1
|
Song X, Yan S, Lai S, Zhang Y, Wang Y, He J, Huang D, Zhang J, Lu X, Chen G, Chen P, Zhong Q, Zhang R, Wu Y, Yin J, Zhong S, Jia Y. Gender differences of neurometabolic and neuroendocrine alternations and its lateralization in adolescents with major depressive disorder. BMC Psychiatry 2024; 24:949. [PMID: 39731037 DOI: 10.1186/s12888-024-06428-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/19/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND The clinical characteristics of major depressive disorder (MDD) in adolescents show notable gender-related differences, but the cause of these differences is still not understood. The current research concentrates on the changes in neurometabolism and neuroendocrine function, aiming to identify differences in endocrine function and brain metabolism between male and female adolescents with MDD. METHODS A total of 121 teenagers diagnosed with MDD (43 males and 78 females) were enlisted as participants. Measurement was conducted on levels of endocrine hormones, which included free tri-iodothyronine (FT3), total tri-iodothyronine (TT3), free thyroxin (FT4), total thyroxin (TT4), thyroid-stimulating hormone (TSH), cortisol, and adrenocorticotropic hormone (ACTH). Obtained through 1H-MRS, the N-acetyl aspartate (NAA) and choline containing compounds (Cho) to creatine (Cr) ratios were acquired for the prefrontal whiter matter (PWM), anterior cingulate cortex (ACC), basal ganglia (BG), thalamus, and cerebellum. RESULT After adjusting for multiple comparisons, female adolescents with MDD showed lower ACTH levels compared to their male counterparts. An increased lateralization index (LI) was observed in female patients for both the thalamic Cho/Cr ratio and the basal ganglia NAA/Cr ratio. Additionally, an intriguing finding was that in male adolescent patients, TT4 levels were significantly correlated with the Cho/Cr ratio in the left cerebellum. However, no such correlation between hormones and brain metabolism was found in females. CONCLUSIONS Gender differences in endocrine and neurometabolic abnormalities may contribute to the gender-specific pathophysiology of MDD in adolescent patients. Metabolic abnormalities and lateralization changes are observed in different brain regions for male and female MDD patients.
Collapse
Affiliation(s)
- Xiaodong Song
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Shuya Yan
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Shunkai Lai
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Yiliang Zhang
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Jiali He
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Dong Huang
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Jianzhao Zhang
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Xiaodan Lu
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Qilin Zhong
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Rongxu Zhang
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Yangyu Wu
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Jie Yin
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China.
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
2
|
Li H, Gao J, Song H, Yang X, Li C, Zhang Y, Wang J, Liu Y, Wang D, Li H. Changes in the medial prefrontal cortex metabolites after 6 months of medication therapy for patients with bipolar disorder: A 1H-MRS study. CNS Neurosci Ther 2024; 30:e70048. [PMID: 39300492 PMCID: PMC11412791 DOI: 10.1111/cns.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
AIMS The study aimed to assess brain metabolite differences in the medial prefrontal cortex (mPFC) between acute and euthymic episodes of bipolar disorder (BD) with both mania and depression over a 6-month medication treatment period. METHODS We utilized 1H-MRS technology to assess the metabolite levels in 53 individuals with BD (32 in depressive phase, 21 in manic phase) and 34 healthy controls (HCs) at baseline. After 6 months of medication treatment, 40 subjects underwent a follow-up scan in euthymic state. Metabolite levels, including N-acetyl aspartate (NAA), glutamate (Glu), and Glutamine (Gln), were measured in the mPFC. RESULTS Patients experiencing depressive and manic episodes exhibited a notable reduction in NAA/Cr + PCr ratios at baseline compared to healthy controls (p = 0.004; p = 0.006) in baseline, compared with HCs. Over the 6-month follow-up period, the manic group displayed a significant decrease in Gln/Cr + PCr compared to the initial acute phase (p = 0.03). No significant alterations were found in depressed group between baseline and follow-up. CONCLUSION This study suggests that NAA/Cr + PCr ratios and Gln/Cr + PCr ratios in the mPFC may be associated with manic and depressive episodes, implicating that Gln and NAA might be useful biomarkers for distinguishing mood phases in BD and elucidating its mechanisms.
Collapse
Affiliation(s)
- Haijin Li
- Department of PsychiatryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Ju Gao
- Department of Geriatric Psychiatry, Suzhou Mental Health Center, Suzhou Guangji HospitalThe Affiliated Guangji Hospital of Soochow UniversitySuzhouChina
| | - Huihui Song
- Department of Geriatric Psychiatry, Suzhou Mental Health Center, Suzhou Guangji HospitalThe Affiliated Guangji Hospital of Soochow UniversitySuzhouChina
| | - Xuna Yang
- Department of Geriatric Psychiatry, Suzhou Mental Health Center, Suzhou Guangji HospitalThe Affiliated Guangji Hospital of Soochow UniversitySuzhouChina
| | - Cai Li
- Department of PharmacyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yue Zhang
- Department of PsychiatryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jiahui Wang
- Department of PsychiatryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yitong Liu
- Department of PsychiatryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Dong Wang
- Department of Geriatric Psychiatry, Suzhou Mental Health Center, Suzhou Guangji HospitalThe Affiliated Guangji Hospital of Soochow UniversitySuzhouChina
| | - Hong Li
- Department of PsychiatryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
3
|
Baltic S, Nedeljkovic D, Todorovic N, Ranisavljev M, Korovljev D, Cvejic J, Ostojic J, LeBaron TW, Timmcke J, Stajer V, Ostojic SM. The impact of six-week dihydrogen-pyrroloquinoline quinone supplementation on mitochondrial biomarkers, brain metabolism, and cognition in elderly individuals with mild cognitive impairment: a randomized controlled trial. J Nutr Health Aging 2024; 28:100287. [PMID: 38908296 DOI: 10.1016/j.jnha.2024.100287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/06/2024] [Accepted: 06/01/2024] [Indexed: 06/24/2024]
Abstract
OBJECTIVES To assess the impact of medium-term supplementation with dihydrogen and pyrroloquinoline quinone (PQQ) on mitochondrial biomarkers, brain metabolism, and cognition in elderly individuals diagnosed with mild cognitive impairment. DESIGN A parallel-group, randomized, placebo-controlled, double-blind experimental design, maintaining a 1:1 allocation ratio between the experimental group (receiving the dihydrogen-producing minerals and PQQ) and the control group (receiving the placebo) throughout the trial. SETTING AND PARTICIPANTS Thirty-four elderly individuals with mild cognitive impairment (mean age 71.9 ± 3.8 years; 28 females) voluntarily provided written consent to participate in this trial. Participants were assigned in a double-blind parallel-group design to receive either a dihydrogen-PQQ mixture (Alpha Hope®, CalerieLife, Irvine, CA) or placebo twice daily for a 6-week intervention period. METHODS The primary endpoint was the change in serum brain-derived neurotrophic factor (BDNF) from baseline to the 6-week follow-up; secondary outcomes included cognitive function indices, specific metabolites in brain tissue, brain oxygenation, and the prevalence and severity of side effects. Interaction effects (time vs. intervention) were evaluated using two-way ANOVA with repeated measures and Friedman's 2-way ANOVA by ranks, for normally distributed data with homogeneous variances and non-homogeneous variances, respectively. RESULTS Dihydrogen-PQQ resulted in a significant elevation in serum BDNF levels at the six-week follow-up (P = 0.01); conversely, no changes in BDNF levels were observed in the placebo group throughout the study duration (P = 0.27). A non-significant trend in the impact of interventions on BDNF levels was observed (treatment vs. time interaction, P = 0.14), suggesting a tendency for dihydrogen-PQQ to upregulate BDNF levels compared to the placebo. A significant interaction effect was observed for the Alzheimer's Disease Assessment Scale-Cognitive subscale (ADAS-Cog) scores in the orientation domain (P = 0.03), indicating the superiority of dihydrogen-PQQ over placebo in enhancing this cognitive aspect. Cerebral oxygenation saturation exhibited a significant increase following the administration of the dihydrogen-PQQ mixture, from 48.4 ± 7.2% at baseline to 52.8 ± 6.6% at 6-week post-administration (P = 0.005). In addition, brain N-acetyl aspartate levels significantly increased at seven out of thirteen locations post-intervention in participants receiving the mixture (P ≤ 0.05). CONCLUSIONS Despite the limited number of participants included in the study for interpreting clinical parameters, the dihydrogen-PQQ mixture blend shows promise as a potential dietary intervention for enhancing mental orientation and brain metabolism in individuals with age-related mild cognitive decline.
Collapse
Affiliation(s)
- Sonja Baltic
- Applied Bioenergetics Lab, Faculty of Sport and PE, University of Novi Sad, Novi Sad, Serbia
| | - David Nedeljkovic
- Applied Bioenergetics Lab, Faculty of Sport and PE, University of Novi Sad, Novi Sad, Serbia
| | - Nikola Todorovic
- Applied Bioenergetics Lab, Faculty of Sport and PE, University of Novi Sad, Novi Sad, Serbia
| | - Marijana Ranisavljev
- Applied Bioenergetics Lab, Faculty of Sport and PE, University of Novi Sad, Novi Sad, Serbia
| | - Darinka Korovljev
- Applied Bioenergetics Lab, Faculty of Sport and PE, University of Novi Sad, Novi Sad, Serbia
| | - Jelena Cvejic
- Applied Bioenergetics Lab, Faculty of Sport and PE, University of Novi Sad, Novi Sad, Serbia
| | - Jelena Ostojic
- Applied Bioenergetics Lab, Faculty of Sport and PE, University of Novi Sad, Novi Sad, Serbia
| | - Tyler W LeBaron
- Molecular Hydrogen Institute Cedar City, UT, USA; Southern Utah University, Cedar City, UT, USA
| | | | - Valdemar Stajer
- Applied Bioenergetics Lab, Faculty of Sport and PE, University of Novi Sad, Novi Sad, Serbia
| | - Sergej M Ostojic
- Applied Bioenergetics Lab, Faculty of Sport and PE, University of Novi Sad, Novi Sad, Serbia; Department of Nutrition and Public Health, University of Agder, Kristiansand, Norway; Faculty of Health Sciences, University of Pecs, Pecs, Hungary.
| |
Collapse
|
4
|
Grønbæk-Thygesen M, Hartmann-Petersen R. Cellular and molecular mechanisms of aspartoacylase and its role in Canavan disease. Cell Biosci 2024; 14:45. [PMID: 38582917 PMCID: PMC10998430 DOI: 10.1186/s13578-024-01224-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/24/2024] [Indexed: 04/08/2024] Open
Abstract
Canavan disease is an autosomal recessive and lethal neurological disorder, characterized by the spongy degeneration of the white matter in the brain. The disease is caused by a deficiency of the cytosolic aspartoacylase (ASPA) enzyme, which catalyzes the hydrolysis of N-acetyl-aspartate (NAA), an abundant brain metabolite, into aspartate and acetate. On the physiological level, the mechanism of pathogenicity remains somewhat obscure, with multiple, not mutually exclusive, suggested hypotheses. At the molecular level, recent studies have shown that most disease linked ASPA gene variants lead to a structural destabilization and subsequent proteasomal degradation of the ASPA protein variants, and accordingly Canavan disease should in general be considered a protein misfolding disorder. Here, we comprehensively summarize the molecular and cell biology of ASPA, with a particular focus on disease-linked gene variants and the pathophysiology of Canavan disease. We highlight the importance of high-throughput technologies and computational prediction tools for making genotype-phenotype predictions as we await the results of ongoing trials with gene therapy for Canavan disease.
Collapse
Affiliation(s)
- Martin Grønbæk-Thygesen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200N, Copenhagen, Denmark.
| | - Rasmus Hartmann-Petersen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200N, Copenhagen, Denmark.
| |
Collapse
|
5
|
Becker I, Wang-Eckhardt L, Eckhardt M. NAAG synthetase deficiency has only low influence on pathogenesis in a Canavan disease mouse model. J Inherit Metab Dis 2024; 47:230-243. [PMID: 38011891 DOI: 10.1002/jimd.12693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
Canavan disease (CD) is a leukodystrophy caused by mutations in the N-acetylaspartate (NAA) hydrolase aspartoacylase (ASPA). Inability to degrade NAA and its accumulation in the brain results in spongiform myelin degeneration. NAA is mainly synthesized by neurons, where it is also a precursor of the neuropeptide N-acetylaspartylglutamate (NAAG). Hydrolysis of this peptide by glutamate carboxypeptidases is an additional source of extracellular NAA besides the instant neuronal release of NAA. This study examines to what extent NAA released from NAAG contributes to NAA accumulation and pathogenesis in the brain of Aspanur7/nur7 mutant mice, an established model of CD. Towards this aim, Aspanur7/nur7 mice with additional deficiencies in NAAG synthetase genes Rimklb and/or Rimkla were generated. Loss of myelin in Aspanur7/nur7 mice was not significantly affected by Rimkla and Rimklb deficiency and there was also no obvious change in the extent of brain vacuolation. Astrogliosis was slightly reduced in the forebrain of Rimkla and Rimklb double deficient Aspanur7/nur7 mice. However, only minor improvements at the behavioral level were found. The brain NAA accumulation in CD mice was, however, not significantly reduced in the absence of NAAG synthesis. In summary, there was only a weak tendency towards reduced pathogenic symptoms in Aspanur7/nur7 mice deficient in NAAG synthesis. Therefore, we conclude that NAAG metabolism has little influence on NAA accumulation in Aspanur7/nur7 mice and development of pathological symptoms in CD.
Collapse
Affiliation(s)
- Ivonne Becker
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Lihua Wang-Eckhardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Matthias Eckhardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
6
|
Ernst T, Ryan MC, Liang HJ, Wang JP, Cunningham E, Saleh MG, Kottilil S, Chang L. Neuronal and Glial Metabolite Abnormalities in Participants With Persistent Neuropsychiatric Symptoms After COVID-19: A Brain Proton Magnetic Resonance Spectroscopy Study. J Infect Dis 2023; 228:1559-1570. [PMID: 37540098 PMCID: PMC10681871 DOI: 10.1093/infdis/jiad309] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/01/2023] [Accepted: 08/02/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND The aim of this study was to determine whether neurometabolite abnormalities indicating neuroinflammation and neuronal injury are detectable in individuals post-coronavirus disease 2019 (COVID-19) with persistent neuropsychiatric symptoms. METHODS All participants were studied with proton magnetic resonance spectroscopy at 3 T to assess neurometabolite concentrations (point-resolved spectroscopy, relaxation time/echo time = 3000/30 ms) in frontal white matter (FWM) and anterior cingulate cortex-gray matter (ACC-GM). Participants also completed the National Institutes of Health Toolbox cognition and motor batteries and selected modules from the Patient-Reported Outcomes Measurement Information System. RESULTS Fifty-four participants were evaluated: 29 post-COVID-19 (mean ± SD age, 42.4 ± 12.3 years; approximately 8 months from COVID-19 diagnosis; 19 women) and 25 controls (age, 44.1 ± 12.3 years; 14 women). When compared with controls, the post-COVID-19 group had lower total N-acetyl compounds (tNAA; ACC-GM: -5.0%, P = .015; FWM: -4.4%, P = .13), FWM glutamate + glutamine (-9.5%, P = .001), and ACC-GM myo-inositol (-6.2%, P = .024). Additionally, only hospitalized patients post-COVID-19 showed age-related increases in myo-inositol, choline compounds, and total creatine (interaction P = .029 to <.001). Across all participants, lower FWM tNAA and higher ACC-GM myo-inositol predicted poorer performance on several cognitive measures (P = .001-.009), while lower ACC-GM tNAA predicted lower endurance on the 2-minute walk (P = .005). CONCLUSIONS In participants post-COVID-19 with persistent neuropsychiatric symptoms, the lower-than-normal tNAA and glutamate + glutamine indicate neuronal injury, while the lower-than-normal myo-inositol reflects glial dysfunction, possibly related to mitochondrial dysfunction and oxidative stress in Post-COVID participants with persistent neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Thomas Ernst
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland
- Department of Neurology, School of Medicine, Johns Hopkins University
| | - Meghann C Ryan
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland
- Program in Neuroscience, School of Medicine, University of Maryland
| | - Hua-Jun Liang
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland
| | - Justin P Wang
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland
| | - Eric Cunningham
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland
| | - Muhammad G Saleh
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland
| | - Shyamasundaran Kottilil
- Institute of Human Virology, Division of Infectious Disease, Department of Medicine, School of Medicine, University of Maryland
| | - Linda Chang
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland
- Department of Neurology, School of Medicine, Johns Hopkins University
- Department of Neurology, School of Medicine, University of Maryland, Baltimore
| |
Collapse
|
7
|
Wei H, Moffett JR, Amanat M, Fatemi A, Tsukamoto T, Namboodiri AM, Slusher BS. The pathogenesis of, and pharmacological treatment for, Canavan disease. Drug Discov Today 2022; 27:2467-2483. [PMID: 35636725 PMCID: PMC11806932 DOI: 10.1016/j.drudis.2022.05.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/05/2022] [Accepted: 05/24/2022] [Indexed: 12/12/2022]
Abstract
Canavan disease (CD) is an inherited leukodystrophy resulting from mutations in the gene encoding aspartoacylase (ASPA). ASPA is highly expressed in oligodendrocytes and catalyzes the cleavage of N-acetylaspartate (NAA) to produce aspartate and acetate. In this review, we examine the pathologies and clinical presentation in CD, the metabolism and transportation of NAA in the brain, and the hypothetical mechanisms whereby ASPA deficiency results in dysmyelination and a failure of normal brain development. We also discuss therapeutic options that could be used for the treatment of CD.
Collapse
Affiliation(s)
- Huijun Wei
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Science, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA
| | - John R Moffett
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA.
| | - Man Amanat
- Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Ali Fatemi
- Department of Neurology, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Behavioral Science, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Pediatrics, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Takashi Tsukamoto
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Aryan M Namboodiri
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Science, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Medicine, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
8
|
Childhood trauma history is linked to abnormal brain metabolism of non-medicated adult patients with major depressive disorder. J Affect Disord 2022; 302:101-109. [PMID: 34965400 DOI: 10.1016/j.jad.2021.12.103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 12/19/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Childhood trauma is a risk factor that may lead to persistent brain metabolic abnormalities, predisposing individuals to major depressive disorder (MDD). To better elucidate the pathogenesis of MDD, we investigated the neurometabolic changes in unmedicated MDD patients who had experienced childhood trauma (CT). METHODS In this study, 37 unmedicated MDD patients with CT, 35 unmedicated MDD patients without CT, and 30 healthy control participants underwent high-resolution proton magnetic resonance spectroscopy (1H-MRS) examination. Bilateral metabolic ratios of N-acetylaspartate (NAA)/creatine (Cr) and choline (Cho)/Cr in the prefrontal white matter (PWM), anterior cingulate cortex (ACC), putamen, and cerebellum were obtained. RESULTS MDD patients showed neurometabolic changes in the cortico-striato-cerebellar (CSC) circuit. Furthermore, MDD patients showed significantly lower NAA/Cr and higher Cho/Cr ratio in the bilateral ACC and putamen, and higher NAA/Cr and lower Cho/Cr ratio in the cerebellum. Childhood trauma reduced the Cho/Cr ratio in the left ACC, which played an important role in longer and more episodes of depression. CONCLUSION Early childhood trauma has a long-lasting impact on the metabolism of adult MDD patients, leading to abnormal choline metabolism of the left ACC. Abnormal biochemical metabolism in the CSC circuit may be an underlying pathophysiology of MDD. LIMITATION As this is a small cross-sectional study, the impact of childhood trauma on the different stages of depression has not been observed.
Collapse
|
9
|
Zhang Y, Lai S, Wu W, Wang Y, Zhao H, He J, Zhu Y, Chen G, Qi Z, Chen P, Lv S, Song Z, Hu Y, Miao H, Yan S, Luo Y, Ran H, Huang X, Lu X, Zhong S, Jia Y. Associations between executive function impairment and biochemical abnormalities in depressed adolescents with non-suicidal self-injury. J Affect Disord 2022; 298:492-499. [PMID: 34737017 DOI: 10.1016/j.jad.2021.10.132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND H protons magnetic resonance spectroscopy (1H-MRS) has been used to detect the biochemical metabolism changes and the mechanism of executive dysfunction in major depressive disorder (MDD). While, finding information associated with non-suicidal self-injury (NSSI) among adolescents with MDD is challenging. The present study aimed to examine the executive function and biochemical metabolism alterations, as well as to elucidate their associations in depressed adolescents with NSSI. METHODS A total of 86 adolescents with MDD (40 with NSSI, and 46 without NSSI) and 28 healthy controls were recruited in the current study. The executive function was assessed by Digital symbol test (DST), Wisconsin Card Sorting Test (WCST), Trail Making Test, part B (TMT-B), and Verbal fluency (VF). Bilateral metabolite levels of the prefrontal cortex (PFC), anterior cingulated cortex (ACC), lenticular nucleus (LN) of basal ganglia and thalamus were obtained by 1H-MRS at 3.0 T, and then the ratios of N-acetyl aspartate (NAA) and choline-containing compounds (Cho) to creatine (Cr) were determined, respectively. Finally, association analysis was conducted to investigate their relationships. RESULTS The depressed adolescents with NSSI showed significantly lower VF scores than those without NSSI and healthy controls. We also found significantly higher NAA/Cr ratios in the right thalamus, while significantly lower Cho/Cr ratios in the right thalamus of NSSI group than the MDD without NSSI group and healthy controls. And NSSI group also showed lower NAA/Cr ratio in the right LN than the MDD without NSSI group. For MDD with NSSI, the NAA/Cr ratios of the left thalamus were positively correlated with the time of TMTB and the Cho/Cr ratios of the left ACC were positively correlated with the VF scores. CONCLUSIONS Depressed adolescents with NSSI may have executive dysfunction and NAA and Cho metabolism abnormalities in the thalamus. And the NAA/Cr ratios of the right LN could distinguish NSSI from depressed adolescents. Further, the executive dysfunction may be associated with the abnormal NAA metabolism in the left thalamus and ACC.
Collapse
Affiliation(s)
- Yiliang Zhang
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shunkai Lai
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Weige Wu
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; The Department of Child and Adolescent Psychology Xiamen Xianyue hospital, Fujian 361012, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Hui Zhao
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jiali He
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yunxia Zhu
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Guangmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Zhangzhang Qi
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Sihui Lv
- School of Management, Jinan University, Guangzhou 510316, China
| | - Zijin Song
- School of Management, Jinan University, Guangzhou 510316, China
| | - Yilei Hu
- School of Management, Jinan University, Guangzhou 510316, China
| | - Haofei Miao
- School of Management, Jinan University, Guangzhou 510316, China
| | - Shuya Yan
- School of Management, Jinan University, Guangzhou 510316, China
| | - Yange Luo
- School of Management, Jinan University, Guangzhou 510316, China
| | - Hanglin Ran
- School of Management, Jinan University, Guangzhou 510316, China
| | - Xiaosi Huang
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xiaodan Lu
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| |
Collapse
|
10
|
Wang HX, Chen Y, Haque Z, de Veer M, Egan G, Wang B. Sialylated milk oligosaccharides alter neurotransmitters and brain metabolites in piglets: an In vivo magnetic resonance spectroscopic (MRS) study. Nutr Neurosci 2021; 24:885-895. [PMID: 31746283 DOI: 10.1080/1028415x.2019.1691856] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Background: Human milk contains high concentrations and diversity of sialylated oligosaccharides that have multifunctional health benefits, however, their potential role in optimizing neurodevelopment remains unknown.Objective: To investigate the effect of sialylated milk oligosaccharides (SMOS) intervention on neurotransmitters and brain metabolites in piglets.Methods: 3-day-old piglets were randomly allocated to one of three groups and fed either standard sow milk replacer (SMR) alone (n = 15), SMR supplemented with sialyllactose 9.5 g/kg (SL, n = 16) or a combination of SL and 6'-sialyllactosamine 9.5 g/kg (SL/SLN, n = 15) for 35 days. Brain spectra were acquired using a 3T Magnetic Resonance Spectroscopic (MRS) system.Results: SMOS fed piglets were observed to have significantly increased the absolute levels of myo-inositol (mIns) and glutamate + glutamine (Glx), in particular, the SL/SLN group. Similar findings were found in the relative amount of these metabolites calculated as ratios to creatine (Cr), choline (Cho) and N-acetylaspartate (NAA) respectively (P < .05). In addition, there were significant positive correlations of brain NAA, total NAA (TNAA), mIns, total Cho (TCho), total Cr (TCr), scyllo-Inositol (SI) and glutathione (Glth) with total white matter volume; Glu and SI with whole brain volume; and SI with whole brain weight respectively (P < .01). SLN and 3'SL intake were closely correlated with the levels of brain Glu, mlns and Glx in the treatment groups only (P < .01-.05).Conclusions: We provide in vivo evidences that milk SMOS can alter many important brain metabolites and neurotransmitters required for optimizing neurodevelopment in piglets, an animal model of human infants.
Collapse
Affiliation(s)
- Hong Xin Wang
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, Australia
| | - Yue Chen
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, Australia
| | - Ziaul Haque
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, Australia
| | - Michael de Veer
- Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - Gary Egan
- Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - Bing Wang
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, Australia
| |
Collapse
|
11
|
Liao X, Lai S, Zhong S, Wang Y, Zhang Y, Shen S, Huang H, Chen G, Chen F, Jia Y. Interaction of Serum Copper and Neurometabolites on Executive Dysfunction in Unmedicated Patients With Major Depressive Disorder. Front Psychiatry 2021; 12:564375. [PMID: 33746789 PMCID: PMC7965952 DOI: 10.3389/fpsyt.2021.564375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 01/19/2021] [Indexed: 12/28/2022] Open
Abstract
Objective: The mechanism of executive function (EF) impairment in major depressive disorder (MDD) remains unclear. Previous studies have demonstrated that altered serum copper levels and neurometabolic alterations may be associated with the psychopathology and cognitive impairment of MDD. While, their inter-relationships in MDD remain uncertain. The present study aims to assess whether the interaction between serum copper levels and neurometabolic alterations is involved in the deficit of executive function (EF) in patients with unmedicated MDD. Methods: Serum copper levels and EFs were measured in 41 MDD patients and 50 control subjects. EFs were evaluated by Trail Making Test, Part-B (TMT-B), Digit Symbol Substitution Test (DSST), Wisconsin Card Sorting Task (WCST), and Semantic Verbal Fluency testing (SVFT). Additionally, 41 patients and 41 healthy controls underwent proton magnetic resonance spectroscopy (1H-MRS) to obtain ratios of N-acetyl aspartate to creatine (NAA/Cr) and choline-containing compounds to creatine (Cho/Cr) in the lenticular nucleus (LN) of basal ganglia (BG). Finally, association and interaction analysis were conducted to investigate their inter-relationships. Results: The results showed that patients performed worse in the DSST, WCST, TMT-B time and SVFT. Moreover, patients had higher serum copper levels, but lower NAA/Cr ratios in left LN of BG than healthy controls. In patients, serum copper levels were found to significantly negative associated with Categories Completed (CC) number of WCST (r = -0.408, p = 0.008), and positive associated with the Total Errors (TE) and Nonperseverative Errors (PE) number of WCST (r = 0.356, p = 0.023; r = -0.356, p = 0.022). In addition, the NAA/Cr ratios of left LN were found to significantly negative associated with VFS (r = -0.401, p = 0.009), as well as negative associated with serum copper levels (r = -0.365, p = 0.019). Finally, the interaction between copper and NAA may as influencing factors for SVFT and CC number of WCST in patients. Conclusion: Our results indicated that the interaction of abnormal copper levels and NAA/Cr neurometabolic disruption of the LN may impact executive dysfunction, and this may relevant to the pathophysiology of executive impairment in MDD patients.
Collapse
Affiliation(s)
- Xiaoxiao Liao
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China.,Jiangmen Central Hospital, Jiangmen, China
| | - Shunkai Lai
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yiliang Zhang
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shiyi Shen
- School of Management, Jinan University, Guangzhou, China
| | - Hui Huang
- School of Management, Jinan University, Guangzhou, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Feng Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
12
|
Zyśk M, Pikul P, Kowalski R, Lewandowski K, Sakowicz-Burkiewicz M, Pawełczyk T. Neither Excessive Nitric Oxide Accumulation nor Acute Hyperglycemia Affects the N-Acetylaspartate Network in Wistar Rat Brain Cells. Int J Mol Sci 2020; 21:ijms21228541. [PMID: 33198375 PMCID: PMC7697070 DOI: 10.3390/ijms21228541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
The N-acetylaspartate network begins in neurons with N-acetylaspartate production catalyzed by aspartate N-acetyltransferase from acetyl-CoA and aspartate. Clinical studies reported a significant depletion in N-acetylaspartate brain level in type 1 diabetic patients. The main goal of this study was to establish the impact of either hyperglycemia or oxidative stress on the N-acetylaspartate network. For the in vitro part of the study, embryonic rat primary neurons were treated by using a nitric oxide generator for 24 h followed by 6 days of post-treatment culture, while the neural stem cells were cultured in media with 25–75 mM glucose. For the in vivo part, male adult Wistar rats were injected with streptozotocin (65 mg/kg body weight, ip) to induce hyperglycemia (diabetes model) and euthanized 2 or 8 weeks later. Finally, the biochemical profile, NAT8L protein/Nat8l mRNA levels and enzymatic activity were analyzed. Ongoing oxidative stress processes significantly affected energy metabolism and cholinergic neurotransmission. However, the applied factors did not affect the N-acetylaspartate network. This study shows that reduced N-acetylaspartate level in type 1 diabetes is not related to oxidative stress and that does not trigger N-acetylaspartate network fragility. To reveal why N-acetylaspartate is reduced in this pathology, other processes should be considered.
Collapse
Affiliation(s)
- Marlena Zyśk
- Department of Molecular Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (M.S.-B.); (T.P.)
- Correspondence: ; Tel.: +48-58-349-2770
| | - Piotr Pikul
- Laboratory of Molecular and Cellular Nephrology, Polish Academy of Science, 80-308 Gdansk, Poland; (P.P.); (R.K.)
| | - Robert Kowalski
- Laboratory of Molecular and Cellular Nephrology, Polish Academy of Science, 80-308 Gdansk, Poland; (P.P.); (R.K.)
| | | | - Monika Sakowicz-Burkiewicz
- Department of Molecular Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (M.S.-B.); (T.P.)
| | - Tadeusz Pawełczyk
- Department of Molecular Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (M.S.-B.); (T.P.)
| |
Collapse
|
13
|
Zhong S, Lai S, Yue J, Wang Y, Shan Y, Liao X, Chen J, Li Z, Chen G, Chen F, Jia Y. The characteristic of cognitive impairments in patients with bipolar II depression and its association with N-acetyl aspartate of the prefrontal white matter. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1457. [PMID: 33313202 PMCID: PMC7723520 DOI: 10.21037/atm-20-7098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Cognitive deficit is acknowledged as a core feature of clinical manifestations of bipolar disorder (BD). However, the underlying mechanism of cognitive impairment in bipolar II depression has remained uncertain. We aim to determine the association of cognitive impairments with biochemical metabolism using proton magnetic resonance spectroscopy (1H-MRS) and a battery of neuropsychological testing. Methods The current study was designed to assess four cognitive domains in a sample of 110 patients with bipolar II depression and 110 healthy controls, using a battery of 6 cognitive tests, including the Digit Symbol Substitution Test (DSST), Wisconsin Cart Sorting Test (WCST), Trail Making Test Part B (TMT-B), Digit Span Test (DST), TMT-part A (TMT-A) and Verbal Fluency Test (VFT). Metabolite levels were obtained in the following brain regions of interest: bilateral prefrontal white matter (PWM), bilateral anterior cingulate cortex (ACC), bilateral lenticular nucleus (LN), and bilateral thalamus. N-acetyl aspartate (NAA)/creatine (Cr) and choline-containing compounds (Cho)/Cr ratios are analyzed. Results Patients with bipolar II depression performed significantly worse on DSST (score), TMT (completion time), DSB (score), and VFT (valid word number) when compared with healthy controls. In the bilateral PWM, NAA/Cr ratios in the PWM were significantly reduced (bilaterally) than those in healthy controls. Correlation analysis was conducted with data from patients with bipolar II depression, we found that the NAA/Cr ratio of the left PWM was positively correlated with the score of DS and DSB, and the NAA/Cr ratio of the right PWM was negatively correlated with the completion time of TMT-B. Conclusions Our findings suggested that psychomotor speed, executive function, working memory, and verbal fluency are impaired in patients with BD II depression. Hypoactivity NAA/Cr in bilateral PWM may be associated with BD II depression's pathophysiology and results in cognitive dysfunction.
Collapse
Affiliation(s)
- Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Shunkai Lai
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jihui Yue
- Department of Psychiatry, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yanyan Shan
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xiaoxiao Liao
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Junhao Chen
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Zhinan Li
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Feng Chen
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
14
|
Lai S, Zhong S, Shan Y, Wang Y, Chen G, Luo X, Chen F, Zhang Y, Shen S, Huang H, Ning Y, Jia Y. Altered biochemical metabolism and its lateralization in the cortico-striato-cerebellar circuit of unmedicated bipolar II depression. J Affect Disord 2019; 259:82-90. [PMID: 31442883 DOI: 10.1016/j.jad.2019.07.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/30/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Evidence of the relationship between neurometabolic changes in the cortico-striato-cerebellar (CSC) circuit and bipolar disorder (BD) is still limited. To elucidate the pathogenesis of BD, we investigated the underlying neurometabolic changes and their effect on CSC lateralization circuits in unmedicated patients with bipolar II depression. METHODS Forty unmedicated participants with bipolar II depression and forty healthy controls underwent proton magnetic resonance spectroscopy (1H-MRS). We obtained bilateral metabolic ratios of N-acetylaspartate (NAA)/creatine (Cr) and choline (Cho)/Cr in the prefrontal white matter (PWM), anterior cingulate cortex (ACC), basal ganglia (BG) and the cerebellum. Metabolic ratios were characterized using a laterality index (LI) for left-right asymmetry. RESULTS Overall, aberrant lateralization in the CSC circuit was characteristic in patients with bipolar II depression. Patients with bipolar II depression showed significantly lower NAA/Cr ratios in the left PWM, right ACC, left BG and left cerebellum when compared with the healthy controls. For bipolar II depression, we found lower NAA/Cr LI in the PWM, BG, and cerebellum, higher NAA/Cr LI in the ACC, and higher Cho/Cr LI in the BG and cerebellum when compared to the standard value (1.0). For healthy controls, we found lower NAA/Cr LI only in the BG and higher Cho/Cr LI in the cerebellum when compared to 1.0. LIMITATIONS As a cross-sectional study with a small sample size, progressive changes and complex metabolic interactions with treatment were not observed. CONCLUSIONS Our findings suggest that abnormal biochemical metabolism with aberrant lateralization in the CSC circuit may be an underlying pathophysiology of bipolar II depression.
Collapse
Affiliation(s)
- Shunkai Lai
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yanyan Shan
- School of Management, Jinan University, Guangzhou 510316, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xiaomei Luo
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Feng Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yiliang Zhang
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shiyi Shen
- School of Management, Jinan University, Guangzhou 510316, China
| | - Hui Huang
- School of Management, Jinan University, Guangzhou 510316, China
| | - Yuping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou 510370, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| |
Collapse
|
15
|
Ji P, B Nonnecke E, Doan N, Lönnerdal B, Tan B. Excess Iron Enhances Purine Catabolism Through Activation of Xanthine Oxidase and Impairs Myelination in the Hippocampus of Nursing Piglets. J Nutr 2019; 149:1911-1919. [PMID: 31373370 DOI: 10.1093/jn/nxz166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/17/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Few studies have addressed the risk of nutritional iron overexposure in infancy. We previously found that excess dietary iron in nursing piglets resulted in iron overload in the liver and hippocampus and diminished socialization with novel conspecifics in a test for social novelty preference. OBJECTIVES This experiment aimed to identify metabolites and metabolic pathways affected by iron overload in the liver and hippocampus of nursing piglets. METHODS Liver and hippocampal tissues collected from 22-d-old piglets (Hampshire × Yorkshire crossbreed; 5.28 ± 0.53 kg body weight; 50% male) that received orally 0 (NI group) or 50 mg iron/(d · kg body weight) (HI group) from postnatal day (PD) 2 to PD21 were analyzed for mRNA and protein expression and enzyme activity of xanthine oxidase (XO). Untargeted metabolomics was performed using GC-MS. Expression of myelin basic protein (MBP) in the hippocampus was determined using western blot. RESULTS There were 108 and 126 metabolites identified in the hippocampus and liver, respectively. Compared with NI, HI altered 15 metabolites (P < 0.05, q < 0.2) in the hippocampus, including a reduction in myo-inositol (0.86-fold) and N-acetylaspartic acid (0.84-fold), 2 metabolites important for neuronal function and myelination. Seven metabolites involved in purine and pyrimidine metabolism (e.g., hypoxanthine, xanthine, and β-alanine) were coordinately changed in the hippocampus (P < 0.05, q < 0.2), suggesting that iron excess enhanced purine catabolism. The mRNA expression (2.3-fold) (P < 0.05) and activity of XO, a rate-limiting enzyme in purine degradation, was increased. Excess iron increased hippocampal lipid peroxidation by 74% (P < 0.05) and decreased MBP by 44% (P = 0.053). The hepatic metabolome was unaffected. CONCLUSIONS In nursing piglets, excess iron enhances hippocampal purine degradation through activation of XO, which may induce oxidative stress and alter energy metabolism in the developing brain.
Collapse
Affiliation(s)
- Peng Ji
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Eric B Nonnecke
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Nicole Doan
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Bie Tan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| |
Collapse
|
16
|
Mellen EJ, Harper DG, Ravichandran C, Jensen E, Silveri M, Forester BP. Lamotrigine Therapy and Biomarkers of Cerebral Energy Metabolism in Older Age Bipolar Depression. Am J Geriatr Psychiatry 2019; 27:783-793. [PMID: 31000323 DOI: 10.1016/j.jagp.2019.02.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/24/2022]
Abstract
OBJECTIVE This study compared brain energy metabolism, as measured by cerebral concentrations of glutamate (Glu), glutamine (Gln), and N-acetyl aspartate (NAA), in older age bipolar depression (OABD) to that of psychiatrically healthy comparison subjects using proton (1H) magnetic resonance spectroscopy imaging at 4-Tesla. Metabolite levels were assessed in OABD subjects before and after 8 weeks of lamotrigine therapy with the goal of determining relationships between cerebral energy metabolism, depression symptom severity, and changes in depression symptom response. METHODS Individuals (n = 21, mean age: 62.0 ± 5.9 years) with bipolar disorder, current episode depressed, and a healthy comparison group (n = 14, mean age: 67.5 ± 8.8 years) were selected. Participants with bipolar disorder, current episode depressed, were treated in open label fashion with lamotrigine monotherapy for 8 weeks. All subjects were scanned with 1H magnetic resonance spectroscopy at 4T at baseline and again after 8 weeks to assess levels of cerebral metabolites in the anterior cingulate cortex and parieto-occipital cortex. Metabolite levels were examined as ratios relative to creatine (Cr). Response to 8 weeks of lamotrigine treatment in the bipolar disorder, current episode depressed group, was assessed as a continuous measure on the Montgomery-Asberg Depression Rating Scale. RESULTS NAA/Cr ratio in OABD was significantly lower by 14% (95% confidence interval: [1%, 26%]) than in comparison subjects at baseline. However, there were no associations between NAA/Cr, Glu/Cr, or Gln/Cr and either depression severity or lamotrigine treatment. CONCLUSION Group differences in NAA suggest evidence for a deficit in cerebral energy metabolism in OABD.
Collapse
Affiliation(s)
- Emily J Mellen
- McLean Hospital Division of Geriatric Psychiatry (EJM, DGH, BPF), Belmont, MA
| | - David G Harper
- McLean Hospital Division of Geriatric Psychiatry (EJM, DGH, BPF), Belmont, MA; Department of Psychiatry (DGH, CR, EJ, MS, BPF), Harvard Medical School, Boston
| | - Caitlin Ravichandran
- Department of Psychiatry (DGH, CR, EJ, MS, BPF), Harvard Medical School, Boston; Program for Neuropsychiatric Research (CR), McLean Hospital, Belmont, MA; Lurie Center for Autism (CR), Massachusetts General Hospital, Lexington, MA
| | - Eric Jensen
- Department of Psychiatry (DGH, CR, EJ, MS, BPF), Harvard Medical School, Boston; Brain Imaging Center (EJ), McLean Hospital, Belmont, MA
| | - Marisa Silveri
- Department of Psychiatry (DGH, CR, EJ, MS, BPF), Harvard Medical School, Boston; Neurodevelopmental Laboratory on Addictions and Mental Health (MS), McLean Hospital, Belmont, MA
| | - Brent P Forester
- McLean Hospital Division of Geriatric Psychiatry (EJM, DGH, BPF), Belmont, MA; Department of Psychiatry (DGH, CR, EJ, MS, BPF), Harvard Medical School, Boston.
| |
Collapse
|
17
|
Sen NE, Canet-Pons J, Halbach MV, Arsovic A, Pilatus U, Chae WH, Kaya ZE, Seidel K, Rollmann E, Mittelbronn M, Meierhofer D, De Zeeuw CI, Bosman LWJ, Gispert S, Auburger G. Generation of an Atxn2-CAG100 knock-in mouse reveals N-acetylaspartate production deficit due to early Nat8l dysregulation. Neurobiol Dis 2019; 132:104559. [PMID: 31376479 DOI: 10.1016/j.nbd.2019.104559] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/16/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022] Open
Abstract
Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant neurodegenerative disorder caused by CAG-expansion mutations in the ATXN2 gene, mainly affecting motor neurons in the spinal cord and Purkinje neurons in the cerebellum. While the large expansions were shown to cause SCA2, the intermediate length expansions lead to increased risk for several atrophic processes including amyotrophic lateral sclerosis and Parkinson variants, e.g. progressive supranuclear palsy. Intense efforts to pioneer a neuroprotective therapy for SCA2 require longitudinal monitoring of patients and identification of crucial molecular pathways. The ataxin-2 (ATXN2) protein is mainly involved in RNA translation control and regulation of nutrient metabolism during stress periods. The preferential mRNA targets of ATXN2 are yet to be determined. In order to understand the molecular disease mechanism throughout different prognostic stages, we generated an Atxn2-CAG100-knock-in (KIN) mouse model of SCA2 with intact murine ATXN2 expression regulation. Its characterization revealed somatic mosaicism of the expansion, with shortened lifespan, a progressive spatio-temporal pattern of pathology with subsequent phenotypes, and anomalies of brain metabolites such as N-acetylaspartate (NAA), all of which mirror faithfully the findings in SCA2 patients. Novel molecular analyses from stages before the onset of motor deficits revealed a strong selective effect of ATXN2 on Nat8l mRNA which encodes the enzyme responsible for NAA synthesis. This metabolite is a prominent energy store of the brain and a well-established marker for neuronal health. Overall, we present a novel authentic rodent model of SCA2, where in vivo magnetic resonance imaging was feasible to monitor progression and where the definition of earliest transcriptional abnormalities was possible. We believe that this model will not only reveal crucial insights regarding the pathomechanism of SCA2 and other ATXN2-associated disorders, but will also aid in developing gene-targeted therapies and disease prevention.
Collapse
Affiliation(s)
- Nesli-Ece Sen
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Júlia Canet-Pons
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Melanie V Halbach
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Aleksandar Arsovic
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Ulrich Pilatus
- Institute of Neuroradiology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Woon-Hyung Chae
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany
| | - Zeynep-Ece Kaya
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany; Department of Neurology, Cerrahpasa School of Medicine, Istanbul University, 34098 Istanbul, Turkey
| | - Kay Seidel
- Department of Anatomy II, Institute of Clinical Neuroanatomy, Goethe University, 60590 Frankfurt am Main, Germany
| | - Ewa Rollmann
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Michel Mittelbronn
- Neurological Institute (Edinger Institute), Goethe University, 60590 Frankfurt am Main, Germany; Luxembourg Centre of Neuropathology (LCNP), Luxembourg; Department of Pathology, Laboratoire National de Santé (LNS), Dudelange, Luxembourg; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg; Department of Oncology, NORLUX Neuro-Oncology Laboratory, Luxembourg Institute of Health (LIH), Luxembourg
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Chris I De Zeeuw
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands; Department of Neuroscience, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Laurens W J Bosman
- Department of Neuroscience, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Suzana Gispert
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Georg Auburger
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
18
|
Zhong S, Wang Y, Lai S, Liu T, Liao X, Chen G, Jia Y. Associations between executive function impairment and biochemical abnormalities in bipolar disorder with suicidal ideation. J Affect Disord 2018; 241:282-290. [PMID: 30142586 DOI: 10.1016/j.jad.2018.08.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Executive dysfunction and biochemical abnormalities using proton magnetic resonance spectroscopy (1H-MRS) have been reported in bipolar disorder (BD). Much less is known about the information from BD with suicidal ideation (SI). This study aimed to assess alterations of execution function and biochemical metabolism in BD with SI, in BD without SI, and in healthy controls. The associations between execution function and biochemical metabolism in the two BD patient groups were also been studied. METHODS 92 patients with bipolar disorder during a depressive episode (50 with current SI, and 42 without SI), as well as, 43 healthy controls were recruited in our study. Executive function was assessed by Wisconsin Card Sorting Test (WCST). Bilateral metabolite levels of prefrontal cortex (PFC), anterior cingulated cortex (ACC), lenticular nucleus (LN) of basal ganglia and thalamus were obtained by 1H-MRS at 3.0 T, then determined the ratios of N-acetyl aspartate (NAA), choline-containing compounds (Cho), myo-inositol (mI) to creatine (Cr). RESULTS Number of categories completed (CC) in BD with SI was significantly less than healthy controls. NAA/Cr ratios of left PFC in the two BD patient groups (with or without SI) were significantly lower than healthy controls, and NAA/Cr ratios of left thalamus were significantly higher than healthy controls. Moreover, NAA/Cr ratio of right LN in BD without SI was higher than BD with SI and healthy controls. For BD with SI, NAA/Cr ratio of left thalamus was negatively correlated with number of CC. CONCLUSIONS These results suggested that BD with or without SI may have abnormal NAA metabolism, and NAA/Cr ratio of right LN may distinguish SI from the BD patients. Further, BD with SI may have executive function impairment, which may be associated with the abnormal NAA metabolism in the left thalamus.
Collapse
Affiliation(s)
- Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital, Jinan University, No. 613 West Huangpu Avenue Tianhe District, Guangzhou 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Shunkai Lai
- Department of Psychiatry, First Affiliated Hospital, Jinan University, No. 613 West Huangpu Avenue Tianhe District, Guangzhou 510630, China
| | - Tao Liu
- Department of Psychiatry, First Affiliated Hospital, Jinan University, No. 613 West Huangpu Avenue Tianhe District, Guangzhou 510630, China
| | - Xiaoxiao Liao
- Department of Psychiatry, First Affiliated Hospital, Jinan University, No. 613 West Huangpu Avenue Tianhe District, Guangzhou 510630, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital, Jinan University, No. 613 West Huangpu Avenue Tianhe District, Guangzhou 510630, China.
| |
Collapse
|
19
|
Zyśk M, Bielarczyk H, Gul-Hinc S, Dyś A, Gapys B, Ronowska A, Sakowicz-Burkiewicz M, Szutowicz A. Phenotype-Dependent Interactions between N-acetyl-L-Aspartate and Acetyl-CoA in Septal SN56 Cholinergic Cells Exposed to an Excess of Zinc. J Alzheimers Dis 2018; 56:1145-1158. [PMID: 28106547 DOI: 10.3233/jad-160693] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pyruvate dehydrogenase reaction utilizing glucose-derived pyruvate is an almost exclusive source of acetyl-CoA in different cell mitochondrial compartments of the brain. In neuronal mitochondria, the largest fraction of acetyl-CoA is utilized for energy production and the much smaller one for N-acetyl-L-aspartate (NAA) synthesis. Cholinergic neurons, unlike others, require additional amounts of acetyl-CoA for acetylcholine synthesis. Therefore, several neurotoxic signals, which inhibit pyruvate dehydrogenase, generate deeper shortages of acetyl-CoA and greater mortality of cholinergic neurons than noncholinergic ones. NAA is considered to be a marker of neuronal energy status in neuropathic brains. However, there is no data on putative differential fractional distribution of the acetyl-CoA pool between energy producing and NAA or acetylcholine synthesizing pathways in noncholinergic and cholinergic neurons, respectively. Therefore, the aim of this study was to investigate whether zinc-excess, a common excitotoxic signal, may evoke differential effects on the NAA metabolism in neuronal cells with low and high expression of the cholinergic phenotype. Differentiated SN56 neuronal cells, displaying a high activity of choline acetyltransferase and rates of acetylcholine synthesis, contained lower levels of acetyl-CoA and NAA, being more susceptible to ZnCl2 exposition that the nondifferentiated SN56 or differentiated dopaminergic SHSY5Y neuronal and astroglial C6 cells. Differentiated SN56 accumulated greater amounts of Zn2 + from extracellular space than the other ones, and displayed a stronger suppression of pyruvate dehydrogenase complex activity and acetyl-CoA, NAA, ATP, acetylcholine levels, and loss of viability. These data indicate that the acetyl-CoA synthesizing system in neurons constitutes functional unity with energy generating and NAA or acetylcholine pathways of its utilization, which are uniformly affected by neurotoxic conditions.
Collapse
Affiliation(s)
- Marlena Zyśk
- Department of Laboratory Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Hanna Bielarczyk
- Department of Laboratory Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Sylwia Gul-Hinc
- Department of Laboratory Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Aleksandra Dyś
- Department of Laboratory Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Beata Gapys
- Department of Laboratory Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Ronowska
- Department of Laboratory Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Andrzej Szutowicz
- Department of Laboratory Medicine, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
20
|
Cui MH, Suzuka SM, Branch NA, Ambadipudi K, Thangaswamy S, Acharya SA, Billett HH, Branch CA. Brain neurochemical and hemodynamic findings in the NY1DD mouse model of mild sickle cell disease. NMR IN BIOMEDICINE 2017; 30:e3692. [PMID: 28186661 DOI: 10.1002/nbm.3692] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 11/10/2016] [Accepted: 12/14/2016] [Indexed: 06/06/2023]
Abstract
To characterize the cerebral profile associated with sickle cell disease (SCD), we used in vivo proton MRI and MRS to quantify hemodynamics and neurochemicals in the thalamus of NY1DD mice, a mild model of SCD, and compared them with wild-type (WT) control mice. Compared with WT mice, NY1DD mice at steady state had elevated cerebral blood flow (CBF) and concentrations of N-acetylaspartate (NAA), glutamate (Glu), alanine, total creatine and N-acetylaspartylglutamate. Concentrations of glutathione (GSH) at steady state showed a negative correlation with BOLD signal change in response to 100% oxygen, a marker for oxidative stress, and mean diffusivity assessed using diffusion-tensor imaging, a marker for edematous inflammation. In NY1DD mice, elevated basal CBF was correlated negatively with [NAA], but positively with concentration of glutamine ([Gln]). Immediately after experimental hypoxia (at reoxygenation after 18 hours of 8% O2 ), concentrations of NAA, Glu, GSH, Gln and taurine (Tau) increased only in NY1DD mice. [NAA], [Glu], [GSH] and [Tau] all returned to baseline levels two weeks after the hypoxic episode. The altered neurochemical profile in the NY1DD mouse model of SCD at steady state and following experimental hypoxia/reoxygenation suggests a state of chronic oxidative stress leading to compensatory cerebral metabolic adjustments.
Collapse
Affiliation(s)
- Min-Hui Cui
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Radiology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Sandra M Suzuka
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Nicholas A Branch
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Aerospace Engineering, Georgia Tech, Atlanta, GA, USA
| | - Kamalakar Ambadipudi
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Sangeetha Thangaswamy
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Seetharama A Acharya
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine (Hematology), Albert Einstein College of Medicine, Bronx, New York, USA
| | - Henny H Billett
- Department of Medicine (Hematology), Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Craig A Branch
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Radiology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
21
|
Design and optimization of aspartate N -acetyltransferase inhibitors for the potential treatment of Canavan disease. Bioorg Med Chem 2017; 25:870-885. [DOI: 10.1016/j.bmc.2016.11.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 11/27/2016] [Accepted: 11/29/2016] [Indexed: 11/19/2022]
|
22
|
Abstract
The revolution in cancer genomics has uncovered a variety of clinically relevant mutations in primary brain tumours, creating an urgent need to develop non-invasive imaging biomarkers to assess and integrate this genetic information into the clinical management of patients. Metabolic reprogramming is a central hallmark of cancer, including brain tumours; indeed, many of the molecular pathways implicated in the pathogenesis of brain tumours result in reprogramming of metabolism. This relationship provides the opportunity to devise in vivo metabolic imaging modalities to improve diagnosis, patient stratification, and monitoring of treatment response. Metabolic phenomena, such as the Warburg effect and altered mitochondrial metabolism, can be leveraged to image brain tumours using techniques including PET and MRI. Moreover, genetic alterations, such as mutations affecting isocitrate dehydrogenase, are associated with unique metabolic signatures that can be detected using magnetic resonance spectroscopy. The need to translate our understanding of the molecular features of brain tumours into imaging modalities with clinical utility is growing; metabolic imaging provides a unique platform to achieve this objective. In this Review, we examine the molecular basis for metabolic reprogramming in brain tumours, and examine current non-invasive metabolic imaging strategies that can be used to interrogate these molecular characteristics with the ultimate goal of guiding and improving patient care.
Collapse
|
23
|
Weindl D, Cordes T, Battello N, Sapcariu SC, Dong X, Wegner A, Hiller K. Bridging the gap between non-targeted stable isotope labeling and metabolic flux analysis. Cancer Metab 2016; 4:10. [PMID: 27110360 PMCID: PMC4842284 DOI: 10.1186/s40170-016-0150-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/31/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Metabolism gained increasing interest for the understanding of diseases and to pinpoint therapeutic intervention points. However, classical metabolomics techniques only provide a very static view on metabolism. Metabolic flux analysis methods, on the other hand, are highly targeted and require detailed knowledge on metabolism beforehand. RESULTS We present a novel workflow to analyze non-targeted metabolome-wide stable isotope labeling data to detect metabolic flux changes in a non-targeted manner. Furthermore, we show how similarity-analysis of isotopic enrichment patterns can be used for pathway contextualization of unidentified compounds. We illustrate our approach with the analysis of changes in cellular metabolism of human adenocarcinoma cells in response to decreased oxygen availability. Starting without a priori knowledge, we detect metabolic flux changes, leading to an increased glutamine contribution to acetyl-CoA production, reveal biosynthesis of N-acetylaspartate by N-acetyltransferase 8-like (NAT8L) in lung cancer cells and show that NAT8L silencing inhibits proliferation of A549, JHH-4, PH5CH8, and BEAS-2B cells. CONCLUSIONS Differential stable isotope labeling analysis provides qualitative metabolic flux information in a non-targeted manner. Furthermore, similarity analysis of enrichment patterns provides information on metabolically closely related compounds. N-acetylaspartate and NAT8L are important players in cancer cell metabolism, a context in which they have not received much attention yet.
Collapse
Affiliation(s)
- Daniel Weindl
- />Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, 4362 Luxembourg
| | - Thekla Cordes
- />Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, 4362 Luxembourg
- />Department of Bioengineering, University of California, Gilman Drive, San Diego, La Jolla, 92037 USA
| | - Nadia Battello
- />Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, 4362 Luxembourg
| | - Sean C. Sapcariu
- />Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, 4362 Luxembourg
| | - Xiangyi Dong
- />Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, 4362 Luxembourg
| | - Andre Wegner
- />Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, 4362 Luxembourg
| | - Karsten Hiller
- />Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, 4362 Luxembourg
| |
Collapse
|
24
|
Wang Q, Zhao M, Parungao GG, Viola RE. Purification and characterization of aspartate N-acetyltransferase: A critical enzyme in brain metabolism. Protein Expr Purif 2016; 119:11-8. [DOI: 10.1016/j.pep.2015.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/02/2015] [Accepted: 11/03/2015] [Indexed: 10/22/2022]
|
25
|
Sajja VSSS, Hlavac N, VandeVord PJ. Role of Glia in Memory Deficits Following Traumatic Brain Injury: Biomarkers of Glia Dysfunction. Front Integr Neurosci 2016; 10:7. [PMID: 26973475 PMCID: PMC4770450 DOI: 10.3389/fnint.2016.00007] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 02/05/2016] [Indexed: 12/15/2022] Open
Abstract
Historically, glial cells have been recognized as a structural component of the brain. However, it has become clear that glial cells are intimately involved in the complexities of neural networks and memory formations. Astrocytes, microglia, and oligodendrocytes have dynamic responsibilities which substantially impact neuronal function and activities. Moreover, the importance of glia following brain injury has come to the forefront in discussions to improve axonal regeneration and functional recovery. The numerous activities of glia following injury can either promote recovery or underlie the pathobiology of memory deficits. This review outlines the pathological states of glial cells which evolve from their positive supporting roles to those which disrupt synaptic function and neuroplasticity following injury. Evidence suggests that glial cells interact extensively with neurons both chemically and physically, reinforcing their role as pivotal for higher brain functions such as learning and memory. Collectively, this mini review surveys investigations of how glial dysfunction following brain injury can alter mechanisms of synaptic plasticity and how this may be related to an increased risk for persistent memory deficits. We also include recent findings, that demonstrate new molecular avenues for clinical biomarker discovery.
Collapse
Affiliation(s)
- Venkata S S S Sajja
- Cellular Imaging Section and Vascular Biology Program, Department of Radiology and Radiological Science, Institute for Cell Engineering, Johns Hopkins University School of Medicine Baltimore, MA, USA
| | - Nora Hlavac
- Department of Biomedical Engineering and Mechanics, Virginia Tech University Blacksburg, VA, USA
| | - Pamela J VandeVord
- Department of Biomedical Engineering and Mechanics, Virginia Tech University Blacksburg, VA, USA
| |
Collapse
|
26
|
Abstract
Metabolic disorders comprise a large group of heterogeneous diseases ranging from very prevalent diseases such as diabetes mellitus to rare genetic disorders like Canavan Disease. Whether either of these diseases is amendable by gene therapy depends to a large degree on the knowledge of their pathomechanism, availability of the therapeutic gene, vector selection, and availability of suitable animal models. In this book chapter, we review three metabolic disorders of the central nervous system (CNS; Canavan Disease, Niemann-Pick disease and Phenylketonuria) to give examples for primary and secondary metabolic disorders of the brain and the attempts that have been made to use adeno-associated virus (AAV) based gene therapy for treatment. Finally, we highlight commonalities and obstacles in the development of gene therapy for metabolic disorders of the CNS exemplified by those three diseases.
Collapse
Affiliation(s)
- Dominic J Gessler
- University of Massachusetts Medical School, 368 Plantation Street, AS6-2049, Worcester, MA, 01605, USA
| | - Guangping Gao
- University of Massachusetts Medical School, 368 Plantation Street, AS6-2049, Worcester, MA, 01605, USA.
| |
Collapse
|
27
|
Shannon RJ, van der Heide S, Carter EL, Jalloh I, Menon DK, Hutchinson PJ, Carpenter KLH. Extracellular N-Acetylaspartate in Human Traumatic Brain Injury. J Neurotrauma 2015; 33:319-29. [PMID: 26159566 PMCID: PMC4761801 DOI: 10.1089/neu.2015.3950] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
N-acetylaspartate (NAA) is an amino acid derivative primarily located in the neurons of the adult brain. The function of NAA is incompletely understood. Decrease in brain tissue NAA is presently considered symptomatic and a potential biomarker of acute and chronic neuropathological conditions. The aim of this study was to use microdialysis to investigate the behavior of extracellular NAA (eNAA) levels after traumatic brain injury (TBI). Sampling for this study was performed using cerebral microdialysis catheters (M Dialysis 71) perfused at 0.3 μL/min. Extracellular NAA was measured in microdialysates by high-performance liquid chromatography in 30 patients with severe TBI and for comparison, in radiographically “normal” areas of brain in six non-TBI neurosurgical patients. We established a detailed temporal eNAA profile in eight of the severe TBI patients. Microdialysate concentrations of glucose, lactate, pyruvate, glutamate, and glycerol were measured on an ISCUS clinical microdialysis analyzer. Here, we show that the temporal profile of microdialysate eNAA was characterized by highest levels in the earliest time-points post-injury, followed by a steady decline; beyond 70 h post-injury, average levels were 40% lower than those measured in non-TBI patients. There was a significant inverse correlation between concentrations of eNAA and pyruvate; eNAA showed significant positive correlations with glycerol and the lactate/pyruvate (L/P) ratio measured in microdialysates. The results of this on-going study suggest that changes in eNAA after TBI relate to the release of intracellular components, possibly due to neuronal death or injury, as well as to adverse brain energy metabolism.
Collapse
Affiliation(s)
- Richard J Shannon
- 1 Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom
| | - Susan van der Heide
- 1 Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom
| | - Eleanor L Carter
- 3 Division of Anaesthesia, Department of Medicine, University of Cambridge , Cambridge, United Kingdom
| | - Ibrahim Jalloh
- 1 Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom
| | - David K Menon
- 2 Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom .,3 Division of Anaesthesia, Department of Medicine, University of Cambridge , Cambridge, United Kingdom
| | - Peter J Hutchinson
- 1 Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom .,2 Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom
| | - Keri L H Carpenter
- 1 Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom .,2 Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom
| |
Collapse
|
28
|
Croarkin PE, Thomas MA, Port JD, Baruth JM, Choi DS, Abulseoud OA, Frye MA. N-acetylaspartate normalization in bipolar depression after lamotrigine treatment. Bipolar Disord 2015; 17:450-457. [PMID: 25495884 PMCID: PMC4655601 DOI: 10.1111/bdi.12285] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 10/10/2014] [Indexed: 01/27/2023]
Abstract
OBJECTIVES The aim of the present study was to examine N-acetylaspartate (NAA), a general marker of neuronal viability, and total NAA (tNAA), the combined signal of NAA and N-acetylaspartylglutamate, in bipolar depression before and after lamotrigine treatment. Given that NAA is synthesized through direct acetylation of aspartate by acetyl-coenzyme A-l-aspartate-N-acetyltransferase, we hypothesized that treatment with lamotrigine would be associated with an increase in NAA level. METHODS Patients with bipolar depression underwent two-dimensional proton magnetic resonance spectroscopy of the anterior cingulate at baseline (n = 15) and after 12 weeks of lamotrigine treatment (n = 10). A group of age-matched healthy controls (n = 9) underwent scanning at baseline for comparison. RESULTS At baseline, patients with bipolar depression had significantly lower NAA [mean standard deviation (SD) = 1.13 (0.21); p = 0.02] than controls [mean (SD) = 1.37 (0.27)]. Significant increases in NAA [mean (SD) = 1.39 (0.21); p = 0.01] and tNAA [mean (SD) = 1.61 (0.25); p = 0.02] levels were found after 12 weeks of lamotrigine treatment. CONCLUSIONS These data suggest an NAA deficit in bipolar depression that is normalized after lamotrigine treatment. Future research is warranted to evaluate whether baseline NAA level is a potential biomarker for identifying lamotrigine response patterns and whether this functional brain change has an associated clinical response.
Collapse
Affiliation(s)
- Paul E Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - M Albert Thomas
- Department of Radiology, Psychiatry, and Biomedical Engineering, Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - John D Port
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Joshua M Baruth
- University of Louisville School of Medicine, Louisville, KY, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Osama A Abulseoud
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
29
|
Hirrlinger J, Nave KA. Adapting brain metabolism to myelination and long-range signal transduction. Glia 2014; 62:1749-61. [DOI: 10.1002/glia.22737] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 07/23/2014] [Accepted: 07/23/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Johannes Hirrlinger
- Department of Neurogenetics; Max-Planck-Institute for Experimental Medicine; Göttingen Germany
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig; Leipzig Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics; Max-Planck-Institute for Experimental Medicine; Göttingen Germany
| |
Collapse
|
30
|
Mendes Arent A, de Souza LF, Walz R, Dafre AL. Perspectives on molecular biomarkers of oxidative stress and antioxidant strategies in traumatic brain injury. BIOMED RESEARCH INTERNATIONAL 2014; 2014:723060. [PMID: 24689052 PMCID: PMC3943200 DOI: 10.1155/2014/723060] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 12/04/2013] [Accepted: 12/09/2013] [Indexed: 11/23/2022]
Abstract
Traumatic brain injury (TBI) is frequently associated with abnormal blood-brain barrier function, resulting in the release of factors that can be used as molecular biomarkers of TBI, among them GFAP, UCH-L1, S100B, and NSE. Although many experimental studies have been conducted, clinical consolidation of these biomarkers is still needed to increase the predictive power and reduce the poor outcome of TBI. Interestingly, several of these TBI biomarkers are oxidatively modified to carbonyl groups, indicating that markers of oxidative stress could be of predictive value for the selection of therapeutic strategies. Some drugs such as corticosteroids and progesterone have already been investigated in TBI neuroprotection but failed to demonstrate clinical applicability in advanced phases of the studies. Dietary antioxidants, such as curcumin, resveratrol, and sulforaphane, have been shown to attenuate TBI-induced damage in preclinical studies. These dietary antioxidants can increase antioxidant defenses via transcriptional activation of NRF2 and are also known as carbonyl scavengers, two potential mechanisms for neuroprotection. This paper reviews the relevance of redox biology in TBI, highlighting perspectives for future studies.
Collapse
Affiliation(s)
- André Mendes Arent
- Department of Biochemistry, Federal University of Santa Catarina, Biological Sciences Centre, 88040-900 Florianópolis, SC, Brazil
- Faculty of Medicine, University of South Santa Catarina (Unisul), 88137-270 Palhoça, SC, Brazil
- Neurosurgery Service, São José Regional Hospital (HRSJ-HMG), 88103-901 São José, SC, Brazil
| | - Luiz Felipe de Souza
- Department of Biochemistry, Federal University of Santa Catarina, Biological Sciences Centre, 88040-900 Florianópolis, SC, Brazil
| | - Roger Walz
- Applied Neurosciences Centre (CeNAp) and Department of Medical Clinics, University Hospital, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Alcir Luiz Dafre
- Department of Biochemistry, Federal University of Santa Catarina, Biological Sciences Centre, 88040-900 Florianópolis, SC, Brazil
| |
Collapse
|
31
|
Pessentheiner AR, Pelzmann HJ, Walenta E, Schweiger M, Groschner LN, Graier WF, Kolb D, Uno K, Miyazaki T, Nitta A, Rieder D, Prokesch A, Bogner-Strauss JG. NAT8L (N-acetyltransferase 8-like) accelerates lipid turnover and increases energy expenditure in brown adipocytes. J Biol Chem 2013; 288:36040-51. [PMID: 24155240 PMCID: PMC3861652 DOI: 10.1074/jbc.m113.491324] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
NAT8L (N-acetyltransferase 8-like) catalyzes the formation of N-acetylaspartate (NAA) from acetyl-CoA and aspartate. In the brain, NAA delivers the acetate moiety for synthesis of acetyl-CoA that is further used for fatty acid generation. However, its function in other tissues remained elusive. Here, we show for the first time that Nat8l is highly expressed in adipose tissues and murine and human adipogenic cell lines and is localized in the mitochondria of brown adipocytes. Stable overexpression of Nat8l in immortalized brown adipogenic cells strongly increases glucose incorporation into neutral lipids, accompanied by increased lipolysis, indicating an accelerated lipid turnover. Additionally, mitochondrial mass and number as well as oxygen consumption are elevated upon Nat8l overexpression. Concordantly, expression levels of brown marker genes, such as Prdm16, Cidea, Pgc1α, Pparα, and particularly UCP1, are markedly elevated in these cells. Treatment with a PPARα antagonist indicates that the increase in UCP1 expression and oxygen consumption is PPARα-dependent. Nat8l knockdown in brown adipocytes has no impact on cellular triglyceride content, lipogenesis, or oxygen consumption, but lipolysis and brown marker gene expression are increased; the latter is also observed in BAT of Nat8l-KO mice. Interestingly, the expression of ATP-citrate lyase is increased in Nat8l-silenced adipocytes and BAT of Nat8l-KO mice, indicating a compensatory mechanism to sustain the acetyl-CoA pool once Nat8l levels are reduced. Taken together, our data show that Nat8l impacts on the brown adipogenic phenotype and suggests the existence of the NAT8L-driven NAA metabolism as a novel pathway to provide cytosolic acetyl-CoA for lipid synthesis in adipocytes.
Collapse
Affiliation(s)
- Ariane R. Pessentheiner
- From the Institute for Genomics and Bioinformatics, Graz University of Technology, Petergasse 14, 8010 Graz, Austria, ,the Institute of Biochemistry, Graz University of Technology, Petergasse 12, 8010 Graz, Austria
| | - Helmut J. Pelzmann
- From the Institute for Genomics and Bioinformatics, Graz University of Technology, Petergasse 14, 8010 Graz, Austria, ,the Institute of Biochemistry, Graz University of Technology, Petergasse 12, 8010 Graz, Austria
| | - Evelyn Walenta
- From the Institute for Genomics and Bioinformatics, Graz University of Technology, Petergasse 14, 8010 Graz, Austria
| | - Martina Schweiger
- the Institute for Molecular Biosciences, University of Graz, Heinrichstrasse 31, 8010 Graz, Austria
| | | | | | - Dagmar Kolb
- Institute of Cell Biology, Histology, and Embryology, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria, ,the Core Facility Ultrastructure Analysis, Center for Medical Research, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria
| | - Kyosuke Uno
- the Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan, and
| | - Toh Miyazaki
- the Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan, and
| | - Atsumi Nitta
- the Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan, and
| | - Dietmar Rieder
- the Division of Bioinformatics, Biocenter, Innsbruck Medical University, Innrain 80, 6020 Innsbruck, Austria
| | - Andreas Prokesch
- From the Institute for Genomics and Bioinformatics, Graz University of Technology, Petergasse 14, 8010 Graz, Austria, ,the Institute of Biochemistry, Graz University of Technology, Petergasse 12, 8010 Graz, Austria
| | - Juliane G. Bogner-Strauss
- From the Institute for Genomics and Bioinformatics, Graz University of Technology, Petergasse 14, 8010 Graz, Austria, ,the Institute of Biochemistry, Graz University of Technology, Petergasse 12, 8010 Graz, Austria, , To whom correspondence should be addressed: Petersgasse 14/5, 8010 Graz, Austria. Tel.: 43-316-873-5337; E-mail:
| |
Collapse
|
32
|
de la Fuente-Sandoval C, León-Ortiz P, Azcárraga M, Stephano S, Favila R, Díaz-Galvis L, Alvarado-Alanis P, Ramírez-Bermúdez J, Graff-Guerrero A. Glutamate levels in the associative striatum before and after 4 weeks of antipsychotic treatment in first-episode psychosis: a longitudinal proton magnetic resonance spectroscopy study. JAMA Psychiatry 2013; 70:1057-66. [PMID: 23966023 PMCID: PMC3790718 DOI: 10.1001/jamapsychiatry.2013.289] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
IMPORTANCE Increased glutamate levels in the right associative striatum have been described in patients during a first episode of psychosis. Whether this increase would persist after effective antipsychotic treatment is unknown. OBJECTIVES To compare the glutamate levels in antipsychotic-naive patients with first-episode psychosis in the right associative striatum and right cerebellar cortex using proton magnetic resonance spectroscopy before and 4 weeks after antipsychotic treatment and to compare these results with normative data from sex-matched healthy control subjects. DESIGN, SETTING, AND PARTICIPANTS Before-after trial in an inpatient psychiatric research unit among 24 antipsychotic-naive patients with first-episode psychosis and 18 healthy controls matched for age, sex, handedness, and cigarette smoking. INTERVENTIONS Participants underwent 2 proton magnetic resonance spectroscopy studies: patients were imaged at baseline and after 4 weeks of antipsychotic treatment, while controls were imaged at baseline and at 4 weeks after the baseline measurement. Patients were treated with oral risperidone (open label) for 4 weeks with dosages that were titrated on the basis of clinical judgment. MAIN OUTCOMES AND MEASURES Glutamate levels were estimated using LCModel (version 6.2-1T) and were corrected for the cerebrospinal fluid proportion within the voxel. RESULTS Patients with first-episode psychosis had higher levels of glutamate in the associative striatum and the cerebellum during the antipsychotic-naive condition compared with controls. After clinically effective antipsychotic treatment, glutamate levels significantly decreased in the associative striatum, with no significant change in the cerebellum. No differences in glutamate levels were observed between groups at 4 weeks. CONCLUSIONS AND RELEVANCE Increased glutamate levels observed at baseline in patients with first-episode psychosis normalized after 4 weeks of clinically effective antipsychotic treatment. These results provide support for the hypothesis that improvement in clinical symptoms might be related to a decrease in glutamate levels.
Collapse
Affiliation(s)
- Camilo de la Fuente-Sandoval
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico2Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wagner M, Jurcoane A, Hildebrand C, Güresir E, Vatter H, Zanella FE, Berkefeld J, Pilatus U, Hattingen E. Metabolic changes in patients with aneurysmal subarachnoid hemorrhage apart from perfusion deficits: neuronal mitochondrial injury? AJNR Am J Neuroradiol 2013; 34:1535-41. [PMID: 23436053 DOI: 10.3174/ajnr.a3420] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Neuronal damage in aSAH apart from perfusion deficits has been widely discussed. We aimed to test if cerebral injury occurs in aSAH independently from visible perfusion deficit by measuring cerebral metabolites in patients with aSAH without infarction or impaired perfusion. MATERIALS AND METHODS We performed 3T MR imaging including (1)H-MR spectroscopy, DWI, and MR perfusion in 58 patients with aSAH and 11 age-matched and sex-matched control patients with incidental aneurysm. We compared changes of NAA, Cho, Glx, Lac, and Cr between all patients with aSAH and controls, between patients with and without visible perfusion deficit or infarction and controls, and between patients with and without visible perfusion deficit or infarction by using the Wilcoxon signed-rank test. RESULTS We found that NAA significantly (P < .005) decreased in all patients with aSAH. Cho was significantly increased in all patients compared with controls (P < .05). In patients without impaired perfusion or infarction, Glx was significantly decreased compared with both controls (P = .005) and patients with impaired perfusion or infarction (P = .006). CONCLUSIONS The significant decrease of NAA and Glx in patients with aSAH but without impaired perfusion or infarction strongly suggests global metabolic changes independent from visible perfusion deficits that might reflect neuronal mitochondrial injury. Further, impaired perfusion in aSAH seems to induce additional metabolic changes from increasing neuronal stress that might, to some extent, mask the global metabolic changes.
Collapse
|
34
|
Determinants of the enzymatic activity and the subcellular localization of aspartate N-acetyltransferase. Biochem J 2011; 441:105-12. [DOI: 10.1042/bj20111179] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aspartate N-acetyltransferase (NAT8L, N-acetyltransferase 8-like), the enzyme that synthesizes N-acetylaspartate, is membrane-bound and is at least partially associated with the ER (endoplasmic reticulum). The aim of the present study was to determine which regions of the protein are important for its catalytic activity and its subcellular localization. Transfection of truncated forms of NAT8L into HEK (human embryonic kidney)-293T cells indicated that the 68 N-terminal residues (regions 1 and 2) have no importance for the catalytic activity and the subcellular localization of this enzyme, which was exclusively associated with the ER. Mutation of conserved residues that precede (Arg81 and Glu101, in region 3) or follow (Asp168 and Arg220, in region 5) the putative membrane region (region 4) markedly affected the kinetic properties, suggesting that regions 3 and 5 form the catalytic domain and that the membrane region has a loop structure. Evidence is provided for the membrane region comprising α-helices and the catalytic site being cytosolic. Transfection of chimaeric proteins in which GFP (green fluorescent protein) was fused to different regions of NAT8L indicated that the membrane region (region 4) is necessary and sufficient to target NAT8L to the ER. Thus NAT8L is targeted to the ER membrane by a hydrophobic loop that connects two regions of the catalytic domain.
Collapse
|
35
|
Fuente-Sandoval CDL, León-Ortiz P, Favila R, Stephano S, Mamo D, Ramírez-Bermúdez J, Graff-Guerrero A. Higher levels of glutamate in the associative-striatum of subjects with prodromal symptoms of schizophrenia and patients with first-episode psychosis. Neuropsychopharmacology 2011; 36:1781-91. [PMID: 21508933 PMCID: PMC3154101 DOI: 10.1038/npp.2011.65] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The glutamatergic and dopaminergic systems are thought to be involved in the pathophysiology of schizophrenia. Their interaction has been widely documented and may have a role in the neurobiological basis of the disease. The aim of this study was to compare, using proton magnetic resonance spectroscopy ((1)H-MRS), glutamate levels in the precommissural dorsal-caudate (a dopamine-rich region) and the cerebellar cortex (negligible for dopamine) in the following: (1) 18 antipsychotic-naïve subjects with prodromal symptoms and considered to be at ultra high-risk for schizophrenia (UHR), (2) 18 antipsychotic-naïve first- episode psychosis patients (FEP), and (3) 40 age- and sex- matched healthy controls. All subjects underwent a (1)H-MRS study using a 3Tesla scanner. Glutamate levels were quantified and corrected for the proportion of cerebrospinal fluid and percentage of gray matter in the voxel. The UHR and FEP groups showed higher levels of glutamate than controls, without differences between UHR and FEP. In the cerebellum, no differences were seen between the three groups. The higher glutamate level in the precommissural dorsal-caudate and not in the cerebellum of UHR and FEP suggests that a high glutamate level (a) precedes the onset of schizophrenia, and (b) is present in a dopamine-rich region previously implicated in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Camilo de la Fuente-Sandoval
- Experimental Psychiatry Laboratory, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico,Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Pablo León-Ortiz
- Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Rafael Favila
- MR Advanced Applications, GE Healthcare, Mexico City, Mexico
| | - Sylvana Stephano
- Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - David Mamo
- Multimodal Neuroimaging Schizophrenia Group, PET Centre, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Jesús Ramírez-Bermúdez
- Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Ariel Graff-Guerrero
- Multimodal Neuroimaging Schizophrenia Group, PET Centre, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto, ON, Canada,Multimodal Neuroimaging Schizophrenia Group, PET Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8. Tel: +1 416 535 8501 Ext 7376, Fax: +1 416 979 3855, E-mail:
| |
Collapse
|
36
|
Song Z, Ge D, Ishii K, Yamada H, Toriumi K, Watanabe H, Nabeshima T, Fukushima T. Determination of N-acetylaspartic acid concentration in the mouse brain using HPLC with fluorescence detection. Biomed Chromatogr 2011; 26:147-51. [DOI: 10.1002/bmc.1639] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 03/18/2011] [Accepted: 03/21/2011] [Indexed: 11/10/2022]
Affiliation(s)
- Ziyu Song
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences; Toho University; 2-2-1 Miyama, Funabashi-shi; Chiba; 274-8510; Japan
| | - Dan Ge
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences; Toho University; 2-2-1 Miyama, Funabashi-shi; Chiba; 274-8510; Japan
| | - Kana Ishii
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences; Toho University; 2-2-1 Miyama, Funabashi-shi; Chiba; 274-8510; Japan
| | - Hiroshi Yamada
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences; Toho University; 2-2-1 Miyama, Funabashi-shi; Chiba; 274-8510; Japan
| | - Kazuya Toriumi
- Department of Chemical Pharmacology; Meijo University Graduate School of Pharmaceutical Sciences; Nagoya; 468-8503; Japan
| | - Hiroyuki Watanabe
- Department of Chemical Pharmacology; Meijo University Graduate School of Pharmaceutical Sciences; Nagoya; 468-8503; Japan
| | - Toshitaka Nabeshima
- Department of Chemical Pharmacology; Meijo University Graduate School of Pharmaceutical Sciences; Nagoya; 468-8503; Japan
| | - Takeshi Fukushima
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences; Toho University; 2-2-1 Miyama, Funabashi-shi; Chiba; 274-8510; Japan
| |
Collapse
|
37
|
Ariyannur PS, Moffett JR, Madhavarao CN, Arun P, Vishnu N, Jacobowitz DM, Hallows WC, Denu JM, Namboodiri AM. Nuclear-cytoplasmic localization of acetyl coenzyme a synthetase-1 in the rat brain. J Comp Neurol 2010; 518:2952-77. [PMID: 20533355 PMCID: PMC3047483 DOI: 10.1002/cne.22373] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Acetyl coenzyme A synthetase-1 (AceCS1) catalyzes the synthesis of acetyl coenzyme A from acetate and coenzyme A and is thought to play diverse roles ranging from fatty acid synthesis to gene regulation. By using an affinity-purified antibody generated against an 18-mer peptide sequence of AceCS1 and a polyclonal antibody directed against recombinant AceCS1 protein, we examined the expression of AceCS1 in the rat brain. AceCS1 immunoreactivity in the adult rat brain was present predominantly in cell nuclei, with only light to moderate cytoplasmic staining in some neurons, axons, and oligodendrocytes. Some nonneuronal cell nuclei were very strongly immunoreactive, including those of some oligodendrocytes, whereas neuronal nuclei ranged from unstained to moderately stained. Both antibodies stained some neuronal cell bodies and axons, especially in the hindbrain. AceCS1 immunoreactivity was stronger and more widespread in the brains of 18-day-old rats than in adults, with increased expression in oligodendrocytes and neurons, including cortical pyramidal cells. Expression of AceCS1 was substantially up-regulated in neurons throughout the brain after controlled cortical impact injury. The strong AceCS1 expression observed in the nuclei of CNS cells during brain development and after injury is consistent with a role in nuclear histone acetylation and therefore the regulation of chromatin structure and gene expression. The cytoplasmic staining observed in some oligodendrocytes, especially during postnatal brain development, suggests an additional role in CNS lipid synthesis and myelination. Neuronal and axonal localization implicates AceCS1 in cytoplasmic acetylation reactions in some neurons.
Collapse
Affiliation(s)
- Prasanth S. Ariyannur
- Department of Anatomy, Physiology and Genetics, Molecular and Cell Biology Program and Neuroscience Program, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD 20814
| | - John R. Moffett
- Department of Anatomy, Physiology and Genetics, Molecular and Cell Biology Program and Neuroscience Program, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD 20814
| | - Chikkathur N Madhavarao
- Department of Anatomy, Physiology and Genetics, Molecular and Cell Biology Program and Neuroscience Program, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD 20814
| | - Peethambaran Arun
- Department of Anatomy, Physiology and Genetics, Molecular and Cell Biology Program and Neuroscience Program, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD 20814
| | - Nisha Vishnu
- Department of Anatomy, Physiology and Genetics, Molecular and Cell Biology Program and Neuroscience Program, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD 20814
| | - David M. Jacobowitz
- Department of Anatomy, Physiology and Genetics, Molecular and Cell Biology Program and Neuroscience Program, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD 20814
| | | | | | - Aryan M.A. Namboodiri
- Department of Anatomy, Physiology and Genetics, Molecular and Cell Biology Program and Neuroscience Program, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD 20814
| |
Collapse
|
38
|
Ariyannur PS, Moffett JR, Manickam P, Pattabiraman N, Arun P, Nitta A, Nabeshima T, Madhavarao CN, Namboodiri AMA. Methamphetamine-induced neuronal protein NAT8L is the NAA biosynthetic enzyme: implications for specialized acetyl coenzyme A metabolism in the CNS. Brain Res 2010; 1335:1-13. [PMID: 20385109 DOI: 10.1016/j.brainres.2010.04.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/20/2010] [Accepted: 04/05/2010] [Indexed: 01/12/2023]
Abstract
N-acetylaspartate (NAA) is a concentrated, neuron-specific brain metabolite routinely used as a magnetic resonance spectroscopy marker for brain injury and disease. Despite decades of research, the functional roles of NAA remain unclear. Biochemical investigations over several decades have associated NAA with myelin lipid synthesis and energy metabolism. However, studies have been hampered by an inability to identify the gene for the NAA biosynthetic enzyme aspartate N-acetyltransferase (Asp-NAT). A very recent report has identified Nat8l as the gene encoding Asp-NAT and confirmed that the only child diagnosed with a lack of NAA on brain magnetic resonance spectrograms has a 19-bp deletion in this gene. Based on in vitro Nat8l expression studies the researchers concluded that many previous biochemical investigations have been technically flawed and that NAA may not be associated with brain energy or lipid metabolism. In studies done concurrently in our laboratory we have demonstrated via cloning, expression, specificity for acetylation of aspartate, responsiveness to methamphetamine treatment, molecular modeling and comparative immunolocalization that NAT8L is the NAA biosynthetic enzyme Asp-NAT. We conclude that NAA is a major storage and transport form of acetyl coenzyme A specific to the nervous system, thus linking it to both lipid synthesis and energy metabolism.
Collapse
Affiliation(s)
- Prasanth S Ariyannur
- Uniformed Services University of Health Sciences, Department of Anatomy, Physiology and Genetics, Molecular and Cell Biology Program, Neuroscience Program, 4301 Jones Bridge Road, Bldg C, Rm 2069, APG, Bethesda, MD 20814, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Molecular identification of aspartate N-acetyltransferase and its mutation in hypoacetylaspartia. Biochem J 2009; 425:127-36. [PMID: 19807691 DOI: 10.1042/bj20091024] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The brain-specific compound NAA (N-acetylaspartate) occurs almost exclusively in neurons, where its concentration reaches approx. 20 mM. Its abundance is determined in patients by MRS (magnetic resonance spectroscopy) to assess neuronal density and health. The molecular identity of the NAT (N-acetyltransferase) that catalyses NAA synthesis has remained unknown, because the enzyme is membrane-bound and difficult to purify. Database searches indicated that among putative NATs (i.e. proteins homologous with known NATs, but with uncharacterized catalytic activity) encoded by the human and mouse genomes two were almost exclusively expressed in brain, NAT8L and NAT14. Transfection studies in HEK-293T [human embryonic kidney-293 cells expressing the large T-antigen of SV40 (simian virus 40)] indicated that NAT8L, but not NAT14, catalysed the synthesis of NAA from L-aspartate and acetyl-CoA. The specificity of NAT8L, its Km for aspartate and its sensitivity to detergents are similar to those described for brain Asp-NAT. Confocal microscopy analysis of CHO (Chinese-hamster ovary) cells and neurons expressing recombinant NAT8L indicates that it is associated with the ER (endoplasmic reticulum), but not with mitochondria. A mutation search in the NAT8L gene of the only patient known to be deficient in NAA disclosed the presence of a homozygous 19 bp deletion, resulting in a change in reading frame and the absence of production of a functional protein. We conclude that NAT8L, a neuron-specific protein, is responsible for NAA synthesis and is mutated in primary NAA deficiency (hypoacetylaspartia). The molecular identification of this enzyme will lead to new perspectives in the clarification of the function of this most abundant amino acid derivative in neurons and for the diagnosis of hypoacetylaspartia in other patients.
Collapse
|
41
|
Evidence for mitochondrial and cytoplasmic N-acetylaspartate synthesis in SH-SY5Y neuroblastoma cells. Neurochem Int 2009; 55:219-25. [DOI: 10.1016/j.neuint.2009.03.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 02/17/2009] [Accepted: 03/03/2009] [Indexed: 11/21/2022]
|