia-ischemia. Neurosci Lett 2016; 617:101-7. [PMID: 26872850 DOI: 10.1016/j.neulet.2016.02.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 02/06/2016] [Accepted: 02/06/2016] [Indexed: 12/13/2022]
Abstract
Our previous results demonstrated improved cognition in adolescent rats housed in environmental enrichment (EE) that underwent neonatal hypoxia-ischemia (HI). The aim of this study was to investigate the effects of early EE on neurobehavioral development and brain damage in rats submitted to neonatal HI. Wistar rats were submitted to the HI procedure on the 7th postnatal day (PND) and housed in an enriched environment (8th-20th PND). The maturation of physical characteristics and the neurological reflexes were evaluated and the volume of striatum, corpus callosum and neocortex was measured. Data analysis demonstrated a clear effect of EE on neurobehavioral development; also, daily performance was improved in enriched rats on righting, negative geotaxis and cliff aversion reflex. HI caused a transient motor deficit on gait latency. Brain atrophy was found in HI animals and this damage was partially prevented by the EE. In conclusion, early EE stimulated neurobehavioral development in neonate rats and also protects the neocortex and the corpus callosum from atrophy following HI. These findings reinforce the potential of EE as a strategy for rehabilitation following neonatal HI and provide scientific support to the use of this therapeutic strategy in the treatment of neonatal brain injuries in humans.
Collapse
|
36
|
Gaudet CM, Lim YP, Stonestreet BS, Threlkeld SW. Effects of age, experience and inter-alpha inhibitor proteins on working memory and neuronal plasticity after neonatal hypoxia-ischemia. Behav Brain Res 2016; 302:88-99. [PMID: 26778784 DOI: 10.1016/j.bbr.2016.01.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/23/2015] [Accepted: 01/05/2016] [Indexed: 01/15/2023]
Abstract
Neonatal cerebral hypoxia-ischemia (HI) commonly results in cognitive and sensory impairments. Early behavioral experience has been suggested to improve cognitive and sensory outcomes in children and animal models with perinatal neuropathology. In parallel, we previously showed that treatment with immunomodulator Inter-alpha Inhibitor Proteins (IAIPs) improves cellular and behavioral outcomes in neonatal HI injured rats. The purpose of the current study was to evaluate the influences of early experience and typical maturation in combination with IAIPs treatment on spatial working and reference memory after neonatal HI injury. A second aim was to determine the effects of these variables on hippocampal CA1 neuronal morphology. Subjects were divided into two groups that differed with respect to the time when exposed to eight arm radial water maze testing: Group one was tested as juveniles (early experience, Postnatal day (P) 36-61) and adults (P88-113), and Group two was tested in adulthood only (P88-113; without early experience). Three treatment conditions were included in each experience group (HI+Vehicle, HI+IAIPs, and Sham subjects). Incorrect arm entries (errors) were compared between treatment and experience groups across three error types (reference memory (RM), working memory incorrect (WMI), working memory correct (WMC)). Early experience led to improved working memory performance regardless of treatment. Combining IAIPs intervention with early experience provided a long-term behavioral advantage on the WMI component of the task in HI animals. Anatomically, early experience led to a decrease in the average number of basal dendrites per CA1 pyramidal neuron for IAIP treated subjects and a significant reduction in basal dendritic length in control subjects, highlighting the importance of pruning in typical early life learning. Our results support the hypothesis that early behavioral experience combined with IAIPs improve outcome on a relativity demanding cognitive task, beyond that of a single intervention strategy, and appears to facilitate neuronal plasticity following neonatal brain injury.
Collapse
Affiliation(s)
- Cynthia M Gaudet
- Department of Biology, Rhode Island College, 600 Mount Pleasant Ave., Providence, RI 02904, USA
| | - Yow-Pin Lim
- ProThera Biologics, Inc., 349 Eddy Street, Providence, RI 02903, USA
| | - Barbara S Stonestreet
- Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, 101 Dudley Street, Providence, RI 02905, USA
| | - Steven W Threlkeld
- Department of Psychology, Rhode Island College, 600 Mount Pleasant Ave. Providence, RI 02904, USA.
| |
Collapse
|
37
|
Sexual dimorphism and brain lateralization impact behavioral and histological outcomes following hypoxia-ischemia in P3 and P7 rats. Neuroscience 2015; 290:581-93. [PMID: 25620049 DOI: 10.1016/j.neuroscience.2014.12.074] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/11/2014] [Accepted: 12/21/2014] [Indexed: 01/12/2023]
Abstract
Neonatal cerebral hypoxia-ischemia (HI) is a major cause of neurological disorders and the most common cause of death and permanent disability worldwide, affecting 1-2/1000 live term births and up to 60% of preterm births. The Levine-Rice is the main experimental HI model; however, critical variables such as the age of animals, sex and hemisphere damaged still receive little attention in experimental design. We here investigated the influence of sex and hemisphere injured on the functional outcomes and tissue damage following early (hypoxia-ischemia performed at postnatal day 3 (HIP3)) and late (hypoxia-ischemia performed at postnatalday 7 (HIP7)) HI injury in rats. Male and female 3- (P3) or 7-day-old (P7) Wistar rats had their right or left common carotid artery occluded and exposed to 8% O2 for 1.5h. Sham animals had their carotids exposed but not occluded nor submitted to the hypoxic atmosphere. Behavioral impairments were assessed in the open field arena, in the Morris water maze and in the inhibitory avoidance task; volumetric extent of tissue damage was assessed using cresyl violet staining at adult age, after completing behavioral assessment. The overall results demonstrate that: (1) HI performed at the two distinct ages cause different behavioral impairments and histological damage in adult rats (2) behavioral deficits following neonatal HIP3 and HIP7 are task-specific and dependent on sex and hemisphere injured (3) HIP7 animals presented the expected motor and cognitive deficits (4) HIP3 animals displayed discrete but significant cognitive impairments in the left hemisphere-injured females (5) HI brain injury and its consequences are determined by animal's sex and the damaged hemisphere, markedly in HIP3-injured animals.
Collapse
|
38
|
Rojas JJ, Deniz BF, Schuch CP, Carletti JV, Deckmann I, Diaz R, Matté C, dos Santos TM, Wyse AT, Netto CA, Pereira LO. Environmental stimulation improves performance in the ox-maze task and recovers Na+,K+-ATPase activity in the hippocampus of hypoxic-ischemic rats. Neuroscience 2015; 291:118-27. [PMID: 25617656 DOI: 10.1016/j.neuroscience.2015.01.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/07/2015] [Accepted: 01/13/2015] [Indexed: 01/11/2023]
Abstract
In animal models, environmental enrichment (EE) has been found to be an efficient treatment for alleviating the consequences of neonatal hypoxia-ischemia (HI). However the potential for this therapeutic strategy and the mechanisms involved are not yet clear. The aim of present study is to investigate behavioral performance in the ox-maze test and Na+,K+-ATPase, catalase (CAT) and glutathione peroxidase (GPx) activities in the hippocampus of rats that suffered neonatal HI and were stimulated in an enriched environment. Seven-day-old rats were submitted to the HI procedure and divided into four groups: control maintained in standard environment (CTSE), control submitted to EE (CTEE), HI in standard environment (HISE) and HI in EE (HIEE). Animals were stimulated with EE for 9 weeks (1 h/day for 6 days/week) and then behavioral and biochemical parameters were evaluated. Present results indicate learning and memory in the ox-maze task were impaired in HI rats and this effect was recovered after EE. Hypoxic-ischemic event did not alter the Na+,K+-ATPase activity in the right hippocampus (ipsilateral to arterial occlusion). However, on the contralateral hemisphere, HI caused a decrease in this enzyme activity that was recovered by EE. The activities of GPx and CAT were not changed by HI in any group evaluated. In conclusion, EE was effective in recovering learning and memory impairment in the ox-maze task and Na+,K+-ATPase activity in the hippocampus caused by HI. The present data provide further support for the therapeutic potential of environmental stimulation after neonatal HI in rats.
Collapse
Affiliation(s)
- J J Rojas
- Programa de Pós-graduação em Neurociências, ICBS, Universidade Federal do Rio Grande do Sul, Brazil; Departamento de Ciências Morfológicas, ICBS, Universidade Federal do Rio Grande do Sul, Brazil
| | - B F Deniz
- Programa de Pós-graduação em Neurociências, ICBS, Universidade Federal do Rio Grande do Sul, Brazil; Departamento de Ciências Morfológicas, ICBS, Universidade Federal do Rio Grande do Sul, Brazil
| | - C P Schuch
- Programa de Pós-graduação em Neurociências, ICBS, Universidade Federal do Rio Grande do Sul, Brazil; Departamento de Ciências Morfológicas, ICBS, Universidade Federal do Rio Grande do Sul, Brazil
| | - J V Carletti
- Programa de Pós-graduação em Neurociências, ICBS, Universidade Federal do Rio Grande do Sul, Brazil; Departamento de Ciências Morfológicas, ICBS, Universidade Federal do Rio Grande do Sul, Brazil
| | - I Deckmann
- Departamento de Ciências Morfológicas, ICBS, Universidade Federal do Rio Grande do Sul, Brazil
| | - R Diaz
- Programa de Pós-graduação em Neurociências, ICBS, Universidade Federal do Rio Grande do Sul, Brazil; Departamento de Ciências Morfológicas, ICBS, Universidade Federal do Rio Grande do Sul, Brazil
| | - C Matté
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Brazil
| | - T M dos Santos
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Brazil
| | - A T Wyse
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Brazil
| | - C A Netto
- Programa de Pós-graduação em Neurociências, ICBS, Universidade Federal do Rio Grande do Sul, Brazil; Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Brazil
| | - L O Pereira
- Programa de Pós-graduação em Neurociências, ICBS, Universidade Federal do Rio Grande do Sul, Brazil; Departamento de Ciências Morfológicas, ICBS, Universidade Federal do Rio Grande do Sul, Brazil.
| |
Collapse
|
39
|
Galeano P, Blanco E, Logica Tornatore TMA, Romero JI, Holubiec MI, Rodríguez de Fonseca F, Capani F. Life-long environmental enrichment counteracts spatial learning, reference and working memory deficits in middle-aged rats subjected to perinatal asphyxia. Front Behav Neurosci 2015; 8:406. [PMID: 25601829 PMCID: PMC4283640 DOI: 10.3389/fnbeh.2014.00406] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/10/2014] [Indexed: 01/19/2023] Open
Abstract
Continuous environmental stimulation induced by exposure to enriched environment (EE) has yielded cognitive benefits in different models of brain injury. Perinatal asphyxia results from a lack of oxygen supply to the fetus and is associated with long-lasting neurological deficits. However, the effects of EE in middle-aged rats suffering perinatal asphyxia are unknown. Therefore, the aim of the present study was to assess whether life-long exposure to EE could counteract the cognitive and behavioral alterations in middle-aged asphyctic rats. Experimental groups consisted of rats born vaginally (CTL), by cesarean section (C+), or by C+ following 19 min of asphyxia at birth (PA). At weaning, rats were assigned to standard (SE) or enriched environment (EE) for 18 months. During the last month of housing, animals were submitted to a behavioral test battery including Elevated Plus Maze, Open Field, Novel Object Recognition and Morris water maze (MWM). Results showed that middle-aged asphyctic rats, reared in SE, exhibited an impaired performance in the spatial reference and working memory versions of the MWM. EE was able to counteract these cognitive impairments. Moreover, EE improved the spatial learning performance of middle-aged CTL and C+ rats. On the other hand, all groups reared in SE did not differ in locomotor activity and anxiety levels, while EE reduced locomotion and anxiety, regardless of birth condition. Recognition memory was altered neither by birth condition nor by housing environment. These results support the importance of environmental stimulation across the lifespan to prevent cognitive deficits induced by perinatal asphyxia.
Collapse
Affiliation(s)
- Pablo Galeano
- Facultad de Medicina, Instituto de Investigaciones Cardiológicas "Prof. Dr. Alberto C. Taquini" (ININCA), Universidad de Buenos Aires (CONICET) Buenos Aires, Argentina ; Instituto de Investigaciones Bioquímicas de Buenos Aires (CONICET), Fundación Instituto Leloir Buenos Aires, Argentina
| | - Eduardo Blanco
- Facultad de Medicina, Instituto de Investigaciones Cardiológicas "Prof. Dr. Alberto C. Taquini" (ININCA), Universidad de Buenos Aires (CONICET) Buenos Aires, Argentina ; Laboratorio de Investigación, Instituto de Investigación Biomédica (IBIMA), Universidad de Málaga - Hospital Regional Universitario de Málaga (UGC Salud Mental) Málaga, Spain ; Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Instituto de Investigación Biomédica (IBIMA), Universidad de Málaga Málaga, Spain
| | - Tamara M A Logica Tornatore
- Facultad de Medicina, Instituto de Investigaciones Cardiológicas "Prof. Dr. Alberto C. Taquini" (ININCA), Universidad de Buenos Aires (CONICET) Buenos Aires, Argentina
| | - Juan I Romero
- Facultad de Medicina, Instituto de Investigaciones Cardiológicas "Prof. Dr. Alberto C. Taquini" (ININCA), Universidad de Buenos Aires (CONICET) Buenos Aires, Argentina
| | - Mariana I Holubiec
- Facultad de Medicina, Instituto de Investigaciones Cardiológicas "Prof. Dr. Alberto C. Taquini" (ININCA), Universidad de Buenos Aires (CONICET) Buenos Aires, Argentina
| | - Fernando Rodríguez de Fonseca
- Laboratorio de Investigación, Instituto de Investigación Biomédica (IBIMA), Universidad de Málaga - Hospital Regional Universitario de Málaga (UGC Salud Mental) Málaga, Spain
| | - Francisco Capani
- Facultad de Medicina, Instituto de Investigaciones Cardiológicas "Prof. Dr. Alberto C. Taquini" (ININCA), Universidad de Buenos Aires (CONICET) Buenos Aires, Argentina
| |
Collapse
|
40
|
Tata DA, Markostamou I, Ioannidis A, Gkioka M, Simeonidou C, Anogianakis G, Spandou E. Effects of maternal separation on behavior and brain damage in adult rats exposed to neonatal hypoxia-ischemia. Behav Brain Res 2014; 280:51-61. [PMID: 25433094 DOI: 10.1016/j.bbr.2014.11.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 10/15/2014] [Accepted: 11/20/2014] [Indexed: 12/17/2022]
Abstract
Animal studies suggest that maternal separation, a widely used paradigm to study the effects of early life adversity, exerts a profound and life-long impact on both brain and behavior. The aim of the current study was to investigate whether adverse early life experiences interact with neonatal hypoxia-ischemia, affecting the outcome of this neurological insult at both functional and structural levels during adulthood. Rat pups were separated from their mothers during postnatal days 1-6, for either a short (15 min) or prolonged (180 min) period, while another group was left undisturbed. On postnatal day 7, a subgroup from each of the three postnatal manipulations was exposed to a hypoxic-ischemic episode. Behavioral examination took place approximately at three months of age and included tests of learning and memory (Morris water maze, novel object and novel place recognition), as well as motor coordination (rota-rod). We found that both prolonged maternal separation and neonatal hypoxia-ischemia impaired the animals' spatial learning and reference memory. Deficits in spatial but not visual recognition memory were detected only in hypoxic-ischemic rats. Interestingly, prolonged maternal separation prior to neonatal hypoxia-ischemia augmented the reference memory impairments. Histological analysis of infarct size, hippocampal area and thickness of corpus callosum did not reveal any exacerbation of damage in hypoxic-ischemic rats that were maternally separated for a prolonged period. These are the first data suggesting that an adverse postnatal environmental manipulation of just 6 days causes long-term effects on spatial learning and memory and may render the organism more vulnerable to a subsequent insult.
Collapse
Affiliation(s)
- Despina A Tata
- School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Ioanna Markostamou
- School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anestis Ioannidis
- School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Mara Gkioka
- School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Constantina Simeonidou
- Laboratory of Experimental Physiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Anogianakis
- Laboratory of Experimental Physiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Spandou
- Laboratory of Experimental Physiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
41
|
Abstract
We review topics pertinent to the perioperative care of patients with neurological disorders. Our review addresses topics not only in the anesthesiology literature, but also in basic neurosciences, critical care medicine, neurology, neurosurgery, radiology, and internal medicine literature. We include literature published or available online up through December 8, 2013. As our review is not able to include all manuscripts, we focus on recurring themes and unique and pivotal investigations. We address the broad topics of general neuroanesthesia, stroke, traumatic brain injury, anesthetic neurotoxicity, neuroprotection, pharmacology, physiology, and nervous system monitoring.
Collapse
|
42
|
Ravenelle R, Santolucito HB, Byrnes EM, Byrnes JJ, Donaldson ST. Housing environment modulates physiological and behavioral responses to anxiogenic stimuli in trait anxiety male rats. Neuroscience 2014; 270:76-87. [PMID: 24713371 PMCID: PMC4047719 DOI: 10.1016/j.neuroscience.2014.03.060] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/12/2014] [Accepted: 03/28/2014] [Indexed: 11/27/2022]
Abstract
Environmental enrichment can modulate mild and chronic stress, responses to anxiogenic stimuli as well as drug vulnerability in a number of animal models. The current study was designed to examine the impact of postnatal environmental enrichment on selectively bred 4th generation high- (HAn) and low-anxiety (LAn) male rats. After weaning, animals were placed in isolated (IE), social (SE) and enriched environments (EE) (e.g., toys, wheels, ropes, changed weekly). We measured anxiety-like behavior (ALB) on the elevated plus maze (EPM; trial 1 at postnatal day (PND) 46, trial 2 at PND 63), amphetamine (AMPH) (0.5mg/kg, IP)-induced locomotor behavior, basal and post anxiogenic stimuli changes in (1) plasma corticosterone, (2) blood pressure and (3) core body temperature. Initially, animals showed consistent trait differences on EPM with HAn showing more ALB but after 40 days in select housing, HAn rats reared in an EE showed less ALB and diminished AMPH-induced activity compared to HAn animals housed in IE and SE. In the physiological tests, animals housed in EE showed elevated adrenocortical responses to forced novel object exposure but decreased body temperature and blood pressure changes after an air puff stressor. All animals reared in EE and SE had elevated brain-derived neurotrophic factor (BDNF)-positive cells in the central amygdala (CeA), CA1 and CA2 hippocampal regions and the caudate putamen, but these differences were most pronounced in HAn rats for CeA, CA1 and CA2. Overall, these findings suggest that environmental enrichment offers benefits for trait anxiety rats including a reduction in behavioral and physiological responses to anxiogenic stimuli and AMPH sensitivity, and these responses correlate with changes in BDNF expression in the central amygdala, hippocampus and the caudate putamen.
Collapse
Affiliation(s)
- R Ravenelle
- Department of Biological Sciences, Fordham University, Rose Hill Campus Bronx, NY 10458, United States
| | - H B Santolucito
- Developmental and Brain Sciences, Department of Psychology, University of Massachusetts Boston, Boston, MA 02125, United States
| | - E M Byrnes
- Department of Biomedical Sciences, Tufts Cummings School of Veterinary Medicine, Grafton, MA 01536, United States
| | - J J Byrnes
- Department of Biomedical Sciences, Tufts Cummings School of Veterinary Medicine, Grafton, MA 01536, United States
| | - S T Donaldson
- Developmental and Brain Sciences, Department of Psychology, University of Massachusetts Boston, Boston, MA 02125, United States.
| |
Collapse
|
43
|
Bondi CO, Klitsch KC, Leary JB, Kline AE. Environmental enrichment as a viable neurorehabilitation strategy for experimental traumatic brain injury. J Neurotrauma 2014; 31:873-88. [PMID: 24555571 DOI: 10.1089/neu.2014.3328] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Environmental enrichment (EE) emerged as a robust independent variable capable of influencing behavioral outcome in experimental studies after the fortuitous observation by renowned neuropsychologist Donald O. Hebb that rats raised as pets in his home performed markedly better on problem-solving tasks than those kept in the laboratory. In the subsequent years, numerous studies ensued demonstrating that EE was also capable of inducing neuroplasticity in normal (i.e., noninjured) rats. These behavioral and neural alterations provided the impetus for investigating EE as a potential therapy for traumatic brain injury (TBI), which, over the past two decades, has resulted in several reports. Hence, the aim of this review is to integrate the findings and present the current state of EE as a viable neurorehabilitation strategy for TBI. Using the specific key term searches "traumatic brain injury" and "environmental enrichment" or "enriched environment," 30 and 30 experimental TBI articles were identified by PubMed and Scopus, respectively. Of these, 27 articles were common to both search engines. An additional article was found on PubMed using the key terms "enriched environment" and "fluid percussion." A review of the bibliographies in the 34 articles did not yield additional citations. The overwhelming consensus of the 34 publications is that EE benefits behavioral and histological outcome after brain injury produced by various models. Further, the enhancements are observed in male and female as well as adult and pediatric rats and mice. Taken together, these cumulative findings provide strong support for EE as a generalized and robust preclinical model of neurorehabilitation. However, to further enhance the model and to more accurately mimic the clinic, future studies should continue to evaluate EE during more rehabilitation-relevant conditions, such as delayed and shorter time periods, as well as in combination with other therapeutic approaches, as we have been doing for the past few years.
Collapse
Affiliation(s)
- Corina O Bondi
- 1 Physical Medicine and Rehabilitation, University of Pittsburgh , Pittsburgh, Pennsylvania
| | | | | | | |
Collapse
|
44
|
Piazza FV, Segabinazi E, Centenaro LA, do Nascimento PS, Achaval M, Marcuzzo S. Enriched environment induces beneficial effects on memory deficits and microglial activation in the hippocampus of type 1 diabetic rats. Metab Brain Dis 2014; 29:93-104. [PMID: 24318482 DOI: 10.1007/s11011-013-9467-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 11/07/2013] [Indexed: 12/26/2022]
Abstract
Type 1 diabetes mellitus (T1DM) has been associated with long-term complications in the central nervous system, causing brain cellular dysfunctions and cognitive deficits. On the other hand, enriched environment (EE) induces experience-dependent plasticity, especially in the hippocampus, improving the performance of animals in learning and memory tasks. Thus, our objective was to investigate the influence of the EE on memory deficits, locomotion, corticosterone levels, synaptophysin (SYP) protein immunoreactivity, cell survival and microglial activation in the dentate gyrus (DG) of T1DM rat hippocampus. Male Wistar rats (21-day-old) were exposed to EE or maintained in standard housing (controls, C) for 3 months. At adulthood, the C and EE animals were randomly divided and diabetes was induced in half of them. All the animals received 4 doses of BrdU, 24 h apart. Hippocampus-dependent spatial memory, general locomotion and serum corticosterone levels were evaluated at the end of the experiment. The animals were transcardially perfused 30 days post-BrdU administration. Our results showed that EE was able to prevent/delay the development of memory deficits caused by diabetes in rats, however it did not revert the motor impairment observed in the diabetic group. SYP immunoreactivity was increased in the enriched healthy group. The EE decreased the serum corticosterone levels in diabetic adult rats and attenuated the injurious microglial activation, though without altering the decrease of the survival cell. Thus, EE was shown to help to ameliorate cognitive comorbidities associated with T1DM, possibly by reducing hyperactivity in the hypothalamic-pituitary-adrenal axis and microglial activation in diabetic animals.
Collapse
Affiliation(s)
- Francele Valente Piazza
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, CEP: 90050-170, Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
45
|
Yu K, Wu Y, Hu Y, Zhang Q, Xie H, Liu G, Chen Y, Guo Z, Jia J. Neuroprotective effects of prior exposure to enriched environment on cerebral ischemia/reperfusion injury in rats: the possible molecular mechanism. Brain Res 2013; 1538:93-103. [PMID: 24084470 DOI: 10.1016/j.brainres.2013.09.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 09/10/2013] [Accepted: 09/23/2013] [Indexed: 01/03/2023]
Abstract
Increasing evidence shows that exposure to an enriched environment (EE) after cerebral ischemia/reperfusion injury is neuroprotective in animal models. Recent studies have demonstrated that animals housed in an enriched environment condition after an experimental stroke obtained a better functional outcome than those housed in a standard condition. However, little is known about the underlying mechanisms of neuroprotective effects of enriched environment exposure prior to injury. The current study examined the neuroprotective effects of prior enriched environment exposure after transient middle cerebral artery occlusion (MCAO) in rats. Male Sprague Dawley (SD) rats, weighing 55-65g at the beginning of the experiment, were randomly assigned to a pre-ischemic enriched environment (PIEE) or pre-ischemic standard condition (PISC) group for 1 month. They were weighed on days1, 7, 18, and 28, and their locomotor activity was tracked during the period between 9:00am and 3:00pm daily. After 1 month, ischemia was induced by occluding the middle cerebral artery for 90min, followed by reperfusion. After approximately 24h of the operation, functional outcomes were assessed using the beam-walking test and a neurological evaluation scale in all rats. We measured the expression of extracellular signal regulated protein kinases1/2 (ERK1/2) by western blotting and gene expression levels of neuronal nitric oxide synthase (nNOS) and inducible nitric oxide synthasen (iNOS) by Real-Time PCR in the cortical area affected by ischemia. Finally, we measured the level of malondialdehyde (MDA) content, which is a biomarker of oxidative stress. The results showed that rats in the PIEE group had lighter weight than those in the PISC group. The functional outcomes of rats in the PIEE group were better than those in the PISC group, and substances associated with inflammation, such as MDA, nNOS, iNOS, and phospho-ERK1/2, were lower in the PIEE group compared with the PISC group. These results indicate that enriched environment may provide neuroprotection via ischemic preconditioning and enhance resilience to cerebral ischemia.
Collapse
Affiliation(s)
- Kewei Yu
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, 200040, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hashemi Nosrat Abadi T, Vaghef L, Babri S, Mahmood-Alilo M, Beirami M. Effects of different exercise protocols on ethanol-induced spatial memory impairment in adult male rats. Alcohol 2013; 47:309-16. [PMID: 23683528 DOI: 10.1016/j.alcohol.2013.01.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 01/26/2013] [Accepted: 01/28/2013] [Indexed: 12/30/2022]
Abstract
Chronic ethanol consumption is often accompanied by numerous cognitive deficits and may lead to long-lasting impairments in spatial learning and memory. The aim of the present study was to evaluate the therapeutic potential of regular treadmill exercise on hippocampal-dependent memory in ethanol-treated rats. Spatial memory was tested in a Morris Water Maze task. Adult male Wistar rats were exposed to ethanol (4 g/kg, 20% v/v for 4 weeks) and effects of three exercise protocols (pre-ethanol, post-ethanol and pre-to-post-ethanol treatment) were examined. Results showed that ethanol exposure resulted in longer escape latencies during the acquisition phase of the Morris Water Maze task. Moreover, all three exercise protocols significantly decreased the latency to locate the hidden platform. During the probe trial, ethanol led to decreased time spent in the target quadrant. In contrast, performance on the probe trial was significantly better in the rats that had done the post- and pre-to-post-ethanol, but not pre-ethanol, exercises. These findings suggest that treadmill running can attenuate the adverse effects of chronic ethanol exposure on spatial memory, and may serve as a non-pharmacological alcohol abuse treatment.
Collapse
|
47
|
Environmental enrichment effects on the neurobehavioral profile of selective outbred trait anxiety rats. Behav Brain Res 2013; 252:49-57. [PMID: 23727174 DOI: 10.1016/j.bbr.2013.05.041] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 04/30/2013] [Accepted: 05/22/2013] [Indexed: 11/23/2022]
Abstract
Environmental enrichment attenuates the response to psychostimulants and has been shown to reduce both anxiety and stress-related behaviors. Since stress is a major vulnerability factor for addiction, we investigated whether enrichment could reverse stress profiles in high anxious rats as well as reduce their amphetamine sensitivity. Using selectively-bred high and low anxiety males (filial 3) from enriched, social or isolated environments, we tested elevated plus maze exploration, novelty place preference and amphetamine (AMPH; 0.5mg/kg, IP)-induced hyperactivity. We measured plasma corticosterone (CORT) response after forced novel object exposure, phosphorylation of the tropomyosin-related kinase B receptor (pTrkB) in the hippocampus and striatum, and dopamine (D2) receptor mRNA levels in the striatum and nucleus accumbens. Results indicate that high anxiety animals reared in social or enriched environments spent more time on open arms of the EPM while low anxiety animals raised in enriched environments spent more time on open arms when compared to either isolated or social groups. There were no group differences or interactions found for novelty place preference. Enriched environments decreased the response to AMPH and stress-induced CORT regardless of trait but selectively decreased pTrkB and increased D2 mRNA levels in high anxiety animals. The results suggest that selectively-bred trait anxiety rats show state anxiety that is influenced by rearing environments, and D2 protein levels and BDNF/TrkB signaling may differentially contribute to integrating these effects.
Collapse
|
48
|
Hralová M, Angerová Y, Gueye T, Bortelová J, Svestková O, Zima T, Lippertová-Grünerová M. Long-term results of enriched environment and erythropoietin after hypobaric hypoxia in rats. Physiol Res 2013; 62:463-70. [PMID: 23590602 DOI: 10.33549/physiolres.932354] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
After global cerebral hypoxia, many patients are severely disabled even after intensive neurorehabilitation. Secondary mechanisms of brain injury as a result of biochemical and physiological events occur within a period of hours to months, and provide a window of opportunity for therapeutic intervention. Erythropoietin (EPO) has been shown to be neuroprotective in the brain subjected to a variety of injuries. Fifty-nine 3-month-old male Wistar rats were randomly distributed to experimental groups with respect to the housing (enriched environment - EE, standard housing - SH), to hypoxia exposure, and to EPO treatment. An acute mountain sickness model was used as a hypobaric hypoxia simulating an altitude of 8000 m. One half of the animals received erythropoietin injections, while the others were injected saline. Spatial memory was tested in a Morris water maze (MWM). The escape latency and the path length were measured. Better spatial learning in MWM was only seen in the group that received erythropoietin together with enriched environment. EPO administration itself had no influence on spatial memory. The results were very similar for both latencies and path lengths. These results support the idea that after brain injuries, the recovery can be potentiated by EPO administration combined with neurorehabilitation.
Collapse
Affiliation(s)
- M Hralová
- Department of Rehabilitation Medicine, General Teaching Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
49
|
Sanches E, Arteni N, Scherer E, Kolling J, Nicola F, Willborn S, Wyse A, Netto C. Are the consequences of neonatal hypoxia–ischemia dependent on animals' sex and brain lateralization? Brain Res 2013; 1507:105-14. [DOI: 10.1016/j.brainres.2013.02.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/06/2013] [Accepted: 02/19/2013] [Indexed: 11/29/2022]
|
50
|
Rojas JJ, Deniz BF, Miguel PM, Diaz R, Hermel ÉDES, Achaval M, Netto CA, Pereira LO. Effects of daily environmental enrichment on behavior and dendritic spine density in hippocampus following neonatal hypoxia–ischemia in the rat. Exp Neurol 2013; 241:25-33. [DOI: 10.1016/j.expneurol.2012.11.026] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 11/26/2012] [Accepted: 11/29/2012] [Indexed: 11/24/2022]
|