1
|
Safari N, Fang H, Veerareddy A, Xu P, Krueger F. The anatomical structure of sex differences in trust propensity: A voxel-based morphometry study. Cortex 2024; 176:260-273. [PMID: 38677959 DOI: 10.1016/j.cortex.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 08/14/2023] [Accepted: 02/28/2024] [Indexed: 04/29/2024]
Abstract
Trust is a key component of human relationships. Sex differences in trust behavior have been elucidated by parental investment theory and social role theory, attributing men's higher trust propensity to their increased engagement in physically and socially risky activities aimed at securing additional resources. Although sex differences in trust behavior exist and the neuropsychological signatures of trust are known, the underlying anatomical structure of sex differences is still unexplored. Our study aimed to investigate the anatomical structure of sex differences in trust behavior toward strangers (i.e., trust propensity, TP) by employing voxel-based morphometry (VBM) in a sample of healthy young adults. We collected behavioral data for TP as measured with participants in the role of trustors completing the one-shot trust game (TG) with anonymous partners as trustees. We conducted primary region of interest (ROI) and exploratory whole-brain (WB) VBM analyses of high-resolution structural images to test for the association between TP and regional gray matter volume (GMV) associated with sex differences. Confirming previous studies, our behavioral results demonstrated that men trusted more than women during the one-shot TG. Our WB analysis showed a greater GMV related to TP in men than women in the precuneus (PreC), whereas our ROI analysis in regions of the default-mode network (dorsomedial prefrontal cortex [dmPFC], PreC, superior temporal gyrus) to simulate the partner's trustworthiness, central-executive network (ventrolateral PFC) to implement a calculus-based trust strategy, and action-perception network (precentral gyrus) to performance cost-benefit calculations, as proposed by a neuropsychoeconomic model of trust. Our findings advance the neuropsychological understanding of sex differences in TP, which has implications for interpersonal partnerships, financial transactions, and societal engagements.
Collapse
Affiliation(s)
- Nooshin Safari
- School of Systems Biology, George Mason University, Fairfax, VA, USA
| | - Huihua Fang
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Magnetic Resonance Imaging, China; Department of Psychology, University of Mannheim, Mannheim, Germany
| | | | - Pengfei Xu
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (BNU), Faculty of Psychology, Beijing Normal University, Beijing, China; Center for Neuroimaging, Shenzhen Institute of Neuroscience, Shenzhen, China.
| | - Frank Krueger
- School of Systems Biology, George Mason University, Fairfax, VA, USA; Department of Psychology, University of Mannheim, Mannheim, Germany
| |
Collapse
|
2
|
Sokol DK, Lahiri DK. APPlications of amyloid-β precursor protein metabolites in macrocephaly and autism spectrum disorder. Front Mol Neurosci 2023; 16:1201744. [PMID: 37799731 PMCID: PMC10548831 DOI: 10.3389/fnmol.2023.1201744] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/17/2023] [Indexed: 10/07/2023] Open
Abstract
Metabolites of the Amyloid-β precursor protein (APP) proteolysis may underlie brain overgrowth in Autism Spectrum Disorder (ASD). We have found elevated APP metabolites (total APP, secreted (s) APPα, and α-secretase adamalysins in the plasma and brain tissue of children with ASD). In this review, we highlight several lines of evidence supporting APP metabolites' potential contribution to macrocephaly in ASD. First, APP appears early in corticogenesis, placing APP in a prime position to accelerate growth in neurons and glia. APP metabolites are upregulated in neuroinflammation, another potential contributor to excessive brain growth in ASD. APP metabolites appear to directly affect translational signaling pathways, which have been linked to single gene forms of syndromic ASD (Fragile X Syndrome, PTEN, Tuberous Sclerosis Complex). Finally, APP metabolites, and microRNA, which regulates APP expression, may contribute to ASD brain overgrowth, particularly increased white matter, through ERK receptor activation on the PI3K/Akt/mTOR/Rho GTPase pathway, favoring myelination.
Collapse
Affiliation(s)
- Deborah K. Sokol
- Department of Neurology, Section of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Debomoy K. Lahiri
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
- Indiana Alzheimer Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
3
|
Zhao Y, Yang L, Gong G, Cao Q, Liu J. Identify aberrant white matter microstructure in ASD, ADHD and other neurodevelopmental disorders: A meta-analysis of diffusion tensor imaging studies. Prog Neuropsychopharmacol Biol Psychiatry 2022; 113:110477. [PMID: 34798202 DOI: 10.1016/j.pnpbp.2021.110477] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/26/2021] [Accepted: 11/11/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs) usually present overlapping symptoms. Abnormal white matter (WM) microstructure has been found in these disorders. Identification of common and unique neural abnormalities across NDDs could provide further insight into the underlying pathophysiological mechanisms. METHODS We performed a voxel-based meta-analysis of whole-brain diffusion tensor imaging (DTI) studies in autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD) and other NDDs. A systematic literature search was conducted through March 2020 to identify studies that compared measures of WM microstructure between patients with NDDs and neurotypical controls. Peak voxel coordinates were meta-analyzed via anisotropic effect size-signed differential mapping (AES-SDM) as well as activation likelihood estimation (ALE). RESULTS Our final sample included a total of 4137 subjects from 66 studies across five NDDs. Fractional anisotropy (FA) reductions were found in the splenium of the CC in ADHD, and the genu and splenium of CC in ASD. And mean diffusivity (MD) increases were shown in posterior thalamic radiation in ASD. No consistent abnormalities were detected in specific learning disorder, motor disorder or communication disorder. Significant differences between child/adolescent and adult patients were found within the CC across NDDs, reflective of aberrant neurodevelopmental processes in NDDs. CONCLUSIONS The current study demonstrated atypical WM patterns in ASD, ADHD and other NDDs. Microstructural abnormalities in the splenium of the CC were possibly shared among ASD and ADHD.
Collapse
Affiliation(s)
- Yilu Zhao
- The Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health, (Peking University), Beijing, China
| | - Li Yang
- The Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health, (Peking University), Beijing, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Qingjiu Cao
- The Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health, (Peking University), Beijing, China.
| | - Jing Liu
- The Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health, (Peking University), Beijing, China.
| |
Collapse
|
4
|
Role of Oligodendrocytes and Myelin in the Pathophysiology of Autism Spectrum Disorder. Brain Sci 2020; 10:brainsci10120951. [PMID: 33302549 PMCID: PMC7764453 DOI: 10.3390/brainsci10120951] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is an early neurodevelopmental disorder that involves deficits in interpersonal communication, social interaction, and repetitive behaviors. Although ASD pathophysiology is still uncertain, alterations in the abnormal development of the frontal lobe, limbic areas, and putamen generate an imbalance between inhibition and excitation of neuronal activity. Interestingly, recent findings suggest that a disruption in neuronal connectivity is associated with neural alterations in white matter production and myelination in diverse brain regions of patients with ASD. This review is aimed to summarize the most recent evidence that supports the notion that abnormalities in the oligodendrocyte generation and axonal myelination in specific brain regions are involved in the pathophysiology of ASD. Fundamental molecular mediators of these pathological processes are also examined. Determining the role of alterations in oligodendrogenesis and myelination is a fundamental step to understand the pathophysiology of ASD and identify possible therapeutic targets.
Collapse
|
5
|
White matter alterations in adult with autism spectrum disorder evaluated using diffusion kurtosis imaging. Neuroradiology 2019; 61:1343-1353. [PMID: 31209529 DOI: 10.1007/s00234-019-02238-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE Autism spectrum disorder (ASD) is related to impairment in various white matter (WM) pathways. Utility of the recently developed two-compartment model of diffusion kurtosis imaging (DKI) to analyse axial diffusivity of WM is restricted by several limitations. The present study aims to validate the utility of model-free DKI in the evaluation of WM alterations in ASD and analyse the potential relationship between DKI-evident WM alterations and personality scales. METHODS Overall, 15 participants with ASD and 15 neurotypical (NT) controls were scanned on a 3 T magnetic resonance (MR) scanner, and scores for autism quotient (AQ), systemising quotient (SQ) and empathising quotient (EQ) were obtained for both groups. Multishell diffusion-weighted MR data were acquired using two b-values (1000 and 2000 s/mm2). Differences in mean kurtosis (MK), radial kurtosis (RK) and axial kurtosis (AK) between the groups were evaluated using tract-based spatial statistics (TBSS). Finally, the relationships between the kurtosis indices and personality quotients were examined. RESULTS The ASD group demonstrated significantly lower AK in the body and splenium of corpus callosum than the NT group; however, no other significant differences were identified. Negative correlations were found between AK and AQ or SQ, predominantly in WM areas related to social-emotional processing such as uncinate fasciculus, inferior fronto-occipital fasciculus, and inferior and superior longitudinal fasciculi. CONCLUSIONS Model-free DKI and its indices may represent a novel, objective method for detecting the disease severity and WM alterations in patients with ASD.
Collapse
|
6
|
Sokol DK, Maloney B, Westmark CJ, Lahiri DK. Novel Contribution of Secreted Amyloid-β Precursor Protein to White Matter Brain Enlargement in Autism Spectrum Disorder. Front Psychiatry 2019; 10:165. [PMID: 31024350 PMCID: PMC6469489 DOI: 10.3389/fpsyt.2019.00165] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/06/2019] [Indexed: 12/27/2022] Open
Abstract
The most replicated neuroanatomical finding in autism is the tendency toward brain overgrowth, especially in younger children. Research shows that both gray and white matter are enlarged. Proposed mechanisms underlying brain enlargement include abnormal inflammatory and neurotrophic signals that lead to excessive, aberrant dendritic connectivity via disrupted pruning and cell adhesion, and enlargement of white matter due to excessive gliogenesis and increased myelination. Amyloid-β protein precursor (βAPP) and its metabolites, more commonly associated with Alzheimer's disease (AD), are also dysregulated in autism plasma and brain tissue samples. This review highlights findings that demonstrate how one βAPP metabolite, secreted APPα, and the ADAM family α-secretases, may lead to increased brain matter, with emphasis on increased white matter as seen in autism. sAPPα and the ADAM family α-secretases contribute to the anabolic, non-amyloidogenic pathway, which is in contrast to the amyloid (catabolic) pathway known to contribute to Alzheimer disease. The non-amyloidogenic pathway could produce brain enlargement via genetic mechanisms affecting mRNA translation and polygenic factors that converge on molecular pathways (mitogen-activated protein kinase/MAPK and mechanistic target of rapamycin/mTOR), promoting neuroinflammation. A novel mechanism linking the non-amyloidogenic pathway to white matter enlargement is proposed: α-secretase and/or sAPPα, activated by ERK receptor signaling activates P13K/AKt/mTOR and then Rho GTPases favoring myelination via oligodendrocyte progenitor cell (OPC) activation of cofilin. Applying known pathways in AD to autism should allow further understanding and provide options for new drug targets.
Collapse
Affiliation(s)
- Deborah K. Sokol
- Pediatrics Section, Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Bryan Maloney
- Indiana Alzheimers Disease Center, Department of Psychiatry, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Cara J. Westmark
- Department of Neurology, University of Wisconsin, Madison, WI, United States
| | - Debomoy K. Lahiri
- Indiana Alzheimers Disease Center, Department of Psychiatry, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
7
|
van den Boomen C, Fahrenfort JJ, Snijders TM, Kemner C. Slow segmentation of faces in Autism Spectrum Disorder. Neuropsychologia 2019; 127:1-8. [PMID: 30768937 DOI: 10.1016/j.neuropsychologia.2019.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 10/27/2022]
Abstract
Atypical visual segmentation, affecting object perception, might contribute to face processing problems in Autism Spectrum Disorder (ASD). The current study investigated impairments in visual segmentation of faces in ASD. Thirty participants (ASD: 16; Control: 14) viewed texture-defined faces, houses, and homogeneous images, while electroencephalographic and behavioral responses were recorded. The ASD group showed slower face-segmentation related brain activity and longer segmentation reaction times than the control group, but no difference in house-segmentation related activity or behavioral performance. Furthermore, individual differences in face-segmentation but not house-segmentation correlated with score on the Autism Quotient. Segmentation is thus selectively impaired for faces in ASD, and relates to the degree of ASD traits. Face segmentation relates to recurrent connectivity from the fusiform face area (FFA) to the visual cortex. These findings thus suggest that atypical connectivity from the FFA might contribute to delayed face processing in ASD.
Collapse
Affiliation(s)
- C van den Boomen
- Dept. of Experimental Psychology, Helmholtz Institute, 3584 CS Utrecht, the Netherlands; Dept. of Developmental Psychology, Utrecht University, 3584 CS Utrecht, the Netherlands.
| | - J J Fahrenfort
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, 1081 BT Amsterdam, the Netherlands
| | - T M Snijders
- Max Planck Institute for Psycholinguistics, 6500 AH Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour; Donders Centre for Cognitive Neuroimaging, Radboud University, 6525 EN Nijmegen, the Netherlands
| | - C Kemner
- Dept. of Experimental Psychology, Helmholtz Institute, 3584 CS Utrecht, the Netherlands; Dept. of Developmental Psychology, Utrecht University, 3584 CS Utrecht, the Netherlands; Dept. of Child and Adolescent Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center, 3584 CX Utrecht, the Netherlands
| |
Collapse
|
8
|
Qian L, Wang Y, Chu K, Li Y, Xiao C, Xiao T, Xiao X, Qiu T, Xiao Y, Fang H, Ke X. Alterations in hub organization in the white matter structural network in toddlers with autism spectrum disorder: A 2-year follow-up study. Autism Res 2018; 11:1218-1228. [PMID: 30114344 DOI: 10.1002/aur.1983] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 05/17/2018] [Accepted: 06/08/2018] [Indexed: 12/27/2022]
Abstract
Little is currently known about the longitudinal developmental patterns of hubs in the whole-brain white matter (WM) structural networks among toddlers with autism spectrum disorder (ASD). This study utilized diffusion tensor imaging (DTI) and deterministic tractography to map the WM structural networks in 37 ASD toddlers and 27 age-, gender- and developmental quotient-matched controls with developmental delay (DD) toddlers aged 2-3 years old at baseline (Time 1) and at 2-year follow-up (Time 2). Furthermore, graph-theoretical methods were applied to investigate alterations in the network hubs in these patients at the two time points. The results showed that after 2 years, 17 hubs were identified in the ASD subjects compared to the controls, including 13 hubs that had not changed from baseline and 4 hubs that were newly identified. In addition, alterations in the properties of the hubs of the right middle frontal gyrus, right insula, left median cingulate gyri, and bilateral precuneus were significantly correlated with alterations in the behavioral data for ASD patients. These results indicated that at the stage of 2-5 years of age, ASD children showed distributions of network hubs that were relatively stable, with minor differences. Abnormal developmental patterns in the five areas mentioned above in ASD may contribute to abnormalities in the social and nonsocial characteristics of this disorder. Autism Res 2018, 11: 1218-1228. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: This work studied the longitudinal developmental patterns of hubs in the whole-brain white matter (WM) structural network among toddlers with autism spectrum disorder (ASD). The findings of this study could have implications for understanding how the abnormalities in hub organization in ASD account for behavioral deficits in patients and may provide potential biomarkers for disease diagnosis and the subsequent monitoring of progression and treatment effects for patients with ASD.
Collapse
Affiliation(s)
- Lu Qian
- Child Mental Health Research Center, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Department of Psychiatry, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China.,Wuxi Tongren International Rehabilitation Hospital, Wuxi, China
| | - Yao Wang
- Child Mental Health Research Center, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - KangKang Chu
- Child Mental Health Research Center, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Yun Li
- Child Mental Health Research Center, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - ChaoYong Xiao
- Child Mental Health Research Center, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Ting Xiao
- Child Mental Health Research Center, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Xiang Xiao
- Child Mental Health Research Center, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Ting Qiu
- Child Mental Health Research Center, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - YunHua Xiao
- Child Mental Health Research Center, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Hui Fang
- Child Mental Health Research Center, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - XiaoYan Ke
- Child Mental Health Research Center, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Di X, Azeez A, Li X, Haque E, Biswal BB. Disrupted focal white matter integrity in autism spectrum disorder: A voxel-based meta-analysis of diffusion tensor imaging studies. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:242-248. [PMID: 29128446 PMCID: PMC5800966 DOI: 10.1016/j.pnpbp.2017.11.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/18/2017] [Accepted: 11/07/2017] [Indexed: 01/14/2023]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a mental disorder that has long been considered to result from brain underconnectivity. However, volumetric analysis of structural MRI data has failed to find consistent white matter alterations in patients with ASD. The present study aims to examine whether there are consistent focal white matter alterations as measured by diffusion tensor imaging (DTI) in individuals with ASD compared with typically developing (TD) individuals. METHOD Coordinate-based meta-analysis was performed on 14 studies that reported fractional anisotropy (FA) alterations between individuals with ASD and TD individuals. These studies have in total 297 subjects with ASD and 302 TD subjects. RESULTS Activation likelihood estimation (ALE) analysis identified two clusters of white matter regions that showed consistent reduction of FA in individuals with ASD compared with TD individuals: the left splenium of corpus callosum and the right cerebral peduncle. CONCLUSIONS Consistent focal white matter reductions in ASD could be identified by using FA, highlighting the cerebral peduncle which is usually overlooked in studies focusing on major white matter tracts. These focal reductions in the splenium and the cerebral peduncle may be associated with sensorimotor impairments seen in individuals with ASD.
Collapse
Affiliation(s)
- Xin Di
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA..
| | - Azeezat Azeez
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Xiaobo Li
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Emad Haque
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Bharat B Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
10
|
Sharma A, Kumar A, Singh S, Bhatia T, Beniwal RP, Khushu S, Prasad KM, Deshpande SN. Altered resting state functional connectivity in early course schizophrenia. Psychiatry Res 2018; 271:17-23. [PMID: 29220695 PMCID: PMC5773345 DOI: 10.1016/j.pscychresns.2017.11.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 11/17/2017] [Accepted: 11/17/2017] [Indexed: 01/08/2023]
Abstract
Impaired connectivity is proposed to underlie pathophysiology of schizophrenia. Existing studies on functional connectivity show inconsistent results. We examined functional connectivity in a clinically homogenous sample of 34 early course schizophrenia patients compared with/to 19 healthy controls using resting state functional magnetic resonance imaging (rsfMRI). Mean duration of illness for schizophrenia patients was 4 ± 1.78 years. Following a comprehensive clinical assessment, rsfMRI data were acquired using a 3.0 T magnetic resonance imaging scanner, and analyzed using FSL version 5.01 software (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl). Compared to healthy controls, schizophrenia patients had significantly decreased functional connectivity in the left fronto-parietal network, lateral and medial visual network, motor network, default mode network and auditory network. Our data suggests significant functional hypoconnectivity in selected brain networks in early schizophrenia patients compared to controls. It is likely that the observed functional hypoconnectivity may be associated with features of schizophrenia other than those examined in this study. It is possible that hypoconnectivity is necessary but not sufficient to the clinical manifestation of schizophrenia. The examination of functional connectivity as a biomarker should be extended to a wider array of disease phenotypes to better understand its significance.
Collapse
Affiliation(s)
- Aastha Sharma
- Medical Training Initiative (MTI) Training Fellow, Mental Health Hospital Liaison Team, Central and North West London NHS Foundation trust, Milton Keynes, United Kingdom
| | - Arvind Kumar
- Department of Psychiatry and De-addiction, Center of Excellence in Mental Health, P.G.I.M.E.R.-Dr.R.M.L. Hospital, New Delhi, India
| | - Sadhana Singh
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), Timarpur, Delhi
| | - Triptish Bhatia
- Department of Psychiatry and De-addiction, Center of Excellence in Mental Health, P.G.I.M.E.R.-Dr.R.M.L. Hospital, New Delhi, India
| | - R P Beniwal
- Department of Psychiatry and De-addiction, Center of Excellence in Mental Health, P.G.I.M.E.R.-Dr.R.M.L. Hospital, New Delhi, India
| | - Subash Khushu
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), Timarpur, Delhi
| | - Konasale M Prasad
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Smita N Deshpande
- Department of Psychiatry and De-addiction, Center of Excellence in Mental Health, P.G.I.M.E.R.-Dr.R.M.L. Hospital, New Delhi, India.
| |
Collapse
|
11
|
Pina-Camacho L, Parellada M, Kyriakopoulos M. Autism spectrum disorder and schizophrenia: boundaries and uncertainties. BJPSYCH ADVANCES 2018. [DOI: 10.1192/apt.bp.115.014720] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SummaryAutism and schizophrenia were placed in different diagnostic categories in DSM-III, having previously been considered as related diagnostic entities. New evidence suggests that these disorders show clinical and cognitive deficit overlaps and shared neurobiological characteristics. Furthermore, children presenting with both autism spectrum disorder (ASD) and psychotic experiences may represent a subgroup of ASD more closely linked to psychosis. The study of ASD and childhood schizophrenia, and their clinical boundaries and overlapping pathophysiological characteristics, may clarify their relationship and lead to more effective interventions. This article discusses the relationship through a critical review of current and historical dilemmas surrounding the phenomenology and pathophysiology of these disorders. It provides a framework for working with children and young people with mixed clinical presentations, illustrated by three brief fictional case vignettes.
Collapse
|
12
|
Chien YL, Chen YJ, Hsu YC, Tseng WYI, Gau SSF. Altered white-matter integrity in unaffected siblings of probands with autism spectrum disorders. Hum Brain Mapp 2017; 38:6053-6067. [PMID: 28940697 DOI: 10.1002/hbm.23810] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/27/2017] [Accepted: 09/05/2017] [Indexed: 11/10/2022] Open
Abstract
Despite the evidence of altered white-matter tract property in individuals with autism spectrum disorder (ASD), little is known about their unaffected siblings. This study aimed to investigate white-matter integrity in unaffected siblings of ASD probands. Thirty-nine unaffected siblings (mean age 15.6 ± 6.0 years; 27 males, 69.2%) and 39 typically developing controls (TDC) (14.2 ± 5.6 years; 26 males, 66.7%) were assessed with diffusion spectrum images and neuropsychological tests. Using the tract-based automatic analysis and the threshold-free cluster weighted (TFCW) scores, we searched for the segments among 76 tracts with the largest difference over the entire brain compared to TDC. Tract integrity was quantified by calculating the mean generalized fractional anisotropy (mGFA) values of the segments with the largest difference in TFCW scores. Unaffected siblings showed reduced mGFA in the bilateral frontal aslant tracts, the right superior longitudinal fasciculus 2 (SLF2), the frontostriatal tracts from the right dorsolateral and left ventrolateral prefrontal cortices, the thalamic radiations of the left ventral and the right dorsal thalamus, the callosal fibers of the splenium, and the increased mGFA of the callosal fibers of the precuneus and the left inferior longitudinal fasciculus. Among these, reduced right SLF2 mGFA was associated with social awareness deficits; impaired frontostriatal tract was associated with internalizing problems, while right frontal aslant tract integrity was associated with visual memory deficits. In conclusion, unaffected siblings showed the aberrant integrity of several white-matter tracts, which were correlated with clinical symptoms and neurocognitive dysfunction. The altered tract integrity could be further examined in the probands with ASD. Hum Brain Mapp 38:6053-6067, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yi-Ling Chien
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Jen Chen
- Institute of Medical Device and Imaging, National Taiwan University, Taipei, Taiwan
| | - Yung-Chin Hsu
- Institute of Medical Device and Imaging, National Taiwan University, Taipei, Taiwan
| | - Wen-Yih Isaac Tseng
- Institute of Medical Device and Imaging, National Taiwan University, Taipei, Taiwan
| | - Susan Shur-Fen Gau
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
13
|
Candidate Biomarkers in Children with Autism Spectrum Disorder: A Review of MRI Studies. Neurosci Bull 2017; 33:219-237. [PMID: 28283808 PMCID: PMC5360855 DOI: 10.1007/s12264-017-0118-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 02/17/2017] [Indexed: 11/25/2022] Open
Abstract
Searching for effective biomarkers is one of the most challenging tasks in the research field of Autism Spectrum Disorder (ASD). Magnetic resonance imaging (MRI) provides a non-invasive and powerful tool for investigating changes in the structure, function, maturation, connectivity, and metabolism of the brain of children with ASD. Here, we review the more recent MRI studies in young children with ASD, aiming to provide candidate biomarkers for the diagnosis of childhood ASD. The review covers structural imaging methods, diffusion tensor imaging, resting-state functional MRI, and magnetic resonance spectroscopy. Future advances in neuroimaging techniques, as well as cross-disciplinary studies and large-scale collaborations will be needed for an integrated approach linking neuroimaging, genetics, and phenotypic data to allow the discovery of new, effective biomarkers.
Collapse
|
14
|
Conti E, Mitra J, Calderoni S, Pannek K, Shen KK, Pagnozzi A, Rose S, Mazzotti S, Scelfo D, Tosetti M, Muratori F, Cioni G, Guzzetta A. Network over-connectivity differentiates autism spectrum disorder from other developmental disorders in toddlers: A diffusion MRI study. Hum Brain Mapp 2017; 38:2333-2344. [PMID: 28094463 DOI: 10.1002/hbm.23520] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 11/29/2016] [Accepted: 01/06/2017] [Indexed: 11/09/2022] Open
Abstract
Advanced connectivity studies in toddlers with Autism Spectrum Disorder (ASD) are increasing and consistently reporting a disruption of brain connectivity. However, most of these studies compare ASD and typically developing subjects, thus providing little information on the specificity of the abnormalities detected in comparison with other developmental disorders (other-DD). We recruited subjects aged below 36 months who received a clinical diagnosis of Neurodevelopmental Disorder (32 ASD and 16 other-DD including intellectual disability and language disorder) according to DSM-IV TR. Structural and diffusion MRI were acquired to perform whole brain probabilistic and anatomically constrained tractography. Network connectivity matrices were built encoding the number of streamlines (DNUM ) and the tract-averaged fractional anisotropy (DFA ) values connecting each pair of cortical and subcortical regions. Network Based Statistics (NBS) was finally applied on the connectivity matrices to evaluate the network differences between the ASD and other-DD groups. The network differences resulted in an over-connectivity pattern (i.e., higher DNUM and DFA values) in the ASD group with a significance of P < 0.05. No contra-comparison results were found. The over-connectivity pattern in ASD occurred in networks primarily involving the fronto-temporal nodes, known to be crucial for social-skill development and basal ganglia, related to restricted and repetitive behaviours in ASD. To our knowledge, this is the first network-based diffusion study comparing toddlers with ASD and those with other-DD. Results indicate the detection of different connectivity patterns in ASD and other-DD at an age when clinical differential diagnosis is often challenging. Hum Brain Mapp 38:2333-2344, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- E Conti
- Department of Developmental Neuroscience, Stella Maris Scientific Institute, Pisa, Italy
| | - J Mitra
- The Australian eHealth Research Centre, CSIRO, Brisbane, Queensland, Australia
| | - S Calderoni
- Department of Developmental Neuroscience, Stella Maris Scientific Institute, Pisa, Italy
| | - K Pannek
- The Australian eHealth Research Centre, CSIRO, Brisbane, Queensland, Australia
| | - K K Shen
- The Australian eHealth Research Centre, CSIRO, Brisbane, Queensland, Australia
| | - A Pagnozzi
- The Australian eHealth Research Centre, CSIRO, Brisbane, Queensland, Australia
| | - S Rose
- The Australian eHealth Research Centre, CSIRO, Brisbane, Queensland, Australia
| | - S Mazzotti
- Department of Developmental Neuroscience, Stella Maris Scientific Institute, Pisa, Italy
| | - D Scelfo
- Department of Developmental Neuroscience, Stella Maris Scientific Institute, Pisa, Italy
| | - M Tosetti
- Department of Developmental Neuroscience, Stella Maris Scientific Institute, Pisa, Italy
| | - F Muratori
- Department of Developmental Neuroscience, Stella Maris Scientific Institute, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - G Cioni
- Department of Developmental Neuroscience, Stella Maris Scientific Institute, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - A Guzzetta
- Department of Developmental Neuroscience, Stella Maris Scientific Institute, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
15
|
Catani M, Dell'Acqua F, Budisavljevic S, Howells H, Thiebaut de Schotten M, Froudist-Walsh S, D'Anna L, Thompson A, Sandrone S, Bullmore ET, Suckling J, Baron-Cohen S, Lombardo MV, Wheelwright SJ, Chakrabarti B, Lai MC, Ruigrok ANV, Leemans A, Ecker C, Consortium MA, Craig MC, Murphy DGM. Frontal networks in adults with autism spectrum disorder. Brain 2016; 139:616-30. [PMID: 26912520 PMCID: PMC4805089 DOI: 10.1093/brain/awv351] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
It has been postulated that autism spectrum disorder is underpinned by an 'atypical connectivity' involving higher-order association brain regions. To test this hypothesis in a large cohort of adults with autism spectrum disorder we compared the white matter networks of 61 adult males with autism spectrum disorder and 61 neurotypical controls, using two complementary approaches to diffusion tensor magnetic resonance imaging. First, we applied tract-based spatial statistics, a 'whole brain' non-hypothesis driven method, to identify differences in white matter networks in adults with autism spectrum disorder. Following this we used a tract-specific analysis, based on tractography, to carry out a more detailed analysis of individual tracts identified by tract-based spatial statistics. Finally, within the autism spectrum disorder group, we studied the relationship between diffusion measures and autistic symptom severity. Tract-based spatial statistics revealed that autism spectrum disorder was associated with significantly reduced fractional anisotropy in regions that included frontal lobe pathways. Tractography analysis of these specific pathways showed increased mean and perpendicular diffusivity, and reduced number of streamlines in the anterior and long segments of the arcuate fasciculus, cingulum and uncinate--predominantly in the left hemisphere. Abnormalities were also evident in the anterior portions of the corpus callosum connecting left and right frontal lobes. The degree of microstructural alteration of the arcuate and uncinate fasciculi was associated with severity of symptoms in language and social reciprocity in childhood. Our results indicated that autism spectrum disorder is a developmental condition associated with abnormal connectivity of the frontal lobes. Furthermore our findings showed that male adults with autism spectrum disorder have regional differences in brain anatomy, which correlate with specific aspects of autistic symptoms. Overall these results suggest that autism spectrum disorder is a condition linked to aberrant developmental trajectories of the frontal networks that persist in adult life.
Collapse
Affiliation(s)
- Marco Catani
- 1 Sackler Institute for Translational Neurodevelopment, and Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College, London, UK 2 NatBrainLab, Centre for Neuroimaging Sciences, Institute of Psychiatry, King's College, London, UK
| | - Flavio Dell'Acqua
- 2 NatBrainLab, Centre for Neuroimaging Sciences, Institute of Psychiatry, King's College, London, UK
| | - Sanja Budisavljevic
- 1 Sackler Institute for Translational Neurodevelopment, and Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College, London, UK
| | - Henrietta Howells
- 1 Sackler Institute for Translational Neurodevelopment, and Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College, London, UK
| | - Michel Thiebaut de Schotten
- 1 Sackler Institute for Translational Neurodevelopment, and Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College, London, UK
| | - Seán Froudist-Walsh
- 1 Sackler Institute for Translational Neurodevelopment, and Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College, London, UK
| | - Lucio D'Anna
- 1 Sackler Institute for Translational Neurodevelopment, and Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College, London, UK
| | - Abigail Thompson
- 1 Sackler Institute for Translational Neurodevelopment, and Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College, London, UK
| | - Stefano Sandrone
- 1 Sackler Institute for Translational Neurodevelopment, and Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College, London, UK
| | - Edward T Bullmore
- 3 Cambridgeshire and Peterborough NHS Foundation Trust 4 Brain Mapping Unit, Department of Psychiatry, University of Cambridge, UK
| | - John Suckling
- 3 Cambridgeshire and Peterborough NHS Foundation Trust 4 Brain Mapping Unit, Department of Psychiatry, University of Cambridge, UK 5 Autism Research Centre, Department of Psychiatry, University of Cambridge, UK
| | - Simon Baron-Cohen
- 3 Cambridgeshire and Peterborough NHS Foundation Trust 5 Autism Research Centre, Department of Psychiatry, University of Cambridge, UK
| | - Michael V Lombardo
- 5 Autism Research Centre, Department of Psychiatry, University of Cambridge, UK 6 Department of Psychology and Center for Applied Neuroscience, University of Cyprus, Cyprus
| | - Sally J Wheelwright
- 5 Autism Research Centre, Department of Psychiatry, University of Cambridge, UK
| | - Bhismadev Chakrabarti
- 5 Autism Research Centre, Department of Psychiatry, University of Cambridge, UK 7 Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Meng-Chuan Lai
- 5 Autism Research Centre, Department of Psychiatry, University of Cambridge, UK 8 Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Canada 9 Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taiwan
| | - Amber N V Ruigrok
- 5 Autism Research Centre, Department of Psychiatry, University of Cambridge, UK
| | - Alexander Leemans
- 10 Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christine Ecker
- 1 Sackler Institute for Translational Neurodevelopment, and Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College, London, UK
| | | | - Michael C Craig
- 1 Sackler Institute for Translational Neurodevelopment, and Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College, London, UK 11 National Autism Unit, South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Beckenham, UK
| | - Declan G M Murphy
- 1 Sackler Institute for Translational Neurodevelopment, and Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College, London, UK
| |
Collapse
|
16
|
Ismail MMT, Keynton RS, Mostapha MMMO, ElTanboly AH, Casanova MF, Gimel'farb GL, El-Baz A. Studying Autism Spectrum Disorder with Structural and Diffusion Magnetic Resonance Imaging: A Survey. Front Hum Neurosci 2016; 10:211. [PMID: 27242476 PMCID: PMC4862981 DOI: 10.3389/fnhum.2016.00211] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/25/2016] [Indexed: 12/17/2022] Open
Abstract
Magnetic resonance imaging (MRI) modalities have emerged as powerful means that facilitate non-invasive clinical diagnostics of various diseases and abnormalities since their inception in the 1980s. Multiple MRI modalities, such as different types of the sMRI and DTI, have been employed to investigate facets of ASD in order to better understand this complex syndrome. This paper reviews recent applications of structural magnetic resonance imaging (sMRI) and diffusion tensor imaging (DTI), to study autism spectrum disorder (ASD). Main reported findings are sometimes contradictory due to different age ranges, hardware protocols, population types, numbers of participants, and image analysis parameters. The primary anatomical structures, such as amygdalae, cerebrum, and cerebellum, associated with clinical-pathological correlates of ASD are highlighted through successive life stages, from infancy to adulthood. This survey demonstrates the absence of consistent pathology in the brains of autistic children and lack of research investigations in patients under 2 years of age in the literature. The known publications also emphasize advances in data acquisition and analysis, as well as significance of multimodal approaches that combine resting-state, task-evoked, and sMRI measures. Initial results obtained with the sMRI and DTI show good promise toward the early and non-invasive ASD diagnostics.
Collapse
Affiliation(s)
- Marwa M. T. Ismail
- BioImaging Laboratory, Department of Bioengineering, University of LouisvilleLouisville, KY, USA
| | - Robert S. Keynton
- BioImaging Laboratory, Department of Bioengineering, University of LouisvilleLouisville, KY, USA
| | | | - Ahmed H. ElTanboly
- BioImaging Laboratory, Department of Bioengineering, University of LouisvilleLouisville, KY, USA
| | - Manuel F. Casanova
- Departments of Pediatrics and Biomedical Sciences, University of South CarolinaColumbia, SC, USA
| | | | - Ayman El-Baz
- BioImaging Laboratory, Department of Bioengineering, University of LouisvilleLouisville, KY, USA
| |
Collapse
|
17
|
Hutton J. Does Rubella Cause Autism: A 2015 Reappraisal? Front Hum Neurosci 2016; 10:25. [PMID: 26869906 PMCID: PMC4734211 DOI: 10.3389/fnhum.2016.00025] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 01/18/2016] [Indexed: 01/03/2023] Open
Abstract
In the 1970s, Stella Chess found a high prevalence of autism in children with congenital rubella syndrome (CRS), 200 times that of the general population at the time. Many researchers quote this fact to add proof to the current theory that maternal infection with immune system activation in pregnancy leads to autism in the offspring. This rubella and autism association is presented with the notion that rubella has been eliminated in today’s world. CRS cases are no longer typically seen; yet, autistic children often share findings of CRS including deafness, congenital heart defects, and to a lesser extent visual changes. Autistic children commonly have hyperactivity and spasticity, as do CRS children. Both autistic and CRS individuals may develop type 1 diabetes as young adults. Neuropathology of CRS infants may reveal cerebral vasculitis with narrowed lumens and cerebral necrosis. Neuroradiological findings of children with CRS show calcifications, periventricular leukomalacia, and dilated perivascular spaces. Neuroradiology of autism has also demonstrated hyperintensities, leukomalacia, and prominent perivascular spaces. PET studies of autistic individuals exhibit decreased perfusion to areas of the brain similarly affected by rubella. In both autism and CRS, certain changes in the brain have implicated the immune system. Several children with autism lack antibodies to rubella, as do children with CRS. These numerous similarities increase the probability of an association between rubella virus and autism. Rubella and autism cross many ethnicities in many countries. Contrary to current belief, rubella has not been eradicated and globally affects up to 5% of pregnant women. Susceptibility continues as vaccines are not given worldwide and are not fully protective. Rubella might still cause autism, even in vaccinated populations.
Collapse
Affiliation(s)
- Jill Hutton
- Department of Obstetrics and Gynecology, The Woman's Hospital of Texas , Houston, TX , USA
| |
Collapse
|
18
|
Hanaie R, Mohri I, Kagitani-Shimono K, Tachibana M, Matsuzaki J, Hirata I, Nagatani F, Watanabe Y, Fujita N, Taniike M. White matter volume in the brainstem and inferior parietal lobule is related to motor performance in children with autism spectrum disorder: A voxel-based morphometry study. Autism Res 2016; 9:981-92. [PMID: 26808675 DOI: 10.1002/aur.1605] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 11/26/2015] [Accepted: 12/26/2015] [Indexed: 12/24/2022]
Abstract
Many studies have reported poor motor performance in autism spectrum disorder (ASD); however, the underlying brain mechanisms remain unclear. Recent neuroimaging studies have suggested that abnormalities of the white matter (WM) are related to the features of ASD. In this study, we used voxel-based morphometry (VBM) to investigate which WM regions correlate with motor performance in children with ASD, and whether the WM volume in those brain regions differed between children with ASD and typically developing (TD) children. The subjects included 19 children with ASD and 20 TD controls. Motor performance was assessed using the Movement Assessment Battery for Children 2 (M-ABC 2). Children with ASD showed poorer motor performance than did the controls. There was a significant positive correlation between the total test score on the M-ABC 2 and the volume of WM in the brainstem and WM adjacent to the left supramarginal gyrus (SMG). In addition, compared with the TD controls, children with ASD had a decreased volume of WM in the brainstem and adjacent to the left intraparietal sulcus, which is close to the SMG. These findings suggest that structural changes in the WM in the brainstem and left inferior parietal lobule may contribute to poor motor performance in children with ASD. Autism Res 2016, 9: 981-992. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ryuzo Hanaie
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ikuko Mohri
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Division of Developmental Neuroscience, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kuriko Kagitani-Shimono
- Division of Developmental Neuroscience, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masaya Tachibana
- Division of Developmental Neuroscience, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Junko Matsuzaki
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Division of Developmental Neuroscience, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ikuko Hirata
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Fumiyo Nagatani
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshiyuki Watanabe
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Norihiko Fujita
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masako Taniike
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Division of Developmental Neuroscience, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
19
|
Alterations in white matter volume and its correlation with clinical characteristics in patients with generalized anxiety disorder. Neuroradiology 2015; 57:1127-34. [PMID: 26293129 DOI: 10.1007/s00234-015-1572-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 08/05/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Only a few morphological studies have focused on changes in white matter (WM) volume in patients with generalized anxiety disorder (GAD). We evaluated alterations in WM volume and its correlation with symptom severity and duration of illness in adults with GAD. METHODS The 44 subjects were comprised of 22 patients with GAD (13 males and nine females) diagnosed using the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision (DSM-IV-TR) and 22 age-matched healthy controls (13 males and nine females). High-resolution magnetic resonance imaging (MRI) data were processed by voxel-based morphometry (VBM) analysis based on diffeomorphic anatomical registration using the exponentiated Lie algebra (DARTEL) algorithm in SPM8. RESULTS Patients with GAD showed significantly reduced WM volume, particularly in the dorsolateral prefrontal cortex (DLPFC), anterior limb of the internal capsule (ALIC), and midbrain. In addition, DLPFC volume was negatively correlated with GAD-7 score and illness duration. ALIC volume was negatively correlated with GAD-7 score. Female patients had significantly less orbitofrontal cortex volume compared to that in male patients. CONCLUSION The findings demonstrate localized changes in WM volume associated with cognitive and emotional dysfunction in patients with GAD. The finding will be helpful for understanding the neuropathology in patients with GAD.
Collapse
|
20
|
Conti E, Calderoni S, Gaglianese A, Pannek K, Mazzotti S, Rose S, Scelfo D, Tosetti M, Muratori F, Cioni G, Guzzetta A. Lateralization of Brain Networks and Clinical Severity in Toddlers with Autism Spectrum Disorder: A HARDI Diffusion MRI Study. Autism Res 2015; 9:382-92. [PMID: 26280255 DOI: 10.1002/aur.1533] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 07/25/2015] [Indexed: 12/20/2022]
Abstract
Recent diffusion tensor imaging studies in adolescents and children with Autism Spectrum Disorder (ASD) have reported a loss or an inversion of the typical left-right lateralization in fronto-temporal regions crucial for sociocommunicative skills. No studies explored atypical lateralization in toddlers and its correlation with clinical severity of ASD. We recruited a cohort of 20 subjects aged 36 months or younger receiving a first clinical diagnosis of ASD (15 males; age range 20-36 months). Patients underwent diffusion MRI (High-Angular-Resolution Diffusion Imaging protocol). Data from cortical parcellation were combined with tractography to obtain a connection matrix and diffusion indexes (DI ) including mean fractional anisotropy (DFA ), number of tracts (DNUM ), and total tract length (DTTL ). A laterality index was generated for each measure, and then correlated with the Autism Diagnostic Observation Schedule-Generic (ADOS-G) total score. Laterality indexes of DFA were significantly correlated with ADOS-G total scores only in two intrafrontal connected areas (correlation was positive in one case and negative in the other). Laterality indexes of DTTL and DNUM showed significant negative correlations (P < 0.05) in six connected areas, mainly fronto-temporal. This study provides first evidence of a significant correlation between brain lateralization of diffusion indexes and clinical severity in toddlers with a first diagnosis of ASD. Significant correlations mainly involved regions within the fronto-temporal circuits, known to be crucial for sociocommunicative skills. It is of interest that all correlations but one were negative, suggesting an inversion of the typical left-right asymmetry in subjects with most severe clinical impairment.
Collapse
Affiliation(s)
- Eugenia Conti
- Department of Developmental Neuroscience, Stella Maris Scientific Institute, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Sara Calderoni
- Department of Developmental Neuroscience, Stella Maris Scientific Institute, Pisa, Italy
| | - Anna Gaglianese
- Department of Developmental Neuroscience, Stella Maris Scientific Institute, Pisa, Italy
| | - Kerstin Pannek
- The Australian eHealth Research Centre, CSIRO, Brisbane, Queensland, Australia
| | - Sara Mazzotti
- Department of Developmental Neuroscience, Stella Maris Scientific Institute, Pisa, Italy
| | - Stephen Rose
- The Australian eHealth Research Centre, CSIRO, Brisbane, Queensland, Australia
| | - Danilo Scelfo
- Department of Developmental Neuroscience, Stella Maris Scientific Institute, Pisa, Italy
| | - Michela Tosetti
- Department of Developmental Neuroscience, Stella Maris Scientific Institute, Pisa, Italy
| | - Filippo Muratori
- Department of Developmental Neuroscience, Stella Maris Scientific Institute, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Giovanni Cioni
- Department of Developmental Neuroscience, Stella Maris Scientific Institute, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Andrea Guzzetta
- Department of Developmental Neuroscience, Stella Maris Scientific Institute, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Italy
| |
Collapse
|
21
|
Cooper M, Thapar A, Jones DK. White matter microstructure predicts autistic traits in attention-deficit/hyperactivity disorder. J Autism Dev Disord 2015; 44:2742-54. [PMID: 24827086 PMCID: PMC4194020 DOI: 10.1007/s10803-014-2131-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Traits of autism spectrum disorder (ASD) in children with attention-deficit/hyperactivity disorder (ADHD) have previously been found to index clinical severity. This study examined the association of ASD traits with diffusion parameters in adolescent males with ADHD (n = 17), and also compared WM microstructure relative to controls (n = 17). Significant associations (p < 0.05, corrected) were found between fractional anisotropy/radial diffusivity and ASD trait severity (positive and negative correlations respectively), mostly in the right posterior limb of the internal capsule/corticospinal tract, right cerebellar peduncle and the midbrain. No case-control differences were found for the diffusion parameters investigated. This is the first report of a WM microstructural signature of autistic traits in ADHD. Thus, even in the absence of full disorder, ASD traits may index a distinctive underlying neurobiology in ADHD.
Collapse
Affiliation(s)
- Miriam Cooper
- Child and Adolescent Psychiatry Section, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Second Floor, Hadyn Ellis Building, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK,
| | | | | |
Collapse
|
22
|
Saleh M, Nashaat NH, Fahim C, Ibrahim AS, Meguid N. MRI Surface-Based Brain Morphometry in Egyptian Autistic and Typically Developing Children. Folia Phoniatr Logop 2015; 67:29-35. [PMID: 25967922 DOI: 10.1159/000368962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES The verbal abilities of autistic children differ from those of typically developing ones and they also differ among autistic children themselves. Neuroanatomical changes and an abnormal organization of functional networks are expected to accompany such a neurodevelopmental disorder. The aim of this study was to delineate the brain neuroanatomical changes in Egyptian children with autism and to compare them with previous studies in order to add more insight into the global brain imaging deviations linked to autism. PATIENTS AND METHODS Twenty-five autistic children and 25 typically developing children underwent MRI. Further analysis was performed using surface-based morphometry to obtain cortical thickness, brain volume, and cortical complexity. RESULTS MRI analysis results revealed significantly greater cortical thickness, cortical complexity, and gray matter volume in the autistic as compared to the control group. On the other hand, the white matter volume was significantly smaller. CONCLUSION These findings generally align with findings in previous studies, except for occasional differences.
Collapse
Affiliation(s)
- Marwa Saleh
- Unit of Phoniatrics, Department of Otolaryngology, Ain Shams University, Cairo, Egypt
| | | | | | | | | |
Collapse
|
23
|
Cortico-limbic network abnormalities in individuals with current and past major depressive disorder. J Affect Disord 2015; 173:45-52. [PMID: 25462395 DOI: 10.1016/j.jad.2014.10.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/17/2014] [Accepted: 10/20/2014] [Indexed: 11/22/2022]
Abstract
BACKGROUND Brain abnormalities in fronto-temporal structures have been implicated in major depressive disorder (MDD). This study aims to identify their anatomical distribution and their relation to the time course of the disease. METHODS A whole-brain voxel based morphometry analysis was conducted to assess gray and white matter alterations in 56 participants with a lifetime history of MDD, including currently depressed (cMDD) and remitted patients (rMDD), and 33 matched healthy controls (HC). RESULTS Compared to HC, MDD participants showed increased white matter volume (WMV) in the uncinate fasciculus (UF) and decreased gray matter density (GMD) on the ventromedial prefrontal cortex (vmPFC). The increased WMV in UF was driven by both cMDD and rMDD groups and positively correlated with depression scores. The GMD decrease in the vmPFC resulted mainly from abnormalities in rMDD and was not correlated with depression scores. Finally, temporal UF and vmPFC white matter showed strong structural covariance suggesting functional interactions between these two brain regions. LIMITATIONS The retrospective and cross-sectional design of the study limits the generalizability of the results. Information concerning ongoing treatment did not allow the exploration of interactions between medication and observed abnormalities. The duration of the remission period could have influenced abnormalities in the subgroup of remitted patients. CONCLUSIONS Fronto-temporal alterations in MDD consist of alterations in a cortico-limbic network involving the ventromedial prefrontal cortex and temporal white matter tracts. State-like abnormalities in the UF survive remission and persist as trait-like abnormalities together with alteration in the vmPFC.
Collapse
|
24
|
Lisiecka DM, Holt R, Tait R, Ford M, Lai MC, Chura LR, Baron-Cohen S, Spencer MD, Suckling J. Developmental white matter microstructure in autism phenotype and corresponding endophenotype during adolescence. Transl Psychiatry 2015; 5:e529. [PMID: 25781228 PMCID: PMC4354353 DOI: 10.1038/tp.2015.23] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 01/13/2015] [Accepted: 01/20/2015] [Indexed: 02/02/2023] Open
Abstract
During adolescence, white matter microstructure undergoes an important stage of development. It is hypothesized that the alterations of brain connectivity that have a key role in autism spectrum conditions (ASCs) may interact with the development of white matter microstructure. This interaction may be present beyond the phenotype of autism in siblings of individuals with ASC, who are 10 to 20 times more likely to develop certain forms of ASC. We use diffusion tensor imaging to examine how white matter microstructure measurements correlate with age in typically developing individuals, and how this correlation differs in n=43 adolescents with ASC and their n=38 siblings. Correlations observed in n=40 typically developing individuals match developmental changes noted in previous longitudinal studies. In comparison, individuals with ASC display weaker negative correlation between age and mean diffusivity in a broad area centred in the right superior longitudinal fasciculus. These differences may be caused either by increased heterogeneity in ASC or by temporal alterations in the group's developmental pattern. Siblings of individuals with ASC also show diminished negative correlation between age and one component of mean diffusivity-second diffusion eigenvalue-in the right superior longitudinal fasciculus. As the observed differences match for location and correlation directionality in our comparison of typically developing individuals to those with ASC and their siblings, we propose that these alterations constitute a part of the endophenotype of autism.
Collapse
Affiliation(s)
- D M Lisiecka
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK,Department of Psychiatry, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK,Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Herchel Smith Building for Brain and Mind Sciences, Robinson Way, Cambridge CB2 0SZ, UK. E-mail address:
| | - R Holt
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - R Tait
- Department of Psychiatry, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - M Ford
- Department of Physics, University of Cambridge, Cambridge, UK
| | - M-C Lai
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK,Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - L R Chura
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - S Baron-Cohen
- Department of Psychiatry, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK,Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK,Cambridge and Peterborough NHS Foundation Trust, Cambridge, UK
| | - M D Spencer
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK,West Suffolk Hospital NHS Trust, Bury St Edmunds, UK
| | - J Suckling
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK,Department of Psychiatry, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK,Cambridge and Peterborough NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
25
|
Anatomical likelihood estimation meta-analysis of grey and white matter anomalies in autism spectrum disorders. NEUROIMAGE-CLINICAL 2014; 7:525-36. [PMID: 25844306 PMCID: PMC4375647 DOI: 10.1016/j.nicl.2014.11.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/20/2014] [Accepted: 11/11/2014] [Indexed: 11/24/2022]
Abstract
Autism spectrum disorders (ASD) are characterized by impairments in social communication and restrictive, repetitive behaviors. While behavioral symptoms are well-documented, investigations into the neurobiological underpinnings of ASD have not resulted in firm biomarkers. Variability in findings across structural neuroimaging studies has contributed to difficulty in reliably characterizing the brain morphology of individuals with ASD. These inconsistencies may also arise from the heterogeneity of ASD, and wider age-range of participants included in MRI studies and in previous meta-analyses. To address this, the current study used coordinate-based anatomical likelihood estimation (ALE) analysis of 21 voxel-based morphometry (VBM) studies examining high-functioning individuals with ASD, resulting in a meta-analysis of 1055 participants (506 ASD, and 549 typically developing individuals). Results consisted of grey, white, and global differences in cortical matter between the groups. Modeled anatomical maps consisting of concentration, thickness, and volume metrics of grey and white matter revealed clusters suggesting age-related decreases in grey and white matter in parietal and inferior temporal regions of the brain in ASD, and age-related increases in grey matter in frontal and anterior-temporal regions. White matter alterations included fiber tracts thought to play key roles in information processing and sensory integration. Many current theories of pathobiology ASD suggest that the brains of individuals with ASD may have less-functional long-range (anterior-to-posterior) connections. Our findings of decreased cortical matter in parietal-temporal and occipital regions, and thickening in frontal cortices in older adults with ASD may entail altered cortical anatomy, and neurodevelopmental adaptations.
Collapse
|
26
|
Ameis SH, Catani M. Altered white matter connectivity as a neural substrate for social impairment in Autism Spectrum Disorder. Cortex 2014; 62:158-81. [PMID: 25433958 DOI: 10.1016/j.cortex.2014.10.014] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/20/2014] [Accepted: 10/22/2014] [Indexed: 01/01/2023]
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) symptoms have been hypothesized to result from altered brain connectivity. The 'disconnectivity' hypothesis has been used to explain characteristic impairments in socio-emotional function, observed clinically in ASD. Here, we review the evidence for impaired white matter connectivity as a neural substrate for socio-emotional dysfunction in ASD. A review of diffusion tensor imaging (DTI) studies, and focused discussion of relevant post-mortem, structural, and functional neuroimaging studies, is provided. METHODS Studies were identified using a sensitive search strategy in MEDLINE, Embase and PsycINFO article databases using the OvidSP database interface. Search terms included database subject headings for the concepts of pervasive developmental disorders, and DTI. Seventy-two published DTI studies examining white matter microstructure in ASD were reviewed. A comprehensive discussion of DTI studies that examined white matter tracts linking socio-emotional structures is presented. RESULTS Several DTI studies reported microstructural differences indicative of developmental alterations in white matter organization, and potentially myelination, in ASD. Altered structure within long-range white matter tracts linking socio-emotional processing regions was implicated. While alterations of the uncinate fasciculus and frontal and temporal thalamic projections have been associated with social symptoms in ASD, few studies examined association of tract microstructure with core impairment in this disorder. CONCLUSIONS The uncinate fasciculus and frontal and temporal thalamic projections mediate limbic connectivity and integrate structures responsible for complex socio-emotional functioning. Impaired development of limbic connectivity may represent one neural substrate contributing to ASD social impairments. Future efforts to further elucidate the nature of atypical white matter development, and its relationship to core symptoms, may offer new insights into etiological mechanisms contributing to ASD impairments and uncover novel opportunities for targeted intervention.
Collapse
Affiliation(s)
- Stephanie H Ameis
- The Hospital for Sick Children, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Child, Youth and Family Program, Research Imaging Centre, The Campbell Family Mental Health Institute, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada.
| | - Marco Catani
- NATBRAINLAB, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry PO50, King's College London, London, UK.
| |
Collapse
|
27
|
Wallace MT, Stevenson RA. The construct of the multisensory temporal binding window and its dysregulation in developmental disabilities. Neuropsychologia 2014; 64:105-23. [PMID: 25128432 PMCID: PMC4326640 DOI: 10.1016/j.neuropsychologia.2014.08.005] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 08/04/2014] [Accepted: 08/05/2014] [Indexed: 01/18/2023]
Abstract
Behavior, perception and cognition are strongly shaped by the synthesis of information across the different sensory modalities. Such multisensory integration often results in performance and perceptual benefits that reflect the additional information conferred by having cues from multiple senses providing redundant or complementary information. The spatial and temporal relationships of these cues provide powerful statistical information about how these cues should be integrated or "bound" in order to create a unified perceptual representation. Much recent work has examined the temporal factors that are integral in multisensory processing, with many focused on the construct of the multisensory temporal binding window - the epoch of time within which stimuli from different modalities is likely to be integrated and perceptually bound. Emerging evidence suggests that this temporal window is altered in a series of neurodevelopmental disorders, including autism, dyslexia and schizophrenia. In addition to their role in sensory processing, these deficits in multisensory temporal function may play an important role in the perceptual and cognitive weaknesses that characterize these clinical disorders. Within this context, focus on improving the acuity of multisensory temporal function may have important implications for the amelioration of the "higher-order" deficits that serve as the defining features of these disorders.
Collapse
Affiliation(s)
- Mark T Wallace
- Vanderbilt Brain Institute, Vanderbilt University, 465 21st Avenue South, Nashville, TN 37232, USA; Department of Hearing & Speech Sciences, Vanderbilt University, Nashville, TN, USA; Department of Psychology, Vanderbilt University, Nashville, TN, USA; Department of Psychiatry, Vanderbilt University, Nashville, TN, USA.
| | - Ryan A Stevenson
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
28
|
Yerys BE, Herrington JD. Multimodal imaging in autism: an early review of comprehensive neural circuit characterization. Curr Psychiatry Rep 2014; 16:496. [PMID: 25260934 DOI: 10.1007/s11920-014-0496-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is accumulating evidence that the neurobiology of autism spectrum disorders (ASD) is linked to atypical neural communication and connectivity. This body of work emphasizes the need to characterize the function of multiple regions that comprise neural circuits rather than focusing on singular regions as contributing to deficits in ASD. Multimodal neuroimaging - the formal combination of multiple functional and structural measures of the brain - is extremely promising as an approach to understanding neural deficits in ASD. This review provides an overview of the multimodal imaging approach, and then provides a snapshot of how multimodal imaging has been applied in the study of ASD to date. This body of work is separated into two categories: one concerning whole brain connectomics and the other focused on characterizing neural circuits implicated as altered in ASD. We end this review by highlighting emerging themes from the existing body of literature, and new resources that will likely influence future multimodal imaging studies.
Collapse
Affiliation(s)
- Benjamin E Yerys
- Center for Autism Research, The Children's Hospital of Philadelphia, 3535 Market Street, Ste 860, Philadelphia, PA, 19104, USA,
| | | |
Collapse
|
29
|
David N, Schultz J, Milne E, Schunke O, Schöttle D, Münchau A, Siegel M, Vogeley K, Engel AK. Right temporoparietal gray matter predicts accuracy of social perception in the autism spectrum. J Autism Dev Disord 2014; 44:1433-46. [PMID: 24305776 DOI: 10.1007/s10803-013-2008-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Individuals with an autism spectrum disorder (ASD) show hallmark deficits in social perception. These difficulties might also reflect fundamental deficits in integrating visual signals. We contrasted predictions of a social perception and a spatial-temporal integration deficit account. Participants with ASD and matched controls performed two tasks: the first required spatiotemporal integration of global motion signals without social meaning, the second required processing of socially relevant local motion. The ASD group only showed differences to controls in social motion evaluation. In addition, gray matter volume in the temporal-parietal junction correlated positively with accuracy in social motion perception in the ASD group. Our findings suggest that social-perceptual difficulties in ASD cannot be reduced to deficits in spatial-temporal integration.
Collapse
Affiliation(s)
- Nicole David
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany,
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Mevel K, Fransson P, Bölte S. Multimodal brain imaging in autism spectrum disorder and the promise of twin research. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2014; 19:527-41. [PMID: 24916451 DOI: 10.1177/1362361314535510] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Current evidence suggests the phenotype of autism spectrum disorder to be driven by a complex interaction of genetic and environmental factors impacting onto brain maturation, synaptic function, and cortical networks. However, findings are heterogeneous, and the exact neurobiological pathways of autism spectrum disorder still remain poorly understood. The co-twin control or twin-difference design is a potentially powerful tool to disentangle causal genetic and environmental contributions on neurodevelopment in autism spectrum disorder. To this end, monozygotic twins discordant for this condition provide unique means for the maximum control of potentially confounding factors. Unfortunately, only few studies of a rather narrow scope, and limited sample size, have been conducted. In an attempt to highlight the great potential of combining the brain connectome approach with monozygotic twin design, we first give an overview of the existing neurobiological evidence for autism spectrum disorder and its cognitive correlates. Then, a special focus is made onto the brain imaging findings reported within populations of monozygotic twins phenotypically discordant for autism spectrum disorder. Finally, we introduce the brain connectome model and describe an ongoing project using this approach among the largest cohort of monozygotic twins discordant for autism spectrum disorder ever recruited.
Collapse
Affiliation(s)
- Katell Mevel
- Department of Women's and Children's Health, Karolinska Institutet, Sweden CNRS UMR 8240, University of Caen Basse-Normandie and University of Paris Descartes - Sorbonne Paris Cité, France
| | - Peter Fransson
- Department of Clinical Neuroscience, Karolinska Institutet, Sweden
| | - Sven Bölte
- Department of Women's and Children's Health, Karolinska Institutet, Sweden Division of Child and Adolescent Psychiatry, Stockholm County Council, Sweden
| |
Collapse
|
31
|
Maximo JO, Cadena EJ, Kana RK. The implications of brain connectivity in the neuropsychology of autism. Neuropsychol Rev 2014; 24:16-31. [PMID: 24496901 PMCID: PMC4059500 DOI: 10.1007/s11065-014-9250-0] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/20/2014] [Indexed: 12/11/2022]
Abstract
Autism is a neurodevelopmental disorder that has been associated with atypical brain functioning. Functional connectivity MRI (fcMRI) studies examining neural networks in autism have seen an exponential rise over the last decade. Such investigations have led to the characterization of autism as a distributed neural systems disorder. Studies have found widespread cortical underconnectivity, local overconnectivity, and mixed results suggesting disrupted brain connectivity as a potential neural signature of autism. In this review, we summarize the findings of previous fcMRI studies in autism with a detailed examination of their methodology, in order to better understand its potential and to delineate the pitfalls. We also address how a multimodal neuroimaging approach (incorporating different measures of brain connectivity) may help characterize the complex neurobiology of autism at a global level. Finally, we also address the potential of neuroimaging-based markers in assisting neuropsychological assessment of autism. The quest for a neural marker for autism is still ongoing, yet new findings suggest that aberrant brain connectivity may be a promising candidate.
Collapse
Affiliation(s)
- Jose O. Maximo
- Department of Psychology, University of Alabama at Birmingham
| | - Elyse J. Cadena
- Department of Psychology, University of Alabama at Birmingham
| | - Rajesh K. Kana
- Department of Psychology, University of Alabama at Birmingham
| |
Collapse
|
32
|
Herbet G, Lafargue G, Bonnetblanc F, Moritz-Gasser S, Menjot de Champfleur N, Duffau H. Inferring a dual-stream model of mentalizing from associative white matter fibres disconnection. ACTA ACUST UNITED AC 2014; 137:944-59. [PMID: 24519980 DOI: 10.1093/brain/awt370] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In the field of cognitive neuroscience, it is increasingly accepted that mentalizing is subserved by a complex frontotemporoparietal cortical network. Some researchers consider that this network can be divided into two distinct but interacting subsystems (the mirror system and the mentalizing system per se), which respectively process low-level, perceptive-based aspects and high-level, inference-based aspects of this sociocognitive function. However, evidence for this type of functional dissociation in a given neuropsychological population is currently lacking and the structural connectivities of the two mentalizing subnetworks have not been established. Here, we studied mentalizing in a large sample of patients (n = 93; 46 females; age range: 18-65 years) who had been resected for diffuse low-grade glioma-a rare tumour that migrates preferentially along associative white matter pathways. This neurological disorder constitutes an ideal pathophysiological model in which to study the functional anatomy of associative pathways. We mapped the location of each patient's resection cavity and residual lesion infiltration onto the Montreal Neurological Institute template brain and then performed multilevel lesion analyses (including conventional voxel-based lesion-symptom mapping and subtraction lesion analyses). Importantly, we estimated each associative pathway's degree of disconnection (i.e. the degree of lesion infiltration) and built specific hypotheses concerning the connective anatomy of the mentalizing subnetworks. As expected, we found that impairments in mentalizing were mainly related to the disruption of right frontoparietal connectivity. More specifically, low-level and high-level mentalizing accuracy were correlated with the degree of disconnection in the arcuate fasciculus and the cingulum, respectively. To the best of our knowledge, our findings constitute the first experimental data on the structural connectivity of the mentalizing network and suggest the existence of a dual-stream hodological system. Our results may lead to a better understanding of disorders that affect social cognition, especially in neuropathological conditions characterized by atypical/aberrant structural connectivity, such as autism spectrum disorders.
Collapse
Affiliation(s)
- Guillaume Herbet
- 1 Department of Neurosurgery, Gui de Chauliac hospital, F-34295 Montpellier, France
| | | | | | | | | | | |
Collapse
|
33
|
Abdel Razek A, Mazroa J, Baz H. Assessment of white matter integrity of autistic preschool children with diffusion weighted MR imaging. Brain Dev 2014; 36:28-34. [PMID: 23398955 DOI: 10.1016/j.braindev.2013.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 12/23/2012] [Accepted: 01/07/2013] [Indexed: 12/14/2022]
Abstract
The purpose was to assess white matter integrity of autistic preschool children with diffusion weighted MR imaging. Prospective study was carried on 19 autistic children (mean age 55.2ms, IQ of 86.5) and 10 sex, age and IQ matched control (mean age 53.2ms, IQ 84.5). The childhood Autism Rating Scale (CARS), social age and language age were calculated. Patients and controls underwent diffusion weighted MR imaging of the brain with b factor of 0, 500 and 1000s/mm(2). The apparent diffusion coefficient (ADC) value at different regions of the white matter were calculated and correlated with CARS, social age and language age. There were significant differences at the ADC value of the white matter between autistic and control children at genu (P=0.043), splenium (P=0.003) of the corpus callosum, frontal white matter (P=0.015) and temporal white matter (P=0.020). There was positive correlation of CARS score with ADC value of the genu (r=0.63, P=0.001), splenium (r=0.59, P=0.005), frontal white matter (r=0.81, P=0.001) and temporal white matter (r=0.74, P=0.001). The social age well correlated with ADC value of the frontal white matter (r=0.81, P=0.001) and language age well correlated with ADC value of the temporal white matter (r=0.78, P=0.001). We concluded that ADC value can be helpful in assessment of integrity of the white matter in autistic preschool children and well correlated with CARS score, social age and language age.
Collapse
Affiliation(s)
- Ahmed Abdel Razek
- Department of Diagnostic Radiology, Mansoura Faculty of Medicine, Mansoura, Egypt.
| | - Jehan Mazroa
- Department of Diagnostic Radiology, Mansoura Faculty of Medicine, Mansoura, Egypt
| | - Hemmat Baz
- Phonetic Unit, ENT Department, Mansoura Faculty of Medicine, Mansoura, Egypt
| |
Collapse
|
34
|
Cauda F, Costa T, Palermo S, D'Agata F, Diano M, Bianco F, Duca S, Keller R. Concordance of white matter and gray matter abnormalities in autism spectrum disorders: a voxel-based meta-analysis study. Hum Brain Mapp 2013; 35:2073-98. [PMID: 23894001 DOI: 10.1002/hbm.22313] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 03/18/2013] [Accepted: 04/02/2013] [Indexed: 11/09/2022] Open
Abstract
There are at least two fundamental unanswered questions in the literature on autism spectrum disorders (ASD): Are abnormalities in white (WM) and gray matter (GM) consistent with one another? Are WM morphometric alterations consistent with alterations in the GM of regions connected by these abnormal WM bundles and vice versa? The aim of this work is to bridge this gap. After selecting voxel-based morphometry and diffusion tensor imaging studies comparing autistic and normally developing groups of subjects, we conducted an activation likelihood estimation (ALE) meta-analysis to estimate consistent brain alterations in ASD. Multidimensional scaling was used to test the similarity of the results. The ALE results were then analyzed to identify the regions of concordance between GM and WM areas. We found statistically significant topological relationships between GM and WM abnormalities in ASD. The most numerous were negative concordances, found bilaterally but with a higher prevalence in the right hemisphere. Positive concordances were found in the left hemisphere. Discordances reflected the spatial distribution of negative concordances. Thus, a different hemispheric contribution emerged, possibly related to pathogenetic factors affecting the right hemisphere during early developmental stages. Besides, WM fiber tracts linking the brain structures involved in social cognition showed abnormalities, and most of them had a negative concordance with the connected GM regions. We interpreted the results in terms of altered brain networks and their role in the pervasive symptoms dramatically impairing communication and social skills in ASD patients.
Collapse
Affiliation(s)
- Franco Cauda
- CCS fMRI, Koelliker Hospital, Turin, Italy; Department of Psychology, University of Turin, Turin, Italy
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Aoki Y, Abe O, Nippashi Y, Yamasue H. Comparison of white matter integrity between autism spectrum disorder subjects and typically developing individuals: a meta-analysis of diffusion tensor imaging tractography studies. Mol Autism 2013; 4:25. [PMID: 23876131 PMCID: PMC3726469 DOI: 10.1186/2040-2392-4-25] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 05/08/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aberrant brain connectivity, especially with long-distance underconnectivity, has been recognized as a candidate pathophysiology of autism spectrum disorders. However, a number of diffusion tensor imaging studies investigating people with autism spectrum disorders have yielded inconsistent results. METHODS To test the long-distance underconnectivity hypothesis, we performed a systematic review and meta-analysis of diffusion tensor imaging studies in subjects with autism spectrum disorder. Diffusion tensor imaging studies comparing individuals with autism spectrum disorders with typically developing individuals were searched using MEDLINE, Web of Science and EMBASE from 1980 through 1 August 2012. Standardized mean differences were calculated as an effect size of the tracts. RESULTS A comprehensive literature search identified 25 relevant diffusion tensor imaging studies comparing autism spectrum disorders and typical development with regions-of-interest methods. Among these, 14 studies examining regions of interest with suprathreshold sample sizes were included in the meta-analysis. A random-effects model demonstrated significant fractional anisotropy reductions in the corpus callosum (P = 0.023, n = 387 (autism spectrum disorders/typically developing individuals: 208/179)), left uncinate fasciculus (P = 0.011, n = 242 (117/125)), and left superior longitudinal fasciculus (P = 0.016, n = 182 (96/86)), and significant increases of mean diffusivity in the corpus callosum (P = 0.006, n = 254 (129/125)) and superior longitudinal fasciculus bilaterally (P = 0.031 and 0.011, left and right, respectively, n = 109 (51/58)), in subjects with autism spectrum disorders compared with typically developing individuals with no significant publication bias. CONCLUSION The current meta-analysis of diffusion tensor imaging studies in subjects with autism spectrum disorders emphasizes important roles of the superior longitudinal fasciculus, uncinate fasciculus, and corpus callosum in the pathophysiology of autism spectrum disorders and supports the long-distance underconnectivity hypothesis.
Collapse
Affiliation(s)
- Yuta Aoki
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | | | | | | |
Collapse
|
36
|
Jakab A, Emri M, Spisak T, Szeman-Nagy A, Beres M, Kis SA, Molnar P, Berenyi E. Autistic traits in neurotypical adults: correlates of graph theoretical functional network topology and white matter anisotropy patterns. PLoS One 2013; 8:e60982. [PMID: 23593367 PMCID: PMC3618514 DOI: 10.1371/journal.pone.0060982] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 03/05/2013] [Indexed: 12/27/2022] Open
Abstract
Attempts to explicate the neural abnormalities behind autism spectrum disorders frequently revealed impaired brain connectivity, yet our knowledge is limited about the alterations linked with autistic traits in the non-clinical population. In our study, we aimed at exploring the neural correlates of dimensional autistic traits using a dual approach of diffusion tensor imaging (DTI) and graph theoretical analysis of resting state functional MRI data. Subjects were sampled from a public neuroimaging dataset of healthy volunteers. Inclusion criteria were adult age (age: 18-65), availability of DTI and resting state functional acquisitions and psychological evaluation including the Social Responsiveness Scale (SRS) and Autistic Spectrum Screening Questionnaire (ASSQ). The final subject cohort consisted of 127 neurotypicals. Global brain network structure was described by graph theoretical parameters: global and average local efficiency. Regional topology was characterized by degree and efficiency. We provided measurements for diffusion anisotropy. The association between autistic traits and the neuroimaging findings was studied using a general linear model analysis, controlling for the effects of age, gender and IQ profile. Significant negative correlation was found between the degree and efficiency of the right posterior cingulate cortex and autistic traits, measured by the combination of ASSQ and SRS scores. Autistic phenotype was associated with the decrease of whole-brain local efficiency. Reduction of diffusion anisotropy was found bilaterally in the temporal fusiform and parahippocampal gyri. Numerous models describe the autistic brain connectome to be dominated by reduced long-range connections and excessive short-range fibers. Our finding of decreased efficiency supports this hypothesis although the only prominent effect was seen in the posterior limbic lobe, which is known to act as a connector hub. The neural correlates of the autistic trait in neurotypicals showed only limited similarities to the reported findings in clinical populations with low functioning autism.
Collapse
Affiliation(s)
- Andras Jakab
- Department of Biomedical Laboratory and Imaging Science, University of Debrecen Medical and Health Science Center, Debrecen, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Preslar J, Kushner HI, Marino L, Pearce B. Autism, lateralisation, and handedness: a review of the literature and meta-analysis. Laterality 2013; 19:64-95. [PMID: 23477561 DOI: 10.1080/1357650x.2013.772621] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A number of recent investigators have hypothesised a link between autism, left-handedness, and brain laterality. Their findings have varied widely, in part because these studies have relied on different methodologies and definitions. We conducted a systematic review and meta-analysis to assess the literature, with the hypothesis that there would be an association between autism and laterality that would be moderated by handedness, sex, age, brain region studied, and level of autism. From a broad search resulting in 259 papers, 54 were identified for inclusion in the literature review. This list was narrowed further to include only studies reporting results in the inferior frontal gyrus for meta-analysis, resulting in four papers. The meta-analysis found a moderate but non-significant effect size of group on lateralisation, suggesting a decrease in strength of lateralisation in the autistic group, a trend supported by the literature review. A subgroup analysis of sex and a meta-regression of handedness showed that these moderating variables did not have a significant effect on this relationship. Although the results are not conclusive, there appears to be a trend towards a relationship between autism and lateralisation. However, more rigorous studies with better controls and clearer reporting of definitions and results are needed.
Collapse
Affiliation(s)
- Jessica Preslar
- a Department of Neuroscience and Behavioral Biology , Emory University , Atlanta , GA , USA
| | | | | | | |
Collapse
|
38
|
Vomstein K, Stieltjes B, Poustka L. [Structural connectivity and diffusion tensor imaging in autism spectrum disorders]. ZEITSCHRIFT FUR KINDER-UND JUGENDPSYCHIATRIE UND PSYCHOTHERAPIE 2012; 41:59-68. [PMID: 23258438 DOI: 10.1024/1422-4917/a000210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Over the past years, diffusion tensor imaging (DTI) has become an important brain-imaging technique in neuropsychiatric research. DTI allows noninvasive visualization of white matter tracts. In addition, with DTI it is possible to quantify the structural integrity of the investigated fiber tracts. In child and adolescent psychiatry, DTI has become an increasingly important research tool, especially for conditions like autism spectrum disorders (ASD). Yet, correct interpretation of DTI findings can be challenging, especially for clinicians. Thus, the present review article explains the basic principles of this frequently used imaging technique as well as essential indices, like fractional anisotropy, radial, mean, and axial diffusivity and its two main applications, fibertracking and whole brain analysis. The strengths and weaknesses as well as future perspectives are discussed in light of DTI studies in children and adolescents with ASD.
Collapse
Affiliation(s)
- Kilian Vomstein
- Klinik für Psychiatrie und Psychotherapie des Kindes- und Jugendalters am Zentralinstitut für Seelische Gesundheit, medizinische Fakultät Mannheim der Universität Heidelberg, Deutschland
| | | | | |
Collapse
|
39
|
Walker L, Gozzi M, Lenroot R, Thurm A, Behseta B, Swedo S, Pierpaoli C. Diffusion tensor imaging in young children with autism: biological effects and potential confounds. Biol Psychiatry 2012; 72:1043-51. [PMID: 22906515 PMCID: PMC3500414 DOI: 10.1016/j.biopsych.2012.08.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 07/13/2012] [Accepted: 08/01/2012] [Indexed: 12/18/2022]
Abstract
BACKGROUND Diffusion tensor imaging (DTI) has been used over the past decade to study structural differences in the brains of children with autism compared with typically developing children. These studies generally find reduced fractional anisotropy (FA) and increased mean diffusivity (MD) in children with autism; however, the regional pattern of findings varies greatly. METHODS We used DTI to investigate the brains of sedated children with autism (n = 39) and naturally asleep typically developing children (n = 39) between 2 and 8 years of age. Tract based spatial statistics and whole brain voxel-wise analysis were performed to investigate the regional distribution of differences between groups. RESULTS In children with autism, we found significantly reduced FA in widespread regions and increased MD only in posterior brain regions. Significant age × group interaction was found, indicating a difference in developmental trends of FA and MD between children with autism and typically developing children. The magnitude of the measured differences between groups was small, on the order of approximately 1%-2%. Subjects and control subjects showed distinct regional differences in imaging artifacts that can affect DTI measures. CONCLUSIONS We found statistically significant differences in DTI metrics between children with autism and typically developing children, including different developmental trends of these metrics. However, this study indicates that between-group differences in DTI studies of autism should be interpreted with caution, because their small magnitude make these measurements particularly vulnerable to the effects of artifacts and confounds, which might lead to false positive and/or false negative biological inferences.
Collapse
Affiliation(s)
- Lindsay Walker
- Program on Pediatric Imaging and Tissue Sciences, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Billeci L, Calderoni S, Tosetti M, Catani M, Muratori F. White matter connectivity in children with autism spectrum disorders: a tract-based spatial statistics study. BMC Neurol 2012. [PMID: 23194030 PMCID: PMC3607981 DOI: 10.1186/1471-2377-12-148] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Autism spectrum disorders (ASD) are associated with widespread alterations in white matter (WM) integrity. However, while a growing body of studies is shedding light on microstructural WM alterations in high-functioning adolescents and adults with ASD, literature is still lacking in information about whole brain structural connectivity in children and low-functioning patients with ASD. This research aims to investigate WM connectivity in ASD children with and without mental retardation compared to typically developing controls (TD). Methods Diffusion tensor imaging (DTI) was performed in 22 young children with ASD (mean age: 5.54 years) and 10 controls (mean age: 5.25 years). Data were analysed both using the tract-based spatial statistics (TBSS) and the tractography. Correlations were investigated between the WM microstructure in the identified altered regions and the productive language level. Results The TBSS analysis revealed widespread increase of fractional anisotropy (FA) in major WM pathways. The tractographic approach showed an increased fiber length and FA in the cingulum and in the corpus callosum and an increased mean diffusivity in the indirect segments of the right arcuate and the left cingulum. Mean diffusivity was also correlated with expressive language functioning in the left indirect segments of the arcuate fasciculus. Conclusions Our study confirmed the presence of several structural connectivity abnormalities in young ASD children. In particular, the TBSS profile of increased FA that characterized the ASD patients extends to children a finding previously detected in ASD toddlers only. The WM integrity abnormalities detected may be relevant to the pathophysiology of ASD, since the structures involved participate in some core atypical characteristics of the disorder.
Collapse
Affiliation(s)
- Lucia Billeci
- Institute of Clinical Physiology, National Council of Research (CNR), Pisa, Italy
| | | | | | | | | |
Collapse
|
41
|
Shen S, Sterr A. Is DARTEL-based voxel-based morphometry affected by width of smoothing kernel and group size? A study using simulated atrophy. J Magn Reson Imaging 2012; 37:1468-75. [PMID: 23172789 DOI: 10.1002/jmri.23927] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 10/01/2012] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To quantify to what extent the new registration method, DARTEL (Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra), may reduce the smoothing kernel width required and investigate the minimum group size necessary for voxel-based morphometry (VBM) studies. MATERIALS AND METHODS A simulated atrophy approach was employed to explore the role of smoothing kernel, group size, and their interactions on VBM detection accuracy. Group sizes of 10, 15, 25, and 50 were compared for kernels between 0-12 mm. RESULTS A smoothing kernel of 6 mm achieved the highest atrophy detection accuracy for groups with 50 participants and 8-10 mm for the groups of 25 at P < 0.05 with familywise correction. The results further demonstrated that a group size of 25 was the lower limit when two different groups of participants were compared, whereas a group size of 15 was the minimum for longitudinal comparisons but at P < 0.05 with false discovery rate correction. CONCLUSION Our data confirmed DARTEL-based VBM generally benefits from smaller kernels and different kernels perform best for different group sizes with a tendency of smaller kernels for larger groups. Importantly, the kernel selection was also affected by the threshold applied. This highlighted that the choice of kernel in relation to group size should be considered with care.
Collapse
Affiliation(s)
- Shan Shen
- Centre for Integrative Neuroscience and Neurodynamics, University of Reading, Reading, UK.
| | | |
Collapse
|
42
|
Autism spectrum disorder: does neuroimaging support the DSM-5 proposal for a symptom dyad? A systematic review of functional magnetic resonance imaging and diffusion tensor imaging studies. J Autism Dev Disord 2012; 42:1326-41. [PMID: 21932156 DOI: 10.1007/s10803-011-1360-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A systematic review of 208 studies comprising functional magnetic resonance imaging and diffusion tensor imaging data in patients with 'autism spectrum disorder' (ASD) was conducted, in order to determine whether these data support the forthcoming DSM-5 proposal of a social communication and behavioral symptom dyad. Studies consistently reported abnormal function and structure of fronto-temporal and limbic networks with social and pragmatic language deficits, of temporo-parieto-occipital networks with syntactic-semantic language deficits, and of fronto-striato-cerebellar networks with repetitive behaviors and restricted interests in ASD patients. Therefore, this review partially supports the DSM-5 proposal for the ASD dyad.
Collapse
|
43
|
Travers BG, Adluru N, Ennis C, Tromp DPM, Destiche D, Doran S, Bigler ED, Lange N, Lainhart JE, Alexander AL. Diffusion tensor imaging in autism spectrum disorder: a review. Autism Res 2012; 5:289-313. [PMID: 22786754 PMCID: PMC3474893 DOI: 10.1002/aur.1243] [Citation(s) in RCA: 313] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 06/04/2012] [Indexed: 12/18/2022]
Abstract
White matter tracts of the brain allow neurons and neuronal networks to communicate and function with high efficiency. The aim of this review is to briefly introduce diffusion tensor imaging methods that examine white matter tracts and then to give an overview of the studies that have investigated white matter integrity in the brains of individuals with autism spectrum disorder (ASD). From the 48 studies we reviewed, persons with ASD tended to have decreased fractional anisotropy and increased mean diffusivity in white matter tracts spanning many regions of the brain but most consistently in regions such as the corpus callosum, cingulum, and aspects of the temporal lobe. This decrease in fractional anisotropy was often accompanied by increased radial diffusivity. Additionally, the review suggests possible atypical lateralization in some white matter tracts of the brain and a possible atypical developmental trajectory of white matter microstructure in persons with ASD. Clinical implications and future research directions are discussed.
Collapse
Affiliation(s)
- Brittany G Travers
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin, Madison, Wisconsin 53705, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bakhtiari R, Zürcher NR, Rogier O, Russo B, Hippolyte L, Granziera C, Araabi BN, Nili Ahmadabadi M, Hadjikhani N. Differences in white matter reflect atypical developmental trajectory in autism: A Tract-based Spatial Statistics study. NEUROIMAGE-CLINICAL 2012; 1:48-56. [PMID: 24179736 PMCID: PMC3757732 DOI: 10.1016/j.nicl.2012.09.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 08/20/2012] [Accepted: 09/03/2012] [Indexed: 12/03/2022]
Abstract
Autism is a neurodevelopmental disorder in which white matter (WM) maturation is affected. We assessed WM integrity in 16 adolescents and 14 adults with high-functioning autism spectrum disorder (ASD) and in matched neurotypical controls (NT) using diffusion weighted imaging and Tract-based Spatial Statistics. Decreased fractional anisotropy (FA) was observed in adolescents with ASD in tracts involved in emotional face processing, language, and executive functioning, including the inferior fronto-occipital fasciculus and the inferior and superior longitudinal fasciculi. Remarkably, no differences in FA were observed between ASD and NT adults. We evaluated the effect of age on WM development across the entire age range. Positive correlations between FA values and age were observed in the right inferior fronto-occipital fasciculus, the left superior longitudinal fasciculus, the corpus callosum, and the cortical spinal tract of ASD participants, but not in NT participants. Our data underscore the dynamic nature of brain development in ASD, showing the presence of an atypical process of WM maturation, that appears to normalize over time and could be at the basis of behavioral improvements often observed in high-functioning autism.
Collapse
Key Words
- ADI-R, Autism Diagnostic Interview-Revised
- ADOS, Autism Diagnostic Observation Schedule
- AQ, Autism Quotient
- ASD, Autism Spectrum Disorders
- ATR, anterior thalamic radiations
- Autism spectrum disorder
- Brain connectivity
- Brain development
- Brain maturation
- CC, corpus callosum
- CT, corticospinal tract
- DTI, Diffusion Tensor Imaging
- DTT, Diffusion Tensor Tractography
- Diffusion Tensor Imaging
- EF, executive functions
- FA, fractional anisotropy
- Fractional anisotropy
- IFOF, inferior froto-occipital fasciculus
- ILF, inferior longitudinal fasciculus
- NT, neurotypical
- PIQ, Performance Intelligence Quotient
- SLF, superior longitudinal fasciculus
- TBSS, Tract-based Spatial Statistics
- TE, echo time
- TFCE, Threshold-free Cluster Enhancement
- TR, repetition time
- UNC, uncinate fasciculus
- VBM, Voxel-Based Morphometry
- VBS, Voxel based Statistics of FA Images (VBM-like)
- WM, white matter
Collapse
Affiliation(s)
- Reyhaneh Bakhtiari
- Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran ; Department of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran ; Brain Mind Institute, Ecole Polytechnique Fédérale, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kleinhans NM, Pauley G, Richards T, Neuhaus E, Martin N, Corrigan NM, Shaw DW, Estes A, Dager SR. Age-related abnormalities in white matter microstructure in autism spectrum disorders. Brain Res 2012; 1479:1-16. [PMID: 22902768 DOI: 10.1016/j.brainres.2012.07.056] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 07/03/2012] [Accepted: 07/27/2012] [Indexed: 10/28/2022]
Abstract
Abnormalities in structural and functional connectivity have been reported in autism spectrum disorders (ASD) across a wide age range. However, developmental changes in white matter microstructure are poorly understood. We used a cross-sectional design to determine whether white matter abnormalities measured using diffusion tensor imaging (DTI) were present in adolescents and adults with ASD and whether age-related changes in white matter microstructure differed between ASD and typically developing (TD) individuals. Participants included 28 individuals with ASD and 33 TD controls matched on age and IQ and assessed at one time point. Widespread decreased fractional anisotropy (FA), and increased radial diffusivity (RaD) and mean diffusivity (MD) were observed in the ASD group compared to the TD group. In addition, significant group-by-age interactions were observed in FA, RaD, and MD in all major tracts except the brain stem, indicating that age-related changes in white matter microstructure differed between the groups. We propose that white matter microstructural changes in ASD may reflect myelination and/or other structural differences including differences in axonal density/arborization. In addition, we suggest that white matter microstuctural impairments may be normalizing during young adulthood in ASD. Future longitudinal studies that include a wider range of ages and more extensive clinical characterization will be critical for further uncovering the neurodevelopmental processes unfolding during this dynamic time in development.
Collapse
|
46
|
Gozzi M, Nielson DM, Lenroot RK, Ostuni JL, Luckenbaugh DA, Thurm AE, Giedd JN, Swedo SE. A magnetization transfer imaging study of corpus callosum myelination in young children with autism. Biol Psychiatry 2012; 72:215-20. [PMID: 22386453 PMCID: PMC3398189 DOI: 10.1016/j.biopsych.2012.01.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 01/13/2012] [Accepted: 01/23/2012] [Indexed: 11/19/2022]
Abstract
BACKGROUND Several lines of evidence suggest that autism may be associated with abnormalities in white matter development. However, inconsistencies remain in the literature regarding the nature and extent of these abnormalities, partly because of the limited types of measurements that have been used. Here, we used magnetization transfer imaging to provide insight into the myelination of the corpus callosum in children with autism. METHODS Magnetization transfer imaging scans were obtained in 101 children with autism and 35 typically developing children who did not significantly differ with regard to gender or age. The midsagittal area of the corpus callosum was manually traced and the magnetization transfer ratio (MTR) was calculated for each voxel within the corpus callosum. Mean MTR and height and location of the MTR histogram peak were analyzed. RESULTS Mean MTR and MTR histogram peak height and location were significantly higher in children with autism than in typically developing children, suggesting abnormal myelination of the corpus callosum in autism. CONCLUSIONS The differences in callosal myelination suggested by these results may reflect an alteration in the normally well-regulated process of myelination of the brain, with broad implications for neuropathology, diagnosis, and treatment of autism.
Collapse
Affiliation(s)
- Marta Gozzi
- Pediatrics and Developmental Neuroscience Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-1255, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Several common genetic variants have recently been discovered that appear to influence white matter microstructure, as measured by diffusion tensor imaging (DTI). Each genetic variant explains only a small proportion of the variance in brain microstructure, so we set out to explore their combined effect on the white matter integrity of the corpus callosum. We measured six common candidate single-nucleotide polymorphisms (SNPs) in the COMT, NTRK1, BDNF, ErbB4, CLU, and HFE genes, and investigated their individual and aggregate effects on white matter structure in 395 healthy adult twins and siblings (age: 20-30 years). All subjects were scanned with 4-tesla 94-direction high angular resolution diffusion imaging. When combined using mixed-effects linear regression, a joint model based on five of the candidate SNPs (COMT, NTRK1, ErbB4, CLU, and HFE) explained ≈ 6% of the variance in the average fractional anisotropy (FA) of the corpus callosum. This predictive model had detectable effects on FA at 82% of the corpus callosum voxels, including the genu, body, and splenium. Predicting the brain's fiber microstructure from genotypes may ultimately help in early risk assessment, and eventually, in personalized treatment for neuropsychiatric disorders in which brain integrity and connectivity are affected.
Collapse
|
48
|
Mak-Fan KM, Taylor MJ, Roberts W, Lerch JP. Measures of cortical grey matter structure and development in children with autism spectrum disorder. J Autism Dev Disord 2012; 42:419-27. [PMID: 21556969 DOI: 10.1007/s10803-011-1261-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The current study examined group differences in cortical volume, surface area, and thickness with age, in a group of typically developing children and a group of children with ASD aged 6-15 years. Results showed evidence of age by group interactions, suggesting atypicalities in the relation between these measures and age in the ASD group. Additional vertex-based analyses of cortical thickness revealed that specific regions in the left inferior frontal gyrus (BA 44) and left precuneus showed thicker cortex for the ASD group at younger ages only. These data support the hypothesis of an abnormal developmental trajectory of the cortex in ASD, which could have profound effects on other aspects of neural development in children with ASD.
Collapse
|
49
|
Mak-Fan KM, Morris D, Vidal J, Anagnostou E, Roberts W, Taylor MJ. White matter and development in children with an autism spectrum disorder. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2012; 17:541-57. [PMID: 22700988 DOI: 10.1177/1362361312442596] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Recent research suggests that brain development follows an abnormal trajectory in children with autism spectrum disorders (ASD). The current study examined changes in diffusivity with age within defined white matter tracts in a group of typically developing children and a group of children with an ASD, aged 6 to 14 years. Age by group interactions were observed for frontal, long distant, interhemispheric and posterior tracts, for longitudinal, radial and mean diffusivity, but not for fractional anisotropy. In all cases, these measures of diffusivity decreased with age in the typically developing group, but showed little or no change in the ASD group. This supports the hypothesis of an abnormal developmental trajectory of white matter in this population, which could have profound effects on the development of neural connectivity and contribute to atypical cognitive development in children with ASD.
Collapse
Affiliation(s)
- Kathleen M Mak-Fan
- Department of Psychology, University of Toronto and Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada.
| | | | | | | | | | | |
Collapse
|
50
|
Poustka L, Jennen-Steinmetz C, Henze R, Vomstein K, Haffner J, Sieltjes B. Fronto-temporal disconnectivity and symptom severity in children with autism spectrum disorder. World J Biol Psychiatry 2012; 13:269-80. [PMID: 21728905 DOI: 10.3109/15622975.2011.591824] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES There is increasing evidence that many of the core behavioural impairments in autism spectrum disorders (ASD) emerge from disconnectivity of networks that are important for social communication. The present study aimed at investigating which specific fibre tracts are impaired in ASD and if possible alterations of white matter are associated with clinical symptomatology. METHODS Eighteen children with ASD and 18 carefully matched typically developing controls aged 6-12 years were examined using diffusion tensor imaging (DTI) and voxel-based morphometry (VBM). Fractional anisotropy (FA) values were correlated with symptom severity as indexed by the children's scores on the Autisms Diagnostic Observation Schedule (ADOS) and the Autism Diagnostic Interview-Revised (ADI-R). RESULTS Decreased FA values were identified for the fornix (FO), the superior longitudinal fasciculus (SLF) the corpus callosum and the uncinate fasciculus (UF) in the ASD group compared to controls, with most prominent differences in the UF bilaterally and the right SLF. FA values of affected fibre tracts were negatively associated with clinical measures of autistic symptomatology. We did not observe significantly altered grey or white matter concentration after correction for multiple comparisons. CONCLUSION Our findings support the hypothesis of abnormal white matter microstructure of fronto-temporal cortical networks in ASD, which are associated with core symptoms of the disorder.
Collapse
Affiliation(s)
- Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Germany.
| | | | | | | | | | | |
Collapse
|