1
|
Li W, Li T, Ali T, Mou S, Gong Q, Yu ZJ, Li S. Uncoupling serotonin (2C) and dopamine (D2) receptor heterodimers ameliorate PTSD-like behaviors. J Affect Disord 2025; 380:63-77. [PMID: 40122260 DOI: 10.1016/j.jad.2025.03.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND G-protein-coupled receptors (GPCRs), crucial for various physiological functions, can form complexes with themselves or other GPCRs, influencing their signaling and drug interactions. GPCR oligomerization remains an active area of research in neurological diseases, including Post-Traumatic Stress Disorder (PTSD). Here, we illuminated a novel serotonin and dopamine receptor heterodimerization that played an etiological role in fear conditioning behaviors associated with memory defects in the single prolonger stress (SPS) mice and reverting effects of receptors interaction interfering with peptide. METHODS To assess our projected goal, we prepared a single prolonged stress (SPS) mice model followed by peptide treatment, behavior assays, and biochemical analysis. RESULTS Our study revealed a direct interaction between dopamine D2 receptors (D2R) and serotonin 5-HT2C receptors (5-HT2CR) via the K226-L240 region in the brains of SPS mice. This D2R/5-HT2CR interaction modulated downstream PI3K-AKT signaling and contributed to cognitive deficits in a mouse model of SPS. An interfering peptide (TAT-D2R-KL) designed to disrupt D2R/5-HT2CR heterodimerization reduced the excitatory/inhibitory neuron firing frequency ratio, attenuated PI3K/AKT signaling impairment, and alleviated cognitive deficits in SPS mice. Furthermore, treatment with the PI3K inhibitor, Bisperoxovanadium Compound bpV (pic), reversed the effects of the peptide, confirming the critical role of PI3K/AKT signaling in D2R/5-HT2CR dimerization and the associated pathophysiology of SPS. CONCLUSION These findings revealed a causative role of D2R/5-HT2CR hetero-dimer in PTSD and could be reversed by TAT-D2R-KL treatment.
Collapse
MESH Headings
- Animals
- Stress Disorders, Post-Traumatic/metabolism
- Stress Disorders, Post-Traumatic/drug therapy
- Stress Disorders, Post-Traumatic/psychology
- Receptors, Dopamine D2/metabolism
- Receptors, Dopamine D2/genetics
- Mice
- Male
- Disease Models, Animal
- Receptor, Serotonin, 5-HT2C/metabolism
- Mice, Inbred C57BL
- Fear/physiology
- Fear/drug effects
- Signal Transduction/drug effects
- Behavior, Animal
Collapse
Affiliation(s)
- Weifen Li
- School of Pharmacy, Shenzhen University, Medical School, Shenzhen University, Shenzhen 518055, China.
| | - Tianxiang Li
- Department of Infectious Diseases and Shenzhen key laboratory for endogenous infections, the 6th Affiliated Hospital of Shenzhen University Health Science Center, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.
| | - Tahir Ali
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China; Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518000, China.
| | - Shengnan Mou
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Qichao Gong
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Zhi-Jian Yu
- Department of Infectious Diseases and Shenzhen key laboratory for endogenous infections, the 6th Affiliated Hospital of Shenzhen University Health Science Center, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China; Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518000, China; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Harrison LA, Gracias AJ, Friston KJ, Buckwalter JG. Resilience phenotypes derived from an active inference account of allostasis. Front Behav Neurosci 2025; 19:1524722. [PMID: 40416792 PMCID: PMC12098587 DOI: 10.3389/fnbeh.2025.1524722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 04/21/2025] [Indexed: 05/27/2025] Open
Abstract
Within a theoretical framework of enactive allostasis, we explore active inference strategies for minimizing surprise to achieve resilience in dynamic environments. While individual differences and extrinsic protective factors traditionally account for variability in resilience trajectories following stressor exposure, the enactive model emphasizes the importance of the physical and social environment, specifically the "enactive niche," which is both shaped by and impacts organisms living in it, accounting for variable success in allostatic prediction and accommodation. Enactive allostasis infers or predicts states of the world to minimize surprise and maintain regulation after surprise, i.e., resilience. Action policies are selected in accordance with the inferred state of a dynamic environment; those actions concurrently shape one's environment, buffering against current and potential stressors. Through such inferential construction, multiple potential solutions exist for achieving stability within one's enactive niche. Spanning a range of adaptive resilience strategies, we propose four phenotypes-fragile, durable, resilient, and pro-entropic (PE)-each characterized by a constellation of genetic, epigenetic, developmental, experiential, and environmental factors. Biological regulatory outcomes range from allostatic (over)load in the fragile and durable phenotypes, to allostatic recovery in resilience, and theoretically to increasing allostatic accommodation or "growth" in the proposed PE phenotype. Awareness distinguishes phenotypes by minimizing allostatically demanding surprise and engenders the cognitive and behavioral flexibility empirically associated with resilience. We further propose a role for awareness in proactively shaping one's enactive niche to further minimize surprise. We conclude by exploring the mechanisms of phenotypic plasticity which may bolster individual resilience.
Collapse
Affiliation(s)
- Laura A. Harrison
- Valor Institute for Neuroscience and Decision Making, Chicago, IL, United States
| | - Antonio J. Gracias
- Valor Institute for Neuroscience and Decision Making, Chicago, IL, United States
| | - Karl J. Friston
- Queen Square Institute of Neurology, University College London, London, United Kingdom
- VERSES AI Research Lab, Los Angeles, CA, United States
| | - J. Galen Buckwalter
- Valor Institute for Neuroscience and Decision Making, Chicago, IL, United States
| |
Collapse
|
3
|
Sarfi M, Elahdadi Salmani M, Lashkarbolouki T, Goudarzi I. Divergent effects of noradrenergic activation and orexin receptor 1 blockade on hippocampal structure, anxiety-like behavior, and social interaction following chronic stress. Pharmacol Biochem Behav 2025; 250:173997. [PMID: 40073949 DOI: 10.1016/j.pbb.2025.173997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
Chronic stress (Ch.S) has detrimental effects on the brain's structure and function, particularly in the hippocampus. The noradrenergic and orexinergic systems play crucial roles in the stress response and regulation of stress-related behaviors. This study aimed to investigate the interaction between noradrenergic activation and orexin receptor 1 inhibition on chronic stress-induced hippocampal alterations. The study conducted experiments on male Wistar rats, subjected to Ch.S, OXr1 blocking, noradrenergic activation, or a combination of these treatments. Plasma corticosterone level was measured using a fluorometric method. Behavioral assessment of social maze, elevated plus maze (EPM) and novel object recognition (NOR) test were performed. Then, the expression of prepro-orexin, OXr1, and glucocorticoid receptor (GR) was analyzed using semiquantitative RT-PCR. Neuronal populations were quantified through Nissl staining. The data revealed that all stress and yohimbine groups had elevated plasma corticosterone levels. Ch.S significantly altered behavior, impairing social interaction, disrupting object recognition memory and increasing anxiety-like responses in the EPM. OXr1 blocking reversed these stress-induced behavioral deficits, while yohimbine did not improve these behavioral outcomes. Chronic stress led to a significant increase in prepro-orexin, OXr1, and GR expression. While blocking OXr1 helped counteract these stress-induced changes, yohimbine failed to restore the expression levels. Ch.S reduced hippocampal neuronal populations, while OXr1 blocking partially reversed this effect, and yohimbine further recovered the reversal. These findings indicate that blocking hippocampal OXr1 can mitigate the adverse effects of chronic stress on both hippocampal structure and anxiety-like behaviors, while noradrenergic signaling appears to have differential effects on behavioral and cellular measures.
Collapse
Affiliation(s)
| | | | | | - Iran Goudarzi
- School of Biology, Damghan University, Damghan, Iran.
| |
Collapse
|
4
|
Goldental N, Gross R, Amital D, Harel EV, Hendler T, Tendler A, Levi L, Lavro D, Harmelech T, Grinapol S, Nacasch N, Fruchter E. Amygdala EFP Neurofeedback Effects on PTSD Symptom Clusters and Emotional Regulation Processes. J Clin Med 2025; 14:2421. [PMID: 40217870 PMCID: PMC11989595 DOI: 10.3390/jcm14072421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
Background: Post-traumatic stress disorder (PTSD) manifests through distinct symptom clusters that can respond differently to treatments. Neurofeedback guided by the Amygdala-derived-EEG-fMRI-Pattern (Amyg-EFP-NF) has been utilized to train PTSD patients to regulate amygdala-related activity and decrease symptoms. Methods: We conducted a combined analysis of 128 PTSD patients from three clinical trials of Amyg-EFP-NF to evaluate effects across symptom clusters (as assessed by CAPS-5 subscales) and on emotion regulation processing (evaluated by the ERQ). Results: Amyg-EFP-NF significantly reduced severity across all PTSD symptom clusters immediately post-treatment, with improvements maintained at three-month follow-up. The arousal and reactivity cluster showed continued significant improvement during follow-up. Combined effect sizes were large (η2p = 0.23-0.35) across all symptom clusters. Regression analysis revealed that emotion regulation processes significantly explained 17% of the variance in symptom improvement during the follow-up period. Conclusions: Reduction of PTSD symptoms following Amyg-EFP-NF occurs across all symptom clusters, with emotional regulation processes potentially serving as an underlying mechanism of action. These results support Amyg-EFP-NF as a comprehensive treatment approach for PTSD that continues to show benefits after treatment completion.
Collapse
Affiliation(s)
- Nadav Goldental
- Division of Psychiatry, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel;
| | - Raz Gross
- Department of Epidemiology, School of Public Health and Department of Psychiatry, School of Medicine, Tel Aviv University, Sheba Medical Center, Tel Aviv 6997801, Israel;
| | - Daniela Amital
- Division of Psychiatry, Barzilai Medical Center, Ashkelon 7830604, Israel;
| | - Eiran V. Harel
- Be’er Ya’akov Mental Health Center, Be’er Ya’akov 70350, Israel;
| | - Talma Hendler
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, School of Psychological Sciences, Faculty of Medical and Health Sciences and Sagol School of Neuroscience, Tel-Aviv 6997801, Israel;
- GrayMatters Health Ltd., Haifa 3303403, Israel; (L.L.); (D.L.)
| | - Aron Tendler
- GrayMatters Health Ltd., Haifa 3303403, Israel; (L.L.); (D.L.)
| | - Liora Levi
- GrayMatters Health Ltd., Haifa 3303403, Israel; (L.L.); (D.L.)
| | - Dmitri Lavro
- GrayMatters Health Ltd., Haifa 3303403, Israel; (L.L.); (D.L.)
| | - Tal Harmelech
- GrayMatters Health Ltd., Haifa 3303403, Israel; (L.L.); (D.L.)
| | - Shulamit Grinapol
- Department of Community Mental Health, University of Haifa, Haifa 3498838, Israel;
| | - Nitsa Nacasch
- Clalit Health Services Community Division, Ramat-Chen Brull Mental Health Center, Tel Aviv-Yafo 6719709, Israel;
| | - Eyal Fruchter
- ICAR Collective and the Brus Rappaport Medical Faculty of the Technion, Haifa 3200003, Israel;
| |
Collapse
|
5
|
Wei L, Wu Z, Xia Q, Baeken C, Wu GR. Prefrontal-hippocampal pathways underlying adolescent resilience. Eur Child Adolesc Psychiatry 2025:10.1007/s00787-025-02704-x. [PMID: 40153037 DOI: 10.1007/s00787-025-02704-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 03/24/2025] [Indexed: 03/30/2025]
Abstract
The prefrontal-hippocampal pathways are integral to memory suppression, facilitating positive and adaptative responses following traumatic events. However, the role of these circuits in promoting resilience among adolescents remains largely unknown. This study used structural similarity analysis of MRI-based gray matter volume (GMV) to map connectivity networks centered on the hippocampus, investigating whether structural similarity between prefrontal regions and hippocampus were related to resilience in a cohort of 145 adolescents. Additionally, spatial correlation analyses of resilience-related structural similarity network and neurotransmitter distribution maps were conducted to identify molecular adaptations within prefrontal-hippocampal circuits associated with resilience. The results showed that higher resilience levels were correlated with stronger structural similarity between the prefrontal areas (i.e., middle frontal gyrus and orbitofrontal cortex) and hippocampus. Furthermore, the serotonergic neurotransmitter system, which modulates neural oscillations in prefrontal-hippocampal pathways, appears to be associated with resilience. The current findings suggest that structural and molecular adaptations within prefrontal-hippocampal circuits, which are implicated in the suppression of intrusive, unwanted memories, may foster resilience in young people. These insights advance our knowledge of the neurobiological markers of resilience, paving the way for more targeted and effective therapeutic interventions to bolster resilience and mitigate adverse outcomes in developmental populations.
Collapse
Affiliation(s)
- Luqing Wei
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, China
- School of Psychology, Jiangxi Normal University, Nanchang, China
| | - Zhengdong Wu
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, China
| | - Qi Xia
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, China
| | - Chris Baeken
- Ghent Experimental Psychiatry Lab, Department of Head and Skin, UZ Gent/Universiteit Gent, Ghent, Belgium
- Department of Psychiatry, UZ Brussel/ Neuroprotection and Neuromodulation Research Group (NEUR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Guo-Rong Wu
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, China.
- Ghent Experimental Psychiatry Lab, Department of Head and Skin, UZ Gent/Universiteit Gent, Ghent, Belgium.
| |
Collapse
|
6
|
Davis LL, Behl S, Lee D, Zeng H, Skubiak T, Weaver S, Hefting N, Larsen KG, Hobart M. Brexpiprazole and Sertraline Combination Treatment in Posttraumatic Stress Disorder: A Phase 3 Randomized Clinical Trial. JAMA Psychiatry 2025; 82:218-227. [PMID: 39693081 PMCID: PMC11883513 DOI: 10.1001/jamapsychiatry.2024.3996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/13/2024] [Indexed: 12/19/2024]
Abstract
Importance New pharmacotherapy options are needed for posttraumatic stress disorder (PTSD). Objective To investigate the efficacy, safety, and tolerability of brexpiprazole and sertraline combination treatment (brexpiprazole + sertraline) compared with sertraline + placebo for PTSD. Design, Setting, and Participants This was a parallel-design, double-blind, randomized clinical trial conducted from October 2019 to August 2023. The study had a 1-week, placebo run-in period followed by an 11-week, double-blind, randomized, active-controlled, parallel-arm period (with 21-day follow-up) and took place at 86 clinical trial sites in the US. Adult outpatients with PTSD were enrolled (volunteer sample). Interventions Oral brexpiprazole 2 to 3 mg per day (flexible dose) + sertraline 150 mg per day or sertraline 150 mg per day + placebo (1:1 ratio) for 11 weeks. Main Outcomes and Measures The primary end point was change in Clinician-Administered PTSD Scale for DSM-5 (CAPS-5) total score (which measures the severity of 20 PTSD symptoms) from randomization (week 1) to week 10 for brexpiprazole + sertraline vs sertraline + placebo. Safety assessments included adverse events. Results A total of 1327 individuals were assessed for eligibility. After 878 screen failures, 416 participants (mean [SD] age, 37.4 [11.9] years; 310 female [74.5%]) were randomized. Completion rates were 137 of 214 participants (64.0%) for brexpiprazole + sertraline and 113 of 202 participants (55.9%) for sertraline + placebo. At week 10, brexpiprazole + sertraline demonstrated statistically significant greater improvement in CAPS-5 total score (mean [SD] at randomization, 38.4 [7.2]; LS mean [SE] change, -19.2 [1.2]; n = 148) than sertraline + placebo (randomization, 38.7 [7.8]; change, -13.6 [1.2]; n = 134), with LS mean difference, -5.59 (95% CI, -8.79 to -2.38; P < .001). All key secondary and other efficacy end points were also met. Treatment-emergent adverse events with incidence of 5% or greater for brexpiprazole + sertraline (and corresponding incidences for sertraline + placebo) were nausea (25 of 205 [12.2%] and 23 of 196 [11.7%]), fatigue (14 of 205 [6.8%] and 8 of 196 [4.1%]), weight increase (12 of 205 [5.9%] and 3 of 196 [1.5%]), and somnolence (11 of 205 [5.4%] and 5 of 196 [2.6%]). Discontinuation rates due to adverse events were 8 of 205 participants (3.9%) for brexpiprazole + sertraline and 20 of 196 participants (10.2%) for sertraline + placebo. Conclusions and Relevance Results of this randomized clinical trial show that brexpiprazole + sertraline combination treatment statistically significantly improved PTSD symptoms vs sertraline + placebo, indicating its potential as a new efficacious treatment for PTSD. Brexpiprazole + sertraline was tolerated by most participants, with a safety profile consistent with that of brexpiprazole in approved indications. Trial Registration ClinicalTrials.gov Identifier: NCT04124614.
Collapse
Affiliation(s)
- Lori L. Davis
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham
| | - Saloni Behl
- Otsuka Pharmaceutical Development & Commercialization Inc, Princeton, New Jersey
| | - Daniel Lee
- Otsuka Pharmaceutical Development & Commercialization Inc, Princeton, New Jersey
| | - Hui Zeng
- Otsuka Pharmaceutical Development & Commercialization Inc, Princeton, New Jersey
| | - Taisa Skubiak
- Otsuka Pharmaceutical Development & Commercialization Inc, Princeton, New Jersey
| | - Shelley Weaver
- Otsuka Pharmaceutical Development & Commercialization Inc, Princeton, New Jersey
| | | | | | - Mary Hobart
- Otsuka Pharmaceutical Development & Commercialization Inc, Princeton, New Jersey
| |
Collapse
|
7
|
Swannell M, Bradlow RCJ, Pham D, Gabriel J, Manahan Y, Arunogiri S. Pharmacological treatments for co-occurring PTSD and substance use disorders: A systematic review. JOURNAL OF SUBSTANCE USE AND ADDICTION TREATMENT 2025; 169:209601. [PMID: 39672336 DOI: 10.1016/j.josat.2024.209601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/11/2024] [Accepted: 11/29/2024] [Indexed: 12/15/2024]
Abstract
INTRODUCTION Post-traumatic stress disorder and substance use disorders commonly co-occur and are associated with worse health outcomes. Currently, only psychosocial therapies are specifically recommended for use in the co-occurring population, but these come with numerous barriers to access and engagement. This study aims to identify potential pharmacological treatments to enhance treatment options and outcomes for this population. METHODS This systematic review identified studies on pharmacological treatment of co-occurring PTSD and SUD in humans, using validated outcome measurements, with study design of RCT, observational study, case control study or cohort study. RESULTS 29 studies were identified for inclusion, looking at a range of 16 pharmacotherapies. A majority concentrated on alcohol use disorders and males, with many focused on the veteran population. CONCLUSIONS This is an area for further research, inclusive of more SUDs, genders and civilians. Future studies utilizing consistent dosing, populations and measurement outcomes will allow for future meta-analysis.
Collapse
Affiliation(s)
- Megan Swannell
- Eastern Health Mental Health Service, Victoria, Australia
| | | | - Daniel Pham
- Turning Point, Eastern Health, Victoria, Australia
| | | | - Yasmin Manahan
- Eastern Health Mental Health Service, Victoria, Australia
| | - Shalini Arunogiri
- Turning Point, Eastern Health, Victoria, Australia; Eastern Health Clinical School and Monash Addiction Research Centre, Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria, Australia.
| |
Collapse
|
8
|
Quinn P. Art therapy's engagement of brain networks for enduring recovery from addiction. Front Psychiatry 2025; 15:1458063. [PMID: 39834572 PMCID: PMC11743619 DOI: 10.3389/fpsyt.2024.1458063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/03/2024] [Indexed: 01/22/2025] Open
Abstract
The field of addiction in its priority to save lives has emphasized harm reduction and medication therapies that have taken precedence over counseling and psychotherapy. The extensive mental health needs, traumatic histories and cognitive challenges of this population call for more availability of all treatments, but also in-depth treatment for the causes of the addiction. The prevalence of trauma is examined with regard to the challenge it presents in treatment for substance use disorder (SUD), and other comorbidities. Two case examples are offered that exemplify how art therapy expedites key information about underlying trauma. Art therapy is proposed as a treatment approach for SUD for its apparent activation of key neural networks that are also impacted by trauma, and its usefulness in engaging those who have cognitive challenges experientially. Quantitative research is cited that suggests art therapy's activation of the reward system, which may make art therapy useful in treating the stress and inhibition coefficients of addiction that map to neural networks of addiction. The need for additional empirical research is cited that may improve the efficiency and effectiveness of art therapy and mental health treatment.
Collapse
Affiliation(s)
- Patricia Quinn
- School of Fine Arts – Graduate Program in Art Therapy, Maharashtra Institute of Technology, Pune, India
| |
Collapse
|
9
|
Petrakis IL, Nolen T, Vandergrift N, Hirsch S, Krystal JH, De Vivo M, Sabados J, Pisani E, Newcomb J, Kosten TR. Dexmedetomidine HCL (BXCL501) as a potential treatment for alcohol use disorder and comorbid PTSD: A phase 1b, placebo-controlled crossover laboratory study. Am J Addict 2025; 34:7-14. [PMID: 39152094 DOI: 10.1111/ajad.13637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 07/15/2024] [Accepted: 07/27/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Noradrenergic dysregulation is important in the pathophysiology of posttraumatic stress disorder (PTSD) and alcohol use disorder (AUD); pharmacotherapies targeting adrenergic function have potential as treatment for comorbidity. Dexmedetomidine (sublingual film formulation-BXCL501; IGALMI) is a highly potent, selective ⍺2-adrenergic receptor agonist and may be superior to other pharmacotherapeutic approaches. A within subjects, phase 1b safety laboratory study was conducted to evaluate adverse effects of BXCL501 when combined with alcohol; BXCL501's potential efficacy was also explored. METHODS Heavy drinker participants with a diagnosis of or who were at risk for PTSD participated in three separate test days which included pretreatment with BXCL501 (40 µg, 80 µg or placebo) administered in a randomized, double-blind fashion, followed by three testing conditions: alcohol cue reactivity, trauma-induced reactivity, and IV ethanol administration. Safety outcomes included blood pressure (BP) and sedation. Exploratory outcomes included alcohol craving, trauma-induced anxiety and craving and subjective effects of alcohol. RESULTS Ten of twelve randomized participants competed the entire study. BXCL501 (80 µg) was associated with expected mild changes in BP and sedation; administration with alcohol did not affect those parameters. There were no clinically significant adverse effects. BXCL501 attenuated trauma-induced anxiety and attenuated subjective effects of alcohol. DISCUSSIONS AND CONCLUSIONS BXCL501 is safe for use in humans who may drink alcohol while undergoing treatment. BXCL501 may be explored as a potential treatment for PTSD and AUD. SCIENTIFIC SIGNIFICANCE This is the first study to provide scientific support for BXCL501's potential to treat PTSD and comorbid AUD.
Collapse
Affiliation(s)
- Ismene L Petrakis
- Department of Veterans Affairs, VA Connecticut Healthcare System, West Haven, Connecticut, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Tracy Nolen
- Social, Statistical, & Environmental Sciences, RTI International, Research Triangle Park, North Carolina, USA
| | - Nathan Vandergrift
- Social, Statistical, & Environmental Sciences, RTI International, Research Triangle Park, North Carolina, USA
| | - Shawn Hirsch
- Social, Statistical, & Environmental Sciences, RTI International, Research Triangle Park, North Carolina, USA
| | - John H Krystal
- Department of Veterans Affairs, VA Connecticut Healthcare System, West Haven, Connecticut, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Jeff Sabados
- BioXcel Therapeutics Inc., New Haven, Connecticut, USA
| | - Emily Pisani
- Department of Veterans Affairs, VA Connecticut Healthcare System, West Haven, Connecticut, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jenelle Newcomb
- Department of Veterans Affairs, VA Connecticut Healthcare System, West Haven, Connecticut, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
10
|
Girotti M, Bulin SE, Carreno FR. Effects of chronic stress on cognitive function - From neurobiology to intervention. Neurobiol Stress 2024; 33:100670. [PMID: 39295772 PMCID: PMC11407068 DOI: 10.1016/j.ynstr.2024.100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
Exposure to chronic stress contributes considerably to the development of cognitive impairments in psychiatric disorders such as depression, generalized anxiety disorder (GAD), obsessive-compulsive disorder (OCD), post-traumatic stress disorder (PTSD), and addictive behavior. Unfortunately, unlike mood-related symptoms, cognitive impairments are not effectively treated by available therapies, a situation in part resulting from a still incomplete knowledge of the neurobiological substrates that underly cognitive domains and the difficulty in generating interventions that are both efficacious and safe. In this review, we will present an overview of the cognitive domains affected by stress with a specific focus on cognitive flexibility, behavioral inhibition, and working memory. We will then consider the effects of stress on neuronal correlates of cognitive function and the factors which may modulate the interaction of stress and cognition. Finally, we will discuss intervention strategies for treatment of stress-related disorders and gaps in knowledge with emerging new treatments under development. Understanding how cognitive impairment occurs during exposure to chronic stress is crucial to make progress towards the development of new and effective therapeutic approaches.
Collapse
Affiliation(s)
| | - Sarah E. Bulin
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr., San Antonio, TX, 78229, USA
| | - Flavia R. Carreno
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr., San Antonio, TX, 78229, USA
| |
Collapse
|
11
|
Bailo P, Piccinini A, Barbara G, Caruso P, Bollati V, Gaudi S. Epigenetics of violence against women: a systematic review of the literature. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae012. [PMID: 39319049 PMCID: PMC11421469 DOI: 10.1093/eep/dvae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/17/2024] [Accepted: 08/09/2024] [Indexed: 09/26/2024]
Abstract
Violence against women is a pervasive global issue with profound impacts on victims' well-being, extending across cultural boundaries. Besides immediate physical harm, it triggers mental health consequences such as post-traumatic stress disorder (PTSD). Indeed, it is the trauma experienced during a violent event that can lead to epigenetic modifications, ultimately contributing to the onset of PTSD. While research on the epigenetic effects of trauma initially focused on war veterans and disaster survivors, there is a dearth of studies on violence against women. In this article, we performed a systematic review aimed to fill this gap, examining existing studies on the epigenetic impact of violence on women. The review assessed sample sizes, study validity, and gene-specific investigations. Currently, there is insufficient data for a comprehensive meta-analysis, highlighting a nascent stage in understanding this complex issue. Future research is crucial for deeper insights into the epigenetic mechanisms related to violence against women, contributing to improved interventions and support healthcare systems for affected individuals.
Collapse
Affiliation(s)
- Paolo Bailo
- Section of Legal Medicine, School of Law, University of Camerino, Camerino 62032, Italy
| | - Andrea Piccinini
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan 20100, Italy
- Service for Sexual and Domestic Violence (SVSeD), Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20100, Italy
| | - Giussy Barbara
- Service for Sexual and Domestic Violence (SVSeD), Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20100, Italy
- Gynecology Emergency Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20100, Italy
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milan, Milan 20122, Italy
| | - Palmina Caruso
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan 20100, Italy
| | - Valentina Bollati
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milan, Milan 20122, Italy
| | - Simona Gaudi
- Department of Environment and Health, Italian National Institute of Health, Rome 00161, Italy
| |
Collapse
|
12
|
Bove M, Morgese MG, Dimonte S, Sikora V, Agosti LP, Palmieri MA, Tucci P, Schiavone S, Trabace L. Increased stress vulnerability in the offspring of socially isolated rats: Behavioural, neurochemical and redox dysfunctions. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110945. [PMID: 38242425 DOI: 10.1016/j.pnpbp.2024.110945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/22/2023] [Accepted: 01/14/2024] [Indexed: 01/21/2024]
Abstract
Stressful events during pregnancy impact on the progeny neurodevelopment. However, little is known about preconceptional stress effects. The rat social isolation represents an animal model of chronic stress inducing a variety of dysfunctions. Moreover, social deprivation during adolescence interferes with key neurodevelopmental processes. Here, we investigated the development of behavioural, neurochemical and redox alterations in the male offspring of socially isolated female rats before pregnancy, reared in group (GRP) or in social isolation (ISO) from weaning until young-adulthood. To this aim, females were reared in GRP or in ISO conditions, from PND21 to PND70, when they were mated. Their male offspring was housed in GRP or ISO conditions through adolescence and until PND70, when passive avoidance-PA, novel object recognition-NOR and open field-OF tests were performed. Levels of noradrenaline (NA), serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), glutamate (GLU) and GABA were assessed in the prefrontal cortex (PFC). Moreover, cortical ROS levels were quantified, as well as NF-kB and the NADPH oxidase NOX2 expression, redox status (expressed as GSH:GSSG ratio) and SOD1 amount. A significant decrease of the latency time in the PA was observed in the offspring of ISO females. In the NOR test, while a significant increase in the exploratory activity towards the novel object was observed in the offspring of GRP females, no significant differences were found in the offspring of ISO females. No significant differences were found in the OF test among experimental groups. Theoffspring of ISO females showed increased NA and 5-HIAA levels, whereas in the offspring persistently housed in isolation condition from weaninguntil adulthood, we detected reduced 5-HT levels and ehnanced 5-HIAA amount. No significant changes in GLU concentrations were detected, while decreased GABA content was observed in the offspring of ISO females exposed to social isolation. Increased ROS levels as well as reduced NF-κB, NOX2 expression were detected in the offspring of ISO females. This was accompanied by reduced redox status and enhanced SOD1 levels. In conclusion, our results suggest that female exposure to chronic social stress before pregnancy might have a profound influence on the offspring neurodevelopment in terms of cognitive, neurochemical and redox-related alterations, identifying this specific time window for possible preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Maria Bove
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, Foggia 71122, Italy
| | - Maria Grazia Morgese
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, Foggia 71122, Italy
| | - Stefania Dimonte
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, Foggia 71122, Italy
| | - Vladyslav Sikora
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, Foggia 71122, Italy
| | - Lisa Pia Agosti
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, Foggia 71122, Italy
| | - Maria Adelaide Palmieri
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, Foggia 71122, Italy
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, Foggia 71122, Italy
| | - Stefania Schiavone
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, Foggia 71122, Italy.
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, Foggia 71122, Italy
| |
Collapse
|
13
|
Đorović Đ, Lazarevic V, Aranđelović J, Stevanović V, Paslawski W, Zhang X, Velimirović M, Petronijević N, Puškaš L, Savić MM, Svenningsson P. Maternal deprivation causes CaMKII downregulation and modulates glutamate, norepinephrine and serotonin in limbic brain areas in a rat model of single prolonged stress. J Affect Disord 2024; 349:286-296. [PMID: 38199412 DOI: 10.1016/j.jad.2024.01.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
BACKGROUND Early life stress is a major risk factor for later development of psychiatric disorders, including post-traumatic stress disorder (PTSD). An intricate relationship exists between various neurotransmitters (such as glutamate, norepinephrine or serotonin), calcium/calmodulin-dependent protein kinase II (CaMKII), as an important regulator of glutamatergic synaptic function, and PTSD. Here, we developed a double-hit model to investigate the interaction of maternal deprivation (MD) as an early life stress model and single prolonged stress (SPS) as a PTSD model at the behavioral and molecular levels. METHODS Male Wistar rats exposed to these stress paradigms were subjected to a comprehensive behavioral analysis. In hippocampal synaptosomes we investigated neurotransmitter release and glutamate concentration. The expression of CaMKII and the content of monoamines were determined in selected brain regions. Brain-derived neurotrophic factor (BDNF) mRNA was quantified by radioactive in situ hybridization. RESULTS We report a distinct behavioral phenotype in the double-hit group. Double-hit and SPS groups had decreased hippocampal presynaptic glutamatergic function. In hippocampus, double-hit stress caused a decrease in autophosphorylation of CaMKII. In prefrontal cortex, both SPS and double-hit stress had a similar effect on CaMKII autophosphorylation. Double-hit stress, rather than SPS, affected the norepinephrine and serotonin levels in prefrontal cortex, and suppressed BDNF gene expression in prefrontal cortex and hippocampus. LIMITATIONS The study was conducted in male rats only. The affected brain regions cannot be restricted to hippocampus, prefrontal cortex and amygdala. CONCLUSION Double-hit stress caused more pronounced and distinct behavioral, molecular and functional changes, compared to MD or SPS alone.
Collapse
Affiliation(s)
- Đorđe Đorović
- Neuro Svenningsson, Department of Clinical Neuroscience, Karolinska Institutet, 171 76 Stockholm, Sweden; Institute of Anatomy "Niko Miljanic", School of Medicine, University of Belgrade, Belgrade, Serbia.
| | - Vesna Lazarevic
- Neuro Svenningsson, Department of Clinical Neuroscience, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Jovana Aranđelović
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe St, 11000 Belgrade, Serbia
| | - Vladimir Stevanović
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe St, 11000 Belgrade, Serbia
| | - Wojciech Paslawski
- Neuro Svenningsson, Department of Clinical Neuroscience, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Xiaoqun Zhang
- Neuro Svenningsson, Department of Clinical Neuroscience, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Milica Velimirović
- Institute of Clinical and Medical Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nataša Petronijević
- Institute of Clinical and Medical Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Laslo Puškaš
- Institute of Anatomy "Niko Miljanic", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Miroslav M Savić
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe St, 11000 Belgrade, Serbia
| | - Per Svenningsson
- Neuro Svenningsson, Department of Clinical Neuroscience, Karolinska Institutet, 171 76 Stockholm, Sweden
| |
Collapse
|
14
|
Baghaei A, Zoshk MY, Hosseini M, Fasihi H, Nassireslami E, Shayesteh S, Laripour R, Amoli AE, Heidari R, Chamanara M. Prominent genetic variants and epigenetic changes in post-traumatic stress disorder among combat veterans. Mol Biol Rep 2024; 51:325. [PMID: 38393604 DOI: 10.1007/s11033-024-09276-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/19/2024] [Indexed: 02/25/2024]
Abstract
Post-traumatic stress disorder (PTSD) is one of the most widespread and disabling psychiatric disorders among combat veterans. Substantial interindividual variability in susceptibility to PTSD suggests the presence of different risk factors for this disorder. Twin and family studies confirm genetic factors as important risk factors for PTSD. In addition to genetic factors, epigenetic factors, especially DNA methylation, can be considered as a potential mechanism in changing the risk of PTSD. So far, many genetic and epigenetic association studies have been conducted in relation to PTSD. In genetic studies, many single nucleotide polymorphisms have been identified as PTSD risk factors. Meanwhile, the variations in catecholamines-related genes, serotonin transporter and receptors, brain-derived neurotrophic factor, inflammatory factors, and apolipoprotein E are the most prominent candidates. CpG methylation in the upstream regions of many genes is also considered a PTSD risk factor. Accurate identification of genetic and epigenetic changes associated with PTSD can lead to the presentation of suitable biomarkers for susceptible individuals to this disorder. This study aimed to delineate prominent genetic variations and epigenetic changes associated with post-traumatic stress disorder in military veterans who have experienced combat, focusing on genetic and epigenetic association studies.
Collapse
Affiliation(s)
- Ahmadali Baghaei
- Trauma Research center, AJA university of Medical sciences, Tehran, Iran
| | | | - Mohsen Hosseini
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Fasihi
- Biomaterial and Medicinal Chemistry Research Center, AJA University of Medical Science, Tehran, Iran
| | - Ehsan Nassireslami
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Toxicology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Sevda Shayesteh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Reza Laripour
- Social and Preventive Medicine Department, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Aynaz Eslami Amoli
- Trauma Research center, AJA university of Medical sciences, Tehran, Iran
| | - Reza Heidari
- Cancer Epidemiology Research Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran.
- Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran, Iran.
| | - Mohsen Chamanara
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran.
- Student research committee, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Wulaer B, Holtz MA, Nagai J. Homeostasis to Allostasis: Prefrontal Astrocyte Roles in Cognitive Flexibility and Stress Biology. ADVANCES IN NEUROBIOLOGY 2024; 39:137-163. [PMID: 39190074 DOI: 10.1007/978-3-031-64839-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
In the intricate landscape of neurophysiology, astrocytes have been traditionally cast as homeostatic cells; however, their mechanistic involvement in allostasis-particularly how they modulate the adaptive response to stress and its accumulative impact that disrupts cognitive functions and precipitates psychiatric disorders-is now starting to be unraveled. Here, we address the gap by positing astrocytes as crucial allostatic players whose molecular adaptations underlie cognitive flexibility in stress-related neuropsychiatric conditions. We review how astrocytes, responding to stress mediators such as glucocorticoid and epinephrine/norepinephrine, undergo morphological and functional transformations that parallel the maladaptive changes. Our synthesis of recent findings reveals that these glial changes, especially in the metabolically demanding prefrontal cortex, may underlie some of the neuropsychiatric mechanisms characterized by the disruption of energy metabolism and astrocytic networks, compromised glutamate clearance, and diminished synaptic support. We argue that astrocytes extend beyond their homeostatic role, actively participating in the brain's allostatic response, especially by modulating energy substrates critical for cognitive functions.
Collapse
Affiliation(s)
- Bolati Wulaer
- Laboratory for Glia-Neuron Circuit Dynamics, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Mika A Holtz
- Laboratory for Glia-Neuron Circuit Dynamics, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Jun Nagai
- Laboratory for Glia-Neuron Circuit Dynamics, RIKEN Center for Brain Science, Wako, Saitama, Japan.
| |
Collapse
|
16
|
Tong RL, Kahn UN, Grafe LA, Hitti FL, Fried NT, Corbett BF. Stress circuitry: mechanisms behind nervous and immune system communication that influence behavior. Front Psychiatry 2023; 14:1240783. [PMID: 37706039 PMCID: PMC10495591 DOI: 10.3389/fpsyt.2023.1240783] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023] Open
Abstract
Inflammatory processes are increased by stress and contribute to the pathology of mood disorders. Stress is thought to primarily induce inflammation through peripheral and central noradrenergic neurotransmission. In healthy individuals, these pro-inflammatory effects are countered by glucocorticoid signaling, which is also activated by stress. In chronically stressed individuals, the anti-inflammatory effects of glucocorticoids are impaired, allowing pro-inflammatory effects to go unchecked. Mechanisms underlying this glucocorticoid resistance are well understood, but the precise circuits and molecular mechanisms by which stress increases inflammation are not as well known. In this narrative review, we summarize the mechanisms by which chronic stress increases inflammation and contributes to the onset and development of stress-related mood disorders. We focus on the neural substrates and molecular mechanisms, especially those regulated by noradrenergic signaling, that increase inflammatory processes in stressed individuals. We also discuss key knowledge gaps in our understanding of the communication between nervous and immune systems during stress and considerations for future therapeutic strategies. Here we highlight the mechanisms by which noradrenergic signaling contributes to inflammatory processes during stress and how this inflammation can contribute to the pathology of stress-related mood disorders. Understanding the mechanisms underlying crosstalk between the nervous and immune systems may lead to novel therapeutic strategies for mood disorders and/or provide important considerations for treating immune-related diseases in individuals suffering from stress-related disorders.
Collapse
Affiliation(s)
- Rose L. Tong
- Corbett Laboratory, Department of Biology, Rutgers University, Camden, NJ, United States
| | - Ubaidah N. Kahn
- Fried Laboratory, Department of Biology, Rutgers University, Camden, NJ, United States
| | - Laura A. Grafe
- Grafe Laboratory, Department of Psychology, Bryn Mawr College, Bryn Mawr, PA, United States
| | - Frederick L. Hitti
- Hitti Laboratory, Department of Neurological Surgery and Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Nathan T. Fried
- Fried Laboratory, Department of Biology, Rutgers University, Camden, NJ, United States
| | - Brian F. Corbett
- Corbett Laboratory, Department of Biology, Rutgers University, Camden, NJ, United States
| |
Collapse
|
17
|
Malik H, Usman M, Arif M, Ahmed Z, Ali G, Rauf K, Sewell RDE. Diosgenin normalization of disrupted behavioral and central neurochemical activity after single prolonged stress. Front Pharmacol 2023; 14:1232088. [PMID: 37663254 PMCID: PMC10468593 DOI: 10.3389/fphar.2023.1232088] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction: Post-traumatic stress disorder (PTSD) is a chronic mental illness triggered by traumatic experiences such as wars, natural disasters, or catastrophes, and it is characterized by anxiety, depression and cognitive impairment. Diosgenin is a steroidal sapogenin with known neuroprotective and antioxidant properties. This study aimed to assess the pharmacological potential of diosgenin in a single prolonged stress (SPS) model of PTSD, plus other behavioral models along with any consequent alterations in brain neurochemistry in male mice. Methodology: SPS was induced by restraining animals for 2 h, followed by 20 min of forced swim, recuperation for 15 min, and finally, exposure to ether to induce anesthesia. The SPS-exposed animals were treated with diosgenin (20, 40, and 60 mg/kg) and compared with the positive controls, fluoxetine or donepezil, then they were observed for any changes in anxiety/depression-like behaviors, and cognitive impairment. After behavioral screening, postmortem serotonin, noradrenaline, dopamine, vitamin C, adenosine and its metabolites inosine and hypoxanthine were quantified in the frontal cortex, hippocampus, and striatum by high-performance liquid chromatography. Additionally, animal serum was screened for changes in corticosterone levels. Results: The results showed that diosgenin reversed anxiety- and depression-like behaviors, and ameliorated cognitive impairment in a dose-dependent manner. Additionally, diosgenin restored monoamine and vitamin C levels dose-dependently and modulated adenosine and its metabolites in the brain regions. Diosgenin also reinstated otherwise increased serum corticosterone levels in SPS mice. Conclusion: The findings suggest that diosgenin may be a potential candidate for improving symptoms of PTSD.
Collapse
Affiliation(s)
- Hurmat Malik
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Muhammad Usman
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Mehreen Arif
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Zainab Ahmed
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Gowhar Ali
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Khalid Rauf
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Robert D. E. Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
18
|
Al Jowf GI, Ahmed ZT, Reijnders RA, de Nijs L, Eijssen LMT. To Predict, Prevent, and Manage Post-Traumatic Stress Disorder (PTSD): A Review of Pathophysiology, Treatment, and Biomarkers. Int J Mol Sci 2023; 24:ijms24065238. [PMID: 36982313 PMCID: PMC10049301 DOI: 10.3390/ijms24065238] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) can become a chronic and severely disabling condition resulting in a reduced quality of life and increased economic burden. The disorder is directly related to exposure to a traumatic event, e.g., a real or threatened injury, death, or sexual assault. Extensive research has been done on the neurobiological alterations underlying the disorder and its related phenotypes, revealing brain circuit disruption, neurotransmitter dysregulation, and hypothalamic–pituitary–adrenal (HPA) axis dysfunction. Psychotherapy remains the first-line treatment option for PTSD given its good efficacy, although pharmacotherapy can also be used as a stand-alone or in combination with psychotherapy. In order to reduce the prevalence and burden of the disorder, multilevel models of prevention have been developed to detect the disorder as early as possible and to reduce morbidity in those with established diseases. Despite the clinical grounds of diagnosis, attention is increasing to the discovery of reliable biomarkers that can predict susceptibility, aid diagnosis, or monitor treatment. Several potential biomarkers have been linked with pathophysiological changes related to PTSD, encouraging further research to identify actionable targets. This review highlights the current literature regarding the pathophysiology, disease development models, treatment modalities, and preventive models from a public health perspective, and discusses the current state of biomarker research.
Collapse
Affiliation(s)
- Ghazi I. Al Jowf
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- European Graduate School of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
- Correspondence: (G.I.A.J.); (L.M.T.E.)
| | - Ziyad T. Ahmed
- College of Medicine, Sulaiman Al Rajhi University, Al-Bukairyah 52726, Saudi Arabia
| | - Rick A. Reijnders
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
- European Graduate School of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Laurence de Nijs
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
- European Graduate School of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Lars M. T. Eijssen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
- European Graduate School of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
- Department of Bioinformatics—BiGCaT, School of Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands
- Correspondence: (G.I.A.J.); (L.M.T.E.)
| |
Collapse
|
19
|
Baicalein exerts anxiolytic and antinociceptive effects in a mouse model of posttraumatic stress disorder: Involvement of the serotonergic system and spinal delta-opioid receptors. Prog Neuropsychopharmacol Biol Psychiatry 2023; 122:110689. [PMID: 36462602 DOI: 10.1016/j.pnpbp.2022.110689] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a serious mental disease featured by a stress dysfunction that occurs after an individual has faced intense mental stress, often accompanied by anxiety and chronic pain. Currently, the mainstream drug for PTSD is serotonin reuptake inhibitors (SSRIs), however, their pain management for patients is limited. Baicalein, a Chinese traditional herbal medicine, has shown promising results in treating anxiety, depression, and pain. In this study, we found that baicalein may alleviate single prolonged stress (SPS)-induced PTSD-like behaviors in mice without altering baseline nociceptive sensitivity or activity. Meanwhile, baicalein increased the noradrenaline (NE) and serotonin (5-HT) content and decreased the ratio of 5-hydroxyindoleacetic acid (5-HIAA)/5-HT by inhibiting the activity of monoamine oxidase A (MAO-A) in SPS-induce mice. The anxiolytic and antinociceptive effects induced by baicalein were totally abolished by 5-HT depleting agents. Moreover, the anxiolytic effects of baicalein could be abolished by the 5-HT1A receptor antagonist WAY-100635, and the analgesic effects could be abolished by delta-opioid receptor antagonists in the spinal. Taken together, our study provides compelling evidence that baicalein reversed anxiety-like behaviors and neuropathic pain in PTSD through serotonergic system and spinal delta-opioid receptors.
Collapse
|
20
|
Bassil K, Krontira AC, Leroy T, Escoto AIH, Snijders C, Pernia CD, Pasterkamp RJ, de Nijs L, van den Hove D, Kenis G, Boks MP, Vadodaria K, Daskalakis NP, Binder EB, Rutten BPF. In vitro modeling of the neurobiological effects of glucocorticoids: A review. Neurobiol Stress 2023; 23:100530. [PMID: 36891528 PMCID: PMC9986648 DOI: 10.1016/j.ynstr.2023.100530] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Hypothalamic-pituitary adrenal (HPA)axis dysregulation has long been implicated in stress-related disorders such as major depression and post-traumatic stress disorder. Glucocorticoids (GCs) are released from the adrenal glands as a result of HPA-axis activation. The release of GCs is implicated with several neurobiological changes that are associated with negative consequences of chronic stress and the onset and course of psychiatric disorders. Investigating the underlying neurobiological effects of GCs may help to better understand the pathophysiology of stress-related psychiatric disorders. GCs impact a plethora of neuronal processes at the genetic, epigenetic, cellular, and molecular levels. Given the scarcity and difficulty in accessing human brain samples, 2D and 3D in vitro neuronal cultures are becoming increasingly useful in studying GC effects. In this review, we provide an overview of in vitro studies investigating the effects of GCs on key neuronal processes such as proliferation and survival of progenitor cells, neurogenesis, synaptic plasticity, neuronal activity, inflammation, genetic vulnerability, and epigenetic alterations. Finally, we discuss the challenges in the field and offer suggestions for improving the use of in vitro models to investigate GC effects.
Collapse
Affiliation(s)
- Katherine Bassil
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Anthi C Krontira
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Thomas Leroy
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Alana I H Escoto
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Clara Snijders
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Cameron D Pernia
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center (UMC) Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Laurence de Nijs
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Daniel van den Hove
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Gunter Kenis
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Marco P Boks
- Psychiatry, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - Krishna Vadodaria
- Salk Institute for Biological Studies, La Jolla, San Diego, United States
| | | | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
21
|
Mayer FP, Niello M, Cintulova D, Sideromenos S, Maier J, Li Y, Bulling S, Kudlacek O, Schicker K, Iwamoto H, Deng F, Wan J, Holy M, Katamish R, Sandtner W, Li Y, Pollak DD, Blakely RD, Mihovilovic MD, Baumann MH, Sitte HH. Serotonin-releasing agents with reduced off-target effects. Mol Psychiatry 2023; 28:722-732. [PMID: 36352123 PMCID: PMC9645344 DOI: 10.1038/s41380-022-01843-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/10/2022]
Abstract
Increasing extracellular levels of serotonin (5-HT) in the brain ameliorates symptoms of depression and anxiety-related disorders, e.g., social phobias and post-traumatic stress disorder. Recent evidence from preclinical and clinical studies established the therapeutic potential of drugs inducing the release of 5-HT via the 5-HT-transporter. Nevertheless, current 5-HT releasing compounds under clinical investigation carry the risk for abuse and deleterious side effects. Here, we demonstrate that S-enantiomers of certain ring-substituted cathinones show preference for the release of 5-HT ex vivo and in vivo, and exert 5-HT-associated effects in preclinical behavioral models. Importantly, the lead cathinone compounds (1) do not induce substantial dopamine release and (2) display reduced off-target activity at vesicular monoamine transporters and 5-HT2B-receptors, indicative of low abuse-liability and low potential for adverse events. Taken together, our findings identify these agents as lead compounds that may prove useful for the treatment of disorders where elevation of 5-HT has proven beneficial.
Collapse
Affiliation(s)
- Felix P Mayer
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, 1090, Vienna, Austria.
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, 33458, USA.
| | - Marco Niello
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, 1090, Vienna, Austria
| | | | - Spyridon Sideromenos
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Julian Maier
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, 1090, Vienna, Austria
| | - Yang Li
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, 1090, Vienna, Austria
- Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Simon Bulling
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, 1090, Vienna, Austria
| | - Oliver Kudlacek
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, 1090, Vienna, Austria
| | - Klaus Schicker
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, 1090, Vienna, Austria
| | - Hideki Iwamoto
- Stiles-Nicholson Brain Institute and Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Fei Deng
- IDG McGovern Institute for Brain Research, Peking University, 100871, Beijing, China
| | - Jinxia Wan
- IDG McGovern Institute for Brain Research, Peking University, 100871, Beijing, China
| | - Marion Holy
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, 1090, Vienna, Austria
| | - Rania Katamish
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Walter Sandtner
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, 1090, Vienna, Austria
| | - Yulong Li
- IDG McGovern Institute for Brain Research, Peking University, 100871, Beijing, China
| | - Daniela D Pollak
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Randy D Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, 33458, USA
- Stiles-Nicholson Brain Institute and Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, 33458, USA
| | | | - Michael H Baumann
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Harald H Sitte
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, 1090, Vienna, Austria.
- AddRess, Center for Addiction Research and Science, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
22
|
Raskind MA, Williams T, Holmes H, Hart K, Crews L, Poupore EL, Thomas RG, Darnell J, Daniels C, Goke K, Hendrickson R, Terry G, Mayer C, Simpson T, Saxon A, Rasmussen D, Peskind ER. A randomized controlled clinical trial of prazosin for alcohol use disorder in active duty soldiers: Predictive effects of elevated cardiovascular parameters. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:348-360. [PMID: 36809662 DOI: 10.1111/acer.14989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/23/2022] [Accepted: 11/23/2022] [Indexed: 02/24/2023]
Abstract
BACKGROUND Excessive noradrenergic signaling contributes to aversive symptoms of alcohol withdrawal that interfere with abstinence or reductions in harmful use. METHODS To address this aspect of alcohol use disorder, 102 active-duty soldiers participating in command-mandated Army outpatient alcohol treatment were randomized to also receive the brain-penetrant alpha-1 adrenergic receptor antagonist prazosin or placebo for 13 weeks. Primary outcomes were scores on the Penn Alcohol Craving Scale (PACS), standard drink units (SDUs) per day averaged over each week, % days of any drinking per week, and % days of heavy drinking per week. RESULTS PACS declines did not differ significantly between the prazosin and placebo groups in the overall sample. In the subgroup with comorbid PTSD (n = 48), PACS declines were significantly greater in the prazosin than in the placebo condition (p < 0.05). Baseline alcohol consumption was markedly reduced by the pre-randomization outpatient alcohol treatment program, but the addition of prazosin treatment produced a greater slope of decline in SDUs per day compared to placebo (p = 0.01). Preplanned subgroup analyses were performed in soldiers with elevated baseline cardiovascular measures consistent with increased noradrenergic signaling. In soldiers with elevated standing heart rate (n = 15), prazosin reduced SDUs per day (p = 0.01), % days drinking (p = 0.03), and % days heavy drinking (p = 0.001) relative to placebo. In soldiers with elevated standing systolic blood pressure (n = 27), prazosin reduced SDUs per day (p = 0.04) and tended to reduce % days drinking (p = 0.056). Prazosin also reduced depressive symptoms and the incidence of emergent depressed mood more than placebo (p = 0.05 and p = 0.01, respectively). During the final 4 weeks of prazosin vs. placebo treatment that followed completion of Army outpatient AUD treatment, alcohol consumption in soldiers with elevated baseline cardiovascular measures increased in those receiving placebo but remained suppressed in those receiving prazosin. CONCLUSIONS These results extend reports that higher pretreatment cardiovascular measures predict beneficial effects of prazosin, which may be useful for relapse prevention in patients with AUD.
Collapse
Affiliation(s)
- Murray A Raskind
- VA Northwest Mental Illness Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Tammy Williams
- VA Northwest Mental Illness Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington, USA
- Madigan Army Medical Center, Joint Base Lewis-McChord, Tacoma, Washington, USA
| | - Hollie Holmes
- VA Northwest Mental Illness Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington, USA
| | - Kim Hart
- VA Northwest Mental Illness Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington, USA
| | - Laura Crews
- Madigan Army Medical Center, Joint Base Lewis-McChord, Tacoma, Washington, USA
| | - Eileen L Poupore
- Madigan Army Medical Center, Joint Base Lewis-McChord, Tacoma, Washington, USA
| | | | - Jolee Darnell
- Madigan Army Medical Center, Joint Base Lewis-McChord, Tacoma, Washington, USA
| | - Colin Daniels
- Madigan Army Medical Center, Joint Base Lewis-McChord, Tacoma, Washington, USA
| | - Kevin Goke
- Madigan Army Medical Center, Joint Base Lewis-McChord, Tacoma, Washington, USA
| | - Rebecca Hendrickson
- VA Northwest Mental Illness Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Garth Terry
- VA Northwest Mental Illness Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Cynthia Mayer
- VA Northwest Mental Illness Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington, USA
| | - Tracy Simpson
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
- Center of Excellence in Substance Addiction Treatment and Education, VA Puget Sound Health Care System, Seattle, Washington, USA
| | - Andrew Saxon
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
- Center of Excellence in Substance Addiction Treatment and Education, VA Puget Sound Health Care System, Seattle, Washington, USA
| | - Dennis Rasmussen
- VA Northwest Mental Illness Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Elaine R Peskind
- VA Northwest Mental Illness Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
23
|
Zhai X, Zhou D, Han Y, Han MH, Zhang H. Noradrenergic modulation of stress resilience. Pharmacol Res 2023; 187:106598. [PMID: 36481260 DOI: 10.1016/j.phrs.2022.106598] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/12/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Resilience represents an active adaption process in the face of adversity, trauma, tragedy, threats, or significant sources of stress. Investigations of neurobiological mechanisms of resilience opens an innovative direction for preclinical research and drug development for various stress-related disorders. The locus coeruleus norepinephrine system has been implicated in mediating stress susceptibility versus resilience. It has attracted increasing attention over the past decades with the revolution of modern neuroscience technologies. In this review article, we first briefly go over resilience-related concepts and introduce rodent paradigms for segregation of susceptibility and resilience, then highlight recent literature that identifies the neuronal and molecular substrates of active resilience in the locus coeruleus, and discuss possible future directions for resilience investigations.
Collapse
Affiliation(s)
- Xiaojing Zhai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Dongyu Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yi Han
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ming-Hu Han
- Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, China; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
24
|
Acute restraint stress impairs histamine type 2 receptor ability to increase the excitability of medium spiny neurons in the nucleus accumbens. Neurobiol Dis 2022; 175:105932. [DOI: 10.1016/j.nbd.2022.105932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
|
25
|
Zhang H, Cui M, Cao JL, Han MH. The Role of Beta-Adrenergic Receptors in Depression and Resilience. Biomedicines 2022; 10:2378. [PMID: 36289638 PMCID: PMC9598882 DOI: 10.3390/biomedicines10102378] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 09/29/2023] Open
Abstract
Norepinephrine is a catecholamine neurotransmitter that has been extensively implicated in the neurobiology of major depressive disorder (MDD). An accumulating body of evidence indicates that investigations into the action of norepinephrine at the synaptic/receptor level hold high potential for a better understanding of MDD neuropathology and introduce possibilities for developing novel treatments for depression. In this review article, we discuss recent advances in depression neuropathology and the effects of antidepressant medications based on preclinical and clinical studies related to beta-adrenergic receptor subtypes. We also highlight a beta-3 adrenergic receptor-involved mechanism that promotes stress resilience, through which antidepressant efficacy is achieved in both rodent models for depression and patients with major depression-an alternative therapeutic strategy that is conceptually different from the typical therapeutic approach in which treatment efficacy is achieved by reversing pathological alterations rather than by enhancing a good mechanism such as natural resilience. Altogether, in this review, we systematically describe the role of beta-adrenergic receptors in depression and stress resilience and provide a new avenue for developing a conceptually innovative treatment for depression.
Collapse
Affiliation(s)
- Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Mengqiao Cui
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Ming-Hu Han
- Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Institute of Brain Cognition and Brain Disease, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
26
|
Sur B, Lee B. Ginsenoside Rg3 modulates spatial memory and fear memory extinction by the HPA axis and BDNF-TrkB pathway in a rat post-traumatic stress disorder. J Nat Med 2022; 76:821-831. [PMID: 35982366 DOI: 10.1007/s11418-022-01636-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 06/13/2022] [Indexed: 12/01/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a serious mental disorder that can develop after exposure to extreme stress. Korean red ginseng, whose major active component is ginsenoside Rg3 (Rg3), is a widely used traditional antioxidant that has anti-inflammatory, anti-apoptotic and anxiolytics effects. This study investigated whether the administration of Rg3 ameliorated the memory deficit induced by a single prolonged stress (SPS) in rats. Male rats were dosed with Rg3 (25 or 50 mg/kg) once daily for 14 days after exposure to SPS. Rg3 administration improved fear memory and spatial memory might be involved in modulating the dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and monoamine imbalance in the medial prefrontal cortex and hippocampus. It also increased the reduction in the brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B (TrkB) mRNAs expression, and the ratio of p-Akt/Akt in the hippocampus. Thus, Rg3 exerted memory-improving actions might be involved in regulating HPA axis and activating BDNF-TrkB pathway. Our findings suggest that Rg3 could be useful for preventing traumatic stress, such as PTSD.
Collapse
Affiliation(s)
- Bongjun Sur
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Bombi Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
- Center for Converging Humanities, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
27
|
Sur B, Lee B. Luteolin reduces fear, anxiety, and depression in rats with post-traumatic stress disorder. Anim Cells Syst (Seoul) 2022; 26:174-182. [PMID: 36046028 PMCID: PMC9423864 DOI: 10.1080/19768354.2022.2104925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Exposure to severe stress can lead to the development of neuropsychiatric disorders, including post-traumatic stress disorder (PTSD). The cause of PTSD is dysregulation of the hypothalamic–pituitary–adrenal (HPA) axis and an imbalance of monoamines. Fruits and vegetables contain large amounts of luteolin (LU; 3′,4′,5,7-tetrahydroxylflavone), which has various pharmacological activities such as anti-inflammatory, antioxidant, and anti-allergic effects. We investigated the effects of LU on fear, depression, and anxiety following monoamine imbalance and hyperactivation of the HPA axis in rats exposed to single prolonged stress (SPS). Male rats were dosed with LU (10 and 20 mg/kg) once daily for 14 days after exposure to SPS. Administration of LU reduced fear freezing responses to extinction recall and depression- and anxiety-like behaviors, and suppressed increases in plasma corticosterone and adrenocorticotropic hormone levels. Also, administration of LU restored the increased norepinephrine and decreased serotonin levels in the structures within the fear circuit, medial prefrontal cortex, and hippocampus. Our results showed that administration of LU improved freezing behavior according in a situation-dependent manner, and showed anti-depressant and anxiolytic effects. Thus, LU may be a useful therapeutic agent to prevent traumatic stress such as PTSD.
Collapse
Affiliation(s)
- Bongjun Sur
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bombi Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Center for Converging Humanities, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
28
|
Gonda X, Dome P, Erdelyi-Hamza B, Krause S, Elek LP, Sharma SR, Tarazi FI. Invisible wounds: Suturing the gap between the neurobiology, conventional and emerging therapies for posttraumatic stress disorder. Eur Neuropsychopharmacol 2022; 61:17-29. [PMID: 35716404 DOI: 10.1016/j.euroneuro.2022.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/26/2022]
Abstract
A sharp increase in the prevalence of neuropsychiatric disorders, including major depression, anxiety, substance use disorders and posttraumatic stress disorder (PTSD) has occurred due to the traumatic nature of the persisting COVID-19 global pandemic. PTSD is estimated to occur in up to 25% of individuals following exposure to acute or chronic trauma, and the pandemic has inflicted both forms of trauma on much of the population through both direct physiological attack as well as an inherent upheaval to our sense of safety. However, despite significant advances in our ability to define and apprehend the effects of traumatic events, the neurobiology and neuroanatomical circuitry of PTSD, one of the most severe consequences of traumatic exposure, remains poorly understood. Furthermore, the current psychotherapies or pharmacological options for treatment have limited efficacy, durability, and low adherence rates. Consequently, there is a great need to better understand the neurobiology and neuroanatomy of PTSD and develop novel therapies that extend beyond the current limited treatments. This review summarizes the neurobiological and neuroanatomical underpinnings of PTSD and discusses the conventional and emerging psychotherapies, pharmacological and combined psychopharmacological therapies, including the use of psychedelic-assisted psychotherapies and neuromodulatory interventions, for the improved treatment of PTSD and the potential for their wider applications in other neuropsychiatric disorders resulting from traumatic exposure.
Collapse
Affiliation(s)
- Xenia Gonda
- Department of Psychiatry and Psychotherapy, Semmelweis University, Hungary; NAP-2-SE New Antidepressant Target Research Group, Semmelweis University, Hungary; International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, Russia.
| | - Peter Dome
- Department of Psychiatry and Psychotherapy, Semmelweis University, Hungary; National Institute of Mental Health, Neurology and Neurosurgery - Nyiro Gyula Hospital, Hungary
| | - Berta Erdelyi-Hamza
- Department of Psychiatry and Psychotherapy, Semmelweis University, Hungary; Doctoral School of Mental Health Sciences, Semmelweis University, Hungary
| | - Sandor Krause
- National Institute of Mental Health, Neurology and Neurosurgery - Nyiro Gyula Hospital, Hungary; Doctoral School of Mental Health Sciences, Semmelweis University, Hungary; Department of Pharmacodynamics, Semmelweis University, Hungary
| | - Livia Priyanka Elek
- Department of Psychiatry and Psychotherapy, Semmelweis University, Hungary; Department of Clinical Psychology, Semmelweis University, Hungary
| | - Samata R Sharma
- Department of Psychiatry, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Frank I Tarazi
- Department of Psychiatry and Neuroscience, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA
| |
Collapse
|
29
|
Residual sleepiness in veterans with post-traumatic stress disorder and obstructive sleep apnea. Sleep Breath 2022; 27:853-860. [PMID: 35802313 DOI: 10.1007/s11325-022-02678-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/24/2022] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE The causes of residual excessive sleepiness (RES) in patients with post-traumatic stress disorder (PTSD) and obstructive sleep apnea (OSA) are multifactorial and modulated by comorbid conditions. The aim of the present study was to elucidate clinical and polysomnographic determinants of RES in continuous positive airway pressure (CPAP)-adherent OSA veterans with PTSD. METHODS The study protocol consisted of a retrospective analysis of consecutive cases of patients with PTSD who presented to the Veterans Affairs sleep clinics with adequately treated OSA between June 1, 2017 and October 15, 2021. Based on the Epworth Sleepiness Scale (ESS), patients were categorized into RES (ESS ≥ 11) and no RES (ESS < 11) groups. Demographic and PSG data were subjected to univariate and multivariate analyses to ascertain predictive factors of RES. RESULTS Out of 171 veterans with PTSD who were adherent to CPAP, 59 (35%) continued to experience RES. The RES group had a decrease in mean ESS score of 1.2 ± 4.5 after CPAP treatment compared with 4.6 ± 4.9 for the no RES group (< 0.001). A dose-response was observed between CPAP use and RES (p = 0.003). Multivariate regression analysis identified higher baseline ESS (OR 1.30; 95% CI 1.16-1.44), greater percentage of time spent in REM sleep (OR 0.91; 95% CI 0.85-0.96), CPAP use less than 6 h (OR 2.82; 95% CI 1.13-7.01), and a positive screen for depression (OR 1.69; 95% CI 1.03-4.72) as independent predictors of RES in patients with PTSD and OSA. CONCLUSION RES is highly prevalent in patients with PTSD and OSA despite adherence to CPAP and is independently associated with percentage time spent in REM, duration of CPAP utilization, and symptoms of depression.
Collapse
|
30
|
Hersey M, Reneaux M, Berger SN, Mena S, Buchanan AM, Ou Y, Tavakoli N, Reagan LP, Clopath C, Hashemi P. A tale of two transmitters: serotonin and histamine as in vivo biomarkers of chronic stress in mice. J Neuroinflammation 2022; 19:167. [PMID: 35761344 PMCID: PMC9235270 DOI: 10.1186/s12974-022-02508-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 06/01/2022] [Indexed: 12/12/2022] Open
Abstract
Background Stress-induced mental illnesses (mediated by neuroinflammation) pose one of the world’s most urgent public health challenges. A reliable in vivo chemical biomarker of stress would significantly improve the clinical communities’ diagnostic and therapeutic approaches to illnesses, such as depression. Methods Male and female C57BL/6J mice underwent a chronic stress paradigm. We paired innovative in vivo serotonin and histamine voltammetric measurement technologies, behavioral testing, and cutting-edge mathematical methods to correlate chemistry to stress and behavior. Results Inflammation-induced increases in hypothalamic histamine were co-measured with decreased in vivo extracellular hippocampal serotonin in mice that underwent a chronic stress paradigm, regardless of behavioral phenotype. In animals with depression phenotypes, correlations were found between serotonin and the extent of behavioral indices of depression. We created a high accuracy algorithm that could predict whether animals had been exposed to stress or not based solely on the serotonin measurement. We next developed a model of serotonin and histamine modulation, which predicted that stress-induced neuroinflammation increases histaminergic activity, serving to inhibit serotonin. Finally, we created a mathematical index of stress, Si and predicted that during chronic stress, where Si is high, simultaneously increasing serotonin and decreasing histamine is the most effective chemical strategy to restoring serotonin to pre-stress levels. When we pursued this idea pharmacologically, our experiments were nearly identical to the model’s predictions. Conclusions This work shines the light on two biomarkers of chronic stress, histamine and serotonin, and implies that both may be important in our future investigations of the pathology and treatment of inflammation-induced depression. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02508-9.
Collapse
Affiliation(s)
- Melinda Hersey
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.,Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29209, USA
| | - Melissa Reneaux
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Shane N Berger
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Sergio Mena
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Anna Marie Buchanan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Yangguang Ou
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Navid Tavakoli
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Lawrence P Reagan
- Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29209, USA.,Columbia VA Health Care Systems, Columbia, SC, 29208, USA
| | - Claudia Clopath
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Parastoo Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA. .,Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
31
|
Sperl MFJ, Panitz C, Skoluda N, Nater UM, Pizzagalli DA, Hermann C, Mueller EM. Alpha-2 Adrenoreceptor Antagonist Yohimbine Potentiates Consolidation of Conditioned Fear. Int J Neuropsychopharmacol 2022; 25:759-773. [PMID: 35748393 PMCID: PMC9515133 DOI: 10.1093/ijnp/pyac038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/26/2022] [Accepted: 06/21/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Hyperconsolidation of aversive associations and poor extinction learning have been hypothesized to be crucial in the acquisition of pathological fear. Previous animal and human research points to the potential role of the catecholaminergic system, particularly noradrenaline and dopamine, in acquiring emotional memories. Here, we investigated in a between-participants design with 3 groups whether the noradrenergic alpha-2 adrenoreceptor antagonist yohimbine and the dopaminergic D2-receptor antagonist sulpiride modulate long-term fear conditioning and extinction in humans. METHODS Fifty-five healthy male students were recruited. The final sample consisted of n = 51 participants who were explicitly aware of the contingencies between conditioned stimuli (CS) and unconditioned stimuli after fear acquisition. The participants were then randomly assigned to 1 of the 3 groups and received either yohimbine (10 mg, n = 17), sulpiride (200 mg, n = 16), or placebo (n = 18) between fear acquisition and extinction. Recall of conditioned (non-extinguished CS+ vs CS-) and extinguished fear (extinguished CS+ vs CS-) was assessed 1 day later, and a 64-channel electroencephalogram was recorded. RESULTS The yohimbine group showed increased salivary alpha-amylase activity, confirming a successful manipulation of central noradrenergic release. Elevated fear-conditioned bradycardia and larger differential amplitudes of the N170 and late positive potential components in the event-related brain potential indicated that yohimbine treatment (compared with a placebo and sulpiride) enhanced fear recall during day 2. CONCLUSIONS These results suggest that yohimbine potentiates cardiac and central electrophysiological signatures of fear memory consolidation. They thereby elucidate the key role of noradrenaline in strengthening the consolidation of conditioned fear associations, which may be a key mechanism in the etiology of fear-related disorders.
Collapse
Affiliation(s)
- Matthias F J Sperl
- Correspondence: Matthias F. J. Sperl, Justus Liebig University Giessen, Department of Psychology, Otto-Behaghel-Str. 10F, 35394 Giessen, Germany ()
| | - Christian Panitz
- Department of Psychology, Personality Psychology and Assessment, University of Marburg, Marburg, Germany,Department of Psychology, Experimental Psychology and Methods, University of Leipzig, Leipzig, Germany,Center for the Study of Emotion and Attention, University of Florida, Gainesville, Florida, USA
| | - Nadine Skoluda
- Department of Clinical and Health Psychology, University of Vienna, Vienna, Austria
| | - Urs M Nater
- Department of Clinical and Health Psychology, University of Vienna, Vienna, Austria
| | - Diego A Pizzagalli
- Department of Psychiatry, Harvard Medical School, & Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts, USA
| | - Christiane Hermann
- Department of Psychology, Clinical Psychology and Psychotherapy, University of Giessen, Giessen, Germany
| | - Erik M Mueller
- Department of Psychology, Personality Psychology and Assessment, University of Marburg, Marburg, Germany
| |
Collapse
|
32
|
Myricetin Inhibited Fear and Anxiety-Like Behaviors by HPA Axis Regulation and Activation of the BDNF-ERK Signaling Pathway in Posttraumatic Stress Disorder Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8320256. [PMID: 35722162 PMCID: PMC9200513 DOI: 10.1155/2022/8320256] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/16/2022] [Accepted: 04/23/2022] [Indexed: 11/17/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a stress-related psychiatric or mental disorder characterized by experiencing a traumatic stress. The cause of such PTSD is dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and imbalance of monoamines. Myricetin (MYR) is a common natural flavonoid that has various pharmacological activities. We investigated the effects of MYR on fear, depression, and anxiety following monoamine imbalance and hyperactivation of HPA axis in rats exposed to a single prolonged stress (SPS). Male rats were dosed with MYR (10 and 20 mg/kg, i.p.) once daily for 14 days after exposure to SPS. Administration of MYR reduced freezing responses to extinction recall, depression, and anxiety-like behaviors and decreased increase of plasma corticosterone and adrenocorticotropic hormone levels. Also, administration of MYR restored decreased serotonin and increased norepinephrine in the fear circuit regions, medial prefrontal cortex, and hippocampus. It also increased the reduction in the brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B mRNA expression and the ratio of p-ERK/extracellular signal-regulated kinase (ERK) in the hippocampus. Thus, MYR exerted antidepressant and anxiolytic effects by regulation of HPA axis and activation of the BDNF-ERK signaling pathway. Finally, we suggest that MYR could be a useful therapeutic agent to prevent traumatic stress such as PTSD.
Collapse
|
33
|
Matsukawa M, Yoshikawa M, Katsuyama N, Aizawa S, Sato T. The Anterior Piriform Cortex and Predator Odor Responses: Modulation by Inhibitory Circuits. Front Behav Neurosci 2022; 16:896525. [PMID: 35571276 PMCID: PMC9097892 DOI: 10.3389/fnbeh.2022.896525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Rodents acquire more information from the sense of smell than humans because they have a nearly fourfold greater variety of olfactory receptors. They use olfactory information not only for obtaining food, but also for detecting environmental dangers. Predator-derived odor compounds provoke instinctive fear and stress reactions in animals. Inbred lines of experimental animals react in an innate stereotypical manner to predators even without prior exposure. Predator odors have also been used in models of various neuropsychiatric disorders, including post-traumatic stress disorder following a life-threatening event. Although several brain regions have been reported to be involved in predator odor-induced stress responses, in this mini review, we focus on the functional role of inhibitory neural circuits, especially in the anterior piriform cortex (APC). We also discuss the changes in these neural circuits following innate reactions to odor exposure. Furthermore, based on the three types of modulation of the stress response observed by our group using the synthetic fox odorant 2,5-dihydro-2,4,5-trimethylthiazoline, we describe how the APC interacts with other brain regions to regulate the stress response. Finally, we discuss the potential therapeutic application of odors in the treatment of stress-related disorders. A clearer understanding of the odor–stress response is needed to allow targeted modulation of the monoaminergic system and of the intracerebral inhibitory networks. It would be improved the quality of life of those who have stress-related conditions.
Collapse
Affiliation(s)
- Mutsumi Matsukawa
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, Itabashi, Japan
- *Correspondence: Mutsumi Matsukawa,
| | - Masaaki Yoshikawa
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, Itabashi, Japan
| | - Narumi Katsuyama
- Cognitive Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Shin Aizawa
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, Itabashi, Japan
| | - Takaaki Sato
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ikeda, Japan
| |
Collapse
|
34
|
Ugwu PI, Ben-Azu B, Ugwu SU, Uruaka CI, Nworgu CC, Okorie PO, Okafor KO, Anachuna KK, Elendu MU, Ugwu AO, Anyaehie UB, Nwankwo AA, Osim EE. Putative mechanisms involved in the psychopathologies of mice passively coping with psychosocial defeat stress by quercetin. Brain Res Bull 2022; 183:127-141. [DOI: 10.1016/j.brainresbull.2022.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/15/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022]
|
35
|
Na PJ, Ralevski E, Jegede O, Wolfgang A, Petrakis IL. Depression and/or PTSD Comorbidity Affects Response to Antidepressants in Those With Alcohol Use Disorder. Front Psychiatry 2022; 12:768318. [PMID: 35058816 PMCID: PMC8765227 DOI: 10.3389/fpsyt.2021.768318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/29/2021] [Indexed: 11/25/2022] Open
Abstract
Objective: Depression and post-traumatic stress disorder (PTSD) highly co-occur with alcohol use disorder (AUD). The comparative effects of noradrenergic vs. serotonergic antidepressants on drinking and depressive outcomes for those with AUD and co-occurring depression and/or PTSD are not well known. Methods: This study was an analysis of a randomized control trial of 128 patients with AUD who had co-occurring depression and/or PTSD. They were randomized to treatment with paroxetine vs. desipramine and naltrexone vs. placebo leading to four groups: paroxetine plus naltrexone, paroxetine plus placebo, desipramine plus naltrexone, and desipramine plus placebo. Outcomes were percent of drinking days, percent heavy drinking days, drinks per drinking day (Time Line Follow-back Method), and depressive symptoms (Hamilton Depression Scale). Groups compared were (1) depression without PTSD (depression group; n = 35), (2) PTSD without depression (PTSD group; n = 33), and (3) both depression and PTSD (comorbid group; n = 60). Results: There were no overall significant differences in drinking outcomes by medication in the entire sample, and no significant interaction when diagnostic groups were not considered. However, when diagnostic groups were included in the model, the interactions between time, diagnostic group, and medication (desipramine vs. paroxetine) were significant for percent drinking days (p = 0.042), and percent heavy drinking days (p = 0.036); paroxetine showed better drinking outcomes within the depression group, whereas desipramine showed better drinking outcomes in the PTSD and comorbid groups. Regarding depressive symptoms, paroxetine was statistically superior to desipramine in the total sample (p = 0.007), but there was no significant interaction of diagnostic group and medication. Naltrexone led to a decrease in craving but no change in drinking outcomes. Conclusions: The results of this study suggest that drinking outcomes may respond differently to desipramine and paroxetine depending on comorbid MDD and/or PTSD.
Collapse
Affiliation(s)
- Peter J. Na
- Department of Psychiatry, VA Connecticut Healthcare System, West Haven, CT, United States
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, United States
| | - Elizabeth Ralevski
- Department of Psychiatry, VA Connecticut Healthcare System, West Haven, CT, United States
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, United States
| | - Oluwole Jegede
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, United States
| | - Aaron Wolfgang
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, United States
| | - Ismene L. Petrakis
- Department of Psychiatry, VA Connecticut Healthcare System, West Haven, CT, United States
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
36
|
Nöthling J, Abrahams N, Toikumo S, Suderman M, Mhlongo S, Lombard C, Seedat S, Hemmings SMJ. Genome-wide differentially methylated genes associated with posttraumatic stress disorder and longitudinal change in methylation in rape survivors. Transl Psychiatry 2021; 11:594. [PMID: 34799556 PMCID: PMC8604994 DOI: 10.1038/s41398-021-01608-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 08/01/2021] [Accepted: 09/02/2021] [Indexed: 12/24/2022] Open
Abstract
Rape is associated with a high risk for posttraumatic stress disorder (PTSD). DNA methylation changes may confer risk or protection for PTSD following rape by regulating the expression of genes implicated in pathways affected by PTSD. We aimed to: (1) identify epigenome-wide differences in methylation profiles between rape-exposed women with and without PTSD at 3-months post-rape, in a demographically and ethnically similar group, drawn from a low-income setting; (2) validate and replicate the findings of the epigenome-wide analysis in selected genes (BRSK2 and ADCYAP1); and (3) investigate baseline and longitudinal changes in BRSK2 and ADCYAP1 methylation over six months in relation to change in PTSD symptom scores over 6 months, in the combined discovery/validation and replication samples (n = 96). Rape-exposed women (n = 852) were recruited from rape clinics in the Rape Impact Cohort Evaluation (RICE) umbrella study. Epigenome-wide differentially methylated CpG sites between rape-exposed women with (n = 24) and without (n = 24) PTSD at 3-months post-rape were investigated using the Illumina EPIC BeadChip in a discovery cohort (n = 48). Validation (n = 47) and replication (n = 49) of BRSK2 and ADCYAP1 methylation findings were investigated using EpiTYPER technology. Longitudinal change in BRSK2 and ADCYAP1 was also investigated using EpiTYPER technology in the combined sample (n = 96). In the discovery sample, after adjustment for multiple comparisons, one differentially methylated CpG site (chr10: 61385771/ cg01700569, p = 0.049) and thirty-four differentially methylated regions were associated with PTSD status at 3-months post-rape. Decreased BRSK2 and ADCYAP1 methylation at 3-months and 6-months post-rape were associated with increased PTSD scores at the same time points, but these findings did not remain significant in adjusted models. In conclusion, decreased methylation of BRSK2 may result in abnormal neuronal polarization, synaptic development, vesicle formation, and disrupted neurotransmission in individuals with PTSD. PTSD symptoms may also be mediated by differential methylation of the ADCYAP1 gene which is involved in stress regulation. Replication of these findings is required to determine whether ADCYAP1 and BRSK2 are biomarkers of PTSD and potential therapeutic targets.
Collapse
Affiliation(s)
- Jani Nöthling
- Department of Psychiatry, Faculty of Medicine and Health Sciences Stellenbosch University, Cape Town, South Africa.
- Gender and Health Research Unit, South African Medical Research Council, Cape Town, South Africa.
- South African Medical Research Council Unit on the Genomics of Brain Disorders, Stellenbosch University, Cape Town, South Africa.
| | - Naeemah Abrahams
- Gender and Health Research Unit, South African Medical Research Council, Cape Town, South Africa
- Division of Social and Behavioural Sciences, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Sylvanus Toikumo
- Department of Psychiatry, Faculty of Medicine and Health Sciences Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Unit on the Genomics of Brain Disorders, Stellenbosch University, Cape Town, South Africa
| | - Matthew Suderman
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Shibe Mhlongo
- Gender and Health Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Carl Lombard
- Biostatistics Unit, South African Medical Research Council, Cape Town, South Africa
- Division of Epidemiology and Biostatistics, Department of Global Health, Stellenbosch University, Cape Town, South Africa
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Unit on the Genomics of Brain Disorders, Stellenbosch University, Cape Town, South Africa
| | - Sian Megan Joanna Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Unit on the Genomics of Brain Disorders, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
37
|
Nwokafor C, Serova LI, Tanelian A, Nahvi RJ, Sabban EL. Variable Response of Norepinephrine Transporter to Traumatic Stress and Relationship to Hyperarousal. Front Behav Neurosci 2021; 15:725091. [PMID: 34650410 PMCID: PMC8507558 DOI: 10.3389/fnbeh.2021.725091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
The noradrenergic systems play a key role in stress triggered disorders such as post-traumatic stress disorder (PTSD). We hypothesized that traumatic stress will alter expression of norepinephrine transporter (NET) in locus coeruleus (LC) and its target brain regions which could be related to hyperarousal. Male Sprague-Dawley rats were subjected to single prolonged stress (SPS) and several weeks later the LC was isolated. NET mRNA levels in LC, determined by RT-PCR, displayed variable response with high and low responsive subgroups. In different cohort, acoustic startle response (ASR) was measured 2 weeks after SPS and levels of NET mRNA and protein in LC determined. The high NET responsive subgroup had greater hyperarousal. Nevertheless, NET protein levels, as determined by western blots, were lower than unstressed controls in LC, ventral hippocampus and medial prefrontal cortex and displayed considerable variability. Hypermethylation of specific CpG region in promoter of SLC6A2 gene, encoding NET, was present in the low, but not high, NET mRNA responsive subgroup. Taken together, the results demonstrate variability in stress elicited changes in NET gene expression and involvement of epigenetic changes. This may underlie mechanisms of susceptibility and resilience to traumatic stress triggered neuropsychiatric symptoms, especially hyperarousal.
Collapse
Affiliation(s)
- Chiso Nwokafor
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| | - Lidia I Serova
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| | - Arax Tanelian
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| | - Roxanna J Nahvi
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| | - Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
38
|
Mohammadi-Farani A, Taghadosi M, Raziee S, Samimi Z. In vivo blockade of 5HT3 receptors in the infralimbic medial prefrontal cortex enhances fear extinction in a rat model of PTSD. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:776-786. [PMID: 34630955 PMCID: PMC8487606 DOI: 10.22038/ijbms.2021.54299.12197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/27/2021] [Indexed: 11/06/2022]
Abstract
Objectives Treatments that reverse deficits in fear extinction are promising for the management of post-traumatic stress disorder (PTSD). 5-Hydroxytryptamine type 3 (5-HT3) receptor is involved involved in the extinction of fear memories. The present work aims to investigate the role of 5HT3 receptors in the infralimbic part of the medial prefrontal cortex (IL-mPFC) in extinction of conditioned fear in the single prolonged stress (SPS) model of PTSD in rats. Materials and Methods The effect of SPS administration was evaluated on the freezing behavior in contextual and cued fear conditioning models. After the behavioral tests, levels of 5HT3 transcription in IL-mPFC were also measured in the same animals using the real-time RT-PCR method. To evaluate the possible role of local 5HT3 receptors on fear extinction, conditioned freezing was evaluated in another cohort of animals that received local microinjections of ondansetron (a 5HT3 antagonist) and ondansetron plus a 5HT3 agonist (SR 57227A) after extinction sessions. Results Our findings showed that exposure to SPS increased the freezing response in both contextual and cued fear models. We also found that SPS is associated with increased expression of 5HT3 receptors in the IL-mPFC region. Ondansetron enhanced the fear of extinction in these animals and the enhancement was blocked by the 5HT3 agonist, SR 57227A. Conclusion It seems that up-regulation of 5HT3 receptors in IL-mPFC is an important factor in the neurobiology of PTSD and blockade of these receptors could be considered a potential treatment for this condition.
Collapse
Affiliation(s)
- Ahmad Mohammadi-Farani
- Pharmaceutical Sciences Research Centre, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahdi Taghadosi
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sara Raziee
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Samimi
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
39
|
Stupin KN, Zenko MY, Rybnikova EA. Comparative Analysis of Pathobiochemical Changes in Major Depression and Post-Traumatic Stress Disorder. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:729-736. [PMID: 34225595 DOI: 10.1134/s0006297921060109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 06/13/2023]
Abstract
Comparative analysis of available literature data on the pathogenetic neuroendocrine mechanisms of depression and post-traumatic stress disorder (PTSD) is provided in this review to identify their common features and differences. We discuss the multidirectional modifications of the activity of cortical and subcortical structures of the brain, levels of neurotransmitters and their receptors, and functions of the hypothalamic-pituitary-adrenocortical axis in depression and PTSD. The analysis shows that these disorders are examples of opposite failures in the system of adaptive stress response of the body to stressful psychotraumatic events. On this basis, it is concluded that the currently widespread use of similar approaches to treat these disorders is not justified, despite the significant similarity of their anxiety-depressive symptoms; development of differential therapeutic strategies is required.
Collapse
Affiliation(s)
- Konstantin N Stupin
- Pavlov Institute of Physiology, Russian Academy of Sciences, St.-Petersburg, 199034, Russia
| | - Mikhail Y Zenko
- Pavlov Institute of Physiology, Russian Academy of Sciences, St.-Petersburg, 199034, Russia
| | - Elena A Rybnikova
- Pavlov Institute of Physiology, Russian Academy of Sciences, St.-Petersburg, 199034, Russia.
| |
Collapse
|
40
|
Latimer D, Stocker MD, Sayers K, Green J, Kaye AM, Abd-Elsayed A, Cornett EM, Kaye AD, Varrassi G, Viswanath O, Urits I. MDMA to Treat PTSD in Adults. PSYCHOPHARMACOLOGY BULLETIN 2021; 51:125-149. [PMID: 34421149 PMCID: PMC8374929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Post-traumatic stress disorder (PTSD) has become one of the most common psychiatric diagnosis in the United States specifically within the veteran population. The current treatment options for this debilitating diagnosis include trauma-focused psychotherapies along with selective serotonin reuptake inhibitors (SSRI) and serotonin-norepinephrine reuptake inhibitors (SNRI).1 MDMA has recently been shown as a novel therapeutic agent with promisingly results in the treatment of PTSD. MDMA is a psychoactive compound traditionally categorized as a psychedelic amphetamine that deemed a Schedule I controlled substance in the 1980s. Prior to its status as a controlled substance, it was used by psychotherapists for an array of psychiatric issues. In more recent times, MDMA has resurfaced as a potential therapy for PTSD and the data produced from randomized, controlled trials back the desire for MDMA to be utilized as an effective pharmacologic therapy in conjunction with psychotherapy.2.
Collapse
Affiliation(s)
- Dustin Latimer
- Latimer, Louisiana State University Health Science Center, Department of Psychiatry and Behavioral Medicine in Baton Rouge. Michael D. Stocker, Kia Sayers, Louisiana State University New Orleans School of Medicine. Green, Visions Adolescent Treatment Center, Department of Mental Health, Los Angeles, CA. Adam M. Kaye, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Alaa Abd-Elsayed, University of Wisconsin School of Medicine and Public Health, Department of Anesthesiology, Madison, WI. Elyse M. Cornett, Alan D. Kaye, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Varrassi, Paolo Procacci Foundation, Via Tacito 7, Roma, Italy. Viswanath, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA; University of Arizona College of Medicine-Phoenix, Phoenix, AZ; Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE; Valley Anesthesiology and Pain Consultants-Envision Physician Services, Phoenix, AZ. Ivan Urits, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA; Southcoast Health, Southcoast Health Physicians Group Pain Medicine, Wareham, MA
| | - Michael D Stocker
- Latimer, Louisiana State University Health Science Center, Department of Psychiatry and Behavioral Medicine in Baton Rouge. Michael D. Stocker, Kia Sayers, Louisiana State University New Orleans School of Medicine. Green, Visions Adolescent Treatment Center, Department of Mental Health, Los Angeles, CA. Adam M. Kaye, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Alaa Abd-Elsayed, University of Wisconsin School of Medicine and Public Health, Department of Anesthesiology, Madison, WI. Elyse M. Cornett, Alan D. Kaye, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Varrassi, Paolo Procacci Foundation, Via Tacito 7, Roma, Italy. Viswanath, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA; University of Arizona College of Medicine-Phoenix, Phoenix, AZ; Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE; Valley Anesthesiology and Pain Consultants-Envision Physician Services, Phoenix, AZ. Ivan Urits, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA; Southcoast Health, Southcoast Health Physicians Group Pain Medicine, Wareham, MA
| | - Kia Sayers
- Latimer, Louisiana State University Health Science Center, Department of Psychiatry and Behavioral Medicine in Baton Rouge. Michael D. Stocker, Kia Sayers, Louisiana State University New Orleans School of Medicine. Green, Visions Adolescent Treatment Center, Department of Mental Health, Los Angeles, CA. Adam M. Kaye, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Alaa Abd-Elsayed, University of Wisconsin School of Medicine and Public Health, Department of Anesthesiology, Madison, WI. Elyse M. Cornett, Alan D. Kaye, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Varrassi, Paolo Procacci Foundation, Via Tacito 7, Roma, Italy. Viswanath, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA; University of Arizona College of Medicine-Phoenix, Phoenix, AZ; Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE; Valley Anesthesiology and Pain Consultants-Envision Physician Services, Phoenix, AZ. Ivan Urits, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA; Southcoast Health, Southcoast Health Physicians Group Pain Medicine, Wareham, MA
| | - Jackson Green
- Latimer, Louisiana State University Health Science Center, Department of Psychiatry and Behavioral Medicine in Baton Rouge. Michael D. Stocker, Kia Sayers, Louisiana State University New Orleans School of Medicine. Green, Visions Adolescent Treatment Center, Department of Mental Health, Los Angeles, CA. Adam M. Kaye, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Alaa Abd-Elsayed, University of Wisconsin School of Medicine and Public Health, Department of Anesthesiology, Madison, WI. Elyse M. Cornett, Alan D. Kaye, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Varrassi, Paolo Procacci Foundation, Via Tacito 7, Roma, Italy. Viswanath, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA; University of Arizona College of Medicine-Phoenix, Phoenix, AZ; Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE; Valley Anesthesiology and Pain Consultants-Envision Physician Services, Phoenix, AZ. Ivan Urits, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA; Southcoast Health, Southcoast Health Physicians Group Pain Medicine, Wareham, MA
| | - Adam M Kaye
- Latimer, Louisiana State University Health Science Center, Department of Psychiatry and Behavioral Medicine in Baton Rouge. Michael D. Stocker, Kia Sayers, Louisiana State University New Orleans School of Medicine. Green, Visions Adolescent Treatment Center, Department of Mental Health, Los Angeles, CA. Adam M. Kaye, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Alaa Abd-Elsayed, University of Wisconsin School of Medicine and Public Health, Department of Anesthesiology, Madison, WI. Elyse M. Cornett, Alan D. Kaye, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Varrassi, Paolo Procacci Foundation, Via Tacito 7, Roma, Italy. Viswanath, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA; University of Arizona College of Medicine-Phoenix, Phoenix, AZ; Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE; Valley Anesthesiology and Pain Consultants-Envision Physician Services, Phoenix, AZ. Ivan Urits, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA; Southcoast Health, Southcoast Health Physicians Group Pain Medicine, Wareham, MA
| | - Alaa Abd-Elsayed
- Latimer, Louisiana State University Health Science Center, Department of Psychiatry and Behavioral Medicine in Baton Rouge. Michael D. Stocker, Kia Sayers, Louisiana State University New Orleans School of Medicine. Green, Visions Adolescent Treatment Center, Department of Mental Health, Los Angeles, CA. Adam M. Kaye, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Alaa Abd-Elsayed, University of Wisconsin School of Medicine and Public Health, Department of Anesthesiology, Madison, WI. Elyse M. Cornett, Alan D. Kaye, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Varrassi, Paolo Procacci Foundation, Via Tacito 7, Roma, Italy. Viswanath, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA; University of Arizona College of Medicine-Phoenix, Phoenix, AZ; Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE; Valley Anesthesiology and Pain Consultants-Envision Physician Services, Phoenix, AZ. Ivan Urits, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA; Southcoast Health, Southcoast Health Physicians Group Pain Medicine, Wareham, MA
| | - Elyse M Cornett
- Latimer, Louisiana State University Health Science Center, Department of Psychiatry and Behavioral Medicine in Baton Rouge. Michael D. Stocker, Kia Sayers, Louisiana State University New Orleans School of Medicine. Green, Visions Adolescent Treatment Center, Department of Mental Health, Los Angeles, CA. Adam M. Kaye, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Alaa Abd-Elsayed, University of Wisconsin School of Medicine and Public Health, Department of Anesthesiology, Madison, WI. Elyse M. Cornett, Alan D. Kaye, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Varrassi, Paolo Procacci Foundation, Via Tacito 7, Roma, Italy. Viswanath, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA; University of Arizona College of Medicine-Phoenix, Phoenix, AZ; Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE; Valley Anesthesiology and Pain Consultants-Envision Physician Services, Phoenix, AZ. Ivan Urits, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA; Southcoast Health, Southcoast Health Physicians Group Pain Medicine, Wareham, MA
| | - Alan D Kaye
- Latimer, Louisiana State University Health Science Center, Department of Psychiatry and Behavioral Medicine in Baton Rouge. Michael D. Stocker, Kia Sayers, Louisiana State University New Orleans School of Medicine. Green, Visions Adolescent Treatment Center, Department of Mental Health, Los Angeles, CA. Adam M. Kaye, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Alaa Abd-Elsayed, University of Wisconsin School of Medicine and Public Health, Department of Anesthesiology, Madison, WI. Elyse M. Cornett, Alan D. Kaye, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Varrassi, Paolo Procacci Foundation, Via Tacito 7, Roma, Italy. Viswanath, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA; University of Arizona College of Medicine-Phoenix, Phoenix, AZ; Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE; Valley Anesthesiology and Pain Consultants-Envision Physician Services, Phoenix, AZ. Ivan Urits, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA; Southcoast Health, Southcoast Health Physicians Group Pain Medicine, Wareham, MA
| | - Giustino Varrassi
- Latimer, Louisiana State University Health Science Center, Department of Psychiatry and Behavioral Medicine in Baton Rouge. Michael D. Stocker, Kia Sayers, Louisiana State University New Orleans School of Medicine. Green, Visions Adolescent Treatment Center, Department of Mental Health, Los Angeles, CA. Adam M. Kaye, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Alaa Abd-Elsayed, University of Wisconsin School of Medicine and Public Health, Department of Anesthesiology, Madison, WI. Elyse M. Cornett, Alan D. Kaye, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Varrassi, Paolo Procacci Foundation, Via Tacito 7, Roma, Italy. Viswanath, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA; University of Arizona College of Medicine-Phoenix, Phoenix, AZ; Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE; Valley Anesthesiology and Pain Consultants-Envision Physician Services, Phoenix, AZ. Ivan Urits, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA; Southcoast Health, Southcoast Health Physicians Group Pain Medicine, Wareham, MA
| | - Omar Viswanath
- Latimer, Louisiana State University Health Science Center, Department of Psychiatry and Behavioral Medicine in Baton Rouge. Michael D. Stocker, Kia Sayers, Louisiana State University New Orleans School of Medicine. Green, Visions Adolescent Treatment Center, Department of Mental Health, Los Angeles, CA. Adam M. Kaye, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Alaa Abd-Elsayed, University of Wisconsin School of Medicine and Public Health, Department of Anesthesiology, Madison, WI. Elyse M. Cornett, Alan D. Kaye, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Varrassi, Paolo Procacci Foundation, Via Tacito 7, Roma, Italy. Viswanath, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA; University of Arizona College of Medicine-Phoenix, Phoenix, AZ; Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE; Valley Anesthesiology and Pain Consultants-Envision Physician Services, Phoenix, AZ. Ivan Urits, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA; Southcoast Health, Southcoast Health Physicians Group Pain Medicine, Wareham, MA
| | - Ivan Urits
- Latimer, Louisiana State University Health Science Center, Department of Psychiatry and Behavioral Medicine in Baton Rouge. Michael D. Stocker, Kia Sayers, Louisiana State University New Orleans School of Medicine. Green, Visions Adolescent Treatment Center, Department of Mental Health, Los Angeles, CA. Adam M. Kaye, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Alaa Abd-Elsayed, University of Wisconsin School of Medicine and Public Health, Department of Anesthesiology, Madison, WI. Elyse M. Cornett, Alan D. Kaye, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Varrassi, Paolo Procacci Foundation, Via Tacito 7, Roma, Italy. Viswanath, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA; University of Arizona College of Medicine-Phoenix, Phoenix, AZ; Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE; Valley Anesthesiology and Pain Consultants-Envision Physician Services, Phoenix, AZ. Ivan Urits, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA; Southcoast Health, Southcoast Health Physicians Group Pain Medicine, Wareham, MA
| |
Collapse
|
41
|
Grueschow M, Stenz N, Thörn H, Ehlert U, Breckwoldt J, Brodmann Maeder M, Exadaktylos AK, Bingisser R, Ruff CC, Kleim B. Real-world stress resilience is associated with the responsivity of the locus coeruleus. Nat Commun 2021; 12:2275. [PMID: 33859187 PMCID: PMC8050280 DOI: 10.1038/s41467-021-22509-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 03/04/2021] [Indexed: 02/02/2023] Open
Abstract
Individuals may show different responses to stressful events. Here, we investigate the neurobiological basis of stress resilience, by showing that neural responsitivity of the noradrenergic locus coeruleus (LC-NE) and associated pupil responses are related to the subsequent change in measures of anxiety and depression in response to prolonged real-life stress. We acquired fMRI and pupillometry data during an emotional-conflict task in medical residents before they underwent stressful emergency-room internships known to be a risk factor for anxiety and depression. The LC-NE conflict response and its functional coupling with the amygdala was associated with stress-related symptom changes in response to the internship. A similar relationship was found for pupil-dilation, a potential marker of LC-NE firing. Our results provide insights into the noradrenergic basis of conflict generation, adaptation and stress resilience.
Collapse
Affiliation(s)
- Marcus Grueschow
- Zurich Center for Neuroeconomics (ZNE), Department of Economics, University of Zurich, Zurich, Switzerland.
| | - Nico Stenz
- Division of Experimental Psychopathology and Psychotherapy, Dept of Psychology, University of Zurich, Zurich, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
| | - Hanna Thörn
- Division of Experimental Psychopathology and Psychotherapy, Dept of Psychology, University of Zurich, Zurich, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
- Division of Clinical Psychology and Psychotherapy, Dept of Psychology, University of Zurich, Zurich, Switzerland
| | - Ulrike Ehlert
- Division of Clinical Psychology and Psychotherapy, Dept of Psychology, University of Zurich, Zurich, Switzerland
| | - Jan Breckwoldt
- Medical School, Deanery, University of Zurich, Zurich, Switzerland
| | | | | | - Roland Bingisser
- Department of Emergency Medicine, University Hospital Basel, Basel, Switzerland
| | - Christian C Ruff
- Zurich Center for Neuroeconomics (ZNE), Department of Economics, University of Zurich, Zurich, Switzerland
| | - Birgit Kleim
- Division of Experimental Psychopathology and Psychotherapy, Dept of Psychology, University of Zurich, Zurich, Switzerland.
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
42
|
Rajkumar RP. Harnessing the Neurobiology of Resilience to Protect the Mental Well-Being of Healthcare Workers During the COVID-19 Pandemic. Front Psychol 2021; 12:621853. [PMID: 33815205 PMCID: PMC8012770 DOI: 10.3389/fpsyg.2021.621853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/22/2021] [Indexed: 01/26/2023] Open
Abstract
Healthcare workers are at a high risk of psychological morbidity in the face of the COVID-19 pandemic. However, there is significant variability in the impact of this crisis on individual healthcare workers, which can be best explained through an appreciation of the construct of resilience. Broadly speaking, resilience refers to the ability to successfully adapt to stressful or traumatic events, and thus plays a key role in determining mental health outcomes following exposure to such events. A proper understanding of resilience is vital in enabling a shift from a reactive to a proactive approach for protecting and promoting the mental well-being of healthcare workers. Research in the past decade has identified six areas that provide promising leads in understanding the biological basis of individual variations in resilience. These are: (1) the key role played by the monoamines noradrenaline and serotonin, (2) the centrality of the hypothalamic-pituitary-adrenal axis in influencing stress vulnerability and resilience, (3) the intimate links between the immune system and stress sensitivity, (4) the role of epigenetic modulation of gene expression in influencing the stress response, (5) the role played by certain neuropeptides as a natural “brake” mechanism in the face of stress, and (6) the neurobiological mechanisms by which environmental factors, such as exercise, diet, and social support, influence resilience to subsequent life events. Though much of this research is still in its early stages, it has already provided valuable information on which strategies – including dietary changes, lifestyle modification, environmental modification, psychosocial interventions, and even pharmacological treatments – may prove to be useful in fostering resilience in individuals and groups. This paper examines the above evidence more closely, with a specific focus on the challenges faced by healthcare workers during the COVID-19 pandemic, and provides suggestions regarding how it may be translated into real-world interventions, as well as how the more tentative hypotheses advanced in this field may be tested during this critical period.
Collapse
Affiliation(s)
- Ravi Philip Rajkumar
- Department of Psychiatry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| |
Collapse
|
43
|
Drug addiction co-morbidity with alcohol: Neurobiological insights. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 157:409-472. [PMID: 33648675 DOI: 10.1016/bs.irn.2020.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Addiction is a chronic disorder that consists of a three-stage cycle of binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation. These stages involve, respectively, neuroadaptations in brain circuits involved in incentive salience and habit formation, stress surfeit and reward deficit, and executive function. Much research on addiction focuses on the neurobiology underlying single drug use. However, alcohol use disorder (AUD) can be co-morbid with substance use disorder (SUD), called dual dependence. The limited epidemiological data on dual dependence indicates that there is a large population of individuals suffering from addiction who are dependent on more than one drug and/or alcohol, yet dual dependence remains understudied in addiction research. Here, we review neurobiological data on neurotransmitter and neuropeptide systems that are known to contribute to addiction pathology and how the involvement of these systems is consistent or divergent across drug classes. In particular, we highlight the dopamine, opioid, corticotropin-releasing factor, norepinephrine, hypocretin/orexin, glucocorticoid, neuroimmune signaling, endocannabinoid, glutamate, and GABA systems. We also discuss the limited research on these systems in dual dependence. Collectively, these studies demonstrate that the use of multiple drugs can produce neuroadaptations that are distinct from single drug use. Further investigation into the neurobiology of dual dependence is necessary to develop effective treatments for addiction to multiple drugs.
Collapse
|
44
|
Cannabis use and posttraumatic stress disorder comorbidity: Epidemiology, biology and the potential for novel treatment approaches. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 157:143-193. [PMID: 33648669 DOI: 10.1016/bs.irn.2020.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cannabis use is increasing among some demographics in the United States and is tightly linked to anxiety, trauma, and stress reactivity at the epidemiological and biological level. Stress-coping motives are highly cited reasons for cannabis use. However, with increased cannabis use comes the increased susceptibility for cannabis use disorder (CUD). Indeed, CUD is highly comorbid with posttraumatic stress disorder (PTSD). Importantly, endogenous cannabinoid signaling systems play a key role in the regulation of stress reactivity and anxiety regulation, and preclinical data suggest deficiencies in this signaling system could contribute to the development of stress-related psychopathology. Furthermore, endocannabinoid deficiency states, either pre-existing or induced by trauma exposure, could provide explanatory insights into the high rates of comorbid cannabis use in patients with PTSD. Here we review clinical and preclinical literature related to the cannabis use-PTSD comorbidity, the role of endocannabinoids in the regulation of stress reactivity, and potential therapeutic implications of recent work in this area.
Collapse
|
45
|
Prajapati SK, Krishnamurthy S. Development and treatment of cognitive inflexibility in sub-chronic stress–re-stress (SRS) model of PTSD. Pharmacol Rep 2021; 73:464-479. [DOI: 10.1007/s43440-020-00198-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
|
46
|
Seidemann R, Duek O, Jia R, Levy I, Harpaz-Rotem I. The Reward System and Post-Traumatic Stress Disorder: Does Trauma Affect the Way We Interact With Positive Stimuli? CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2021; 5:2470547021996006. [PMID: 33718742 PMCID: PMC7917421 DOI: 10.1177/2470547021996006] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/31/2021] [Indexed: 12/17/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a highly prevalent disorder and a highly debilitating condition. Although anhedonia is an important construct of the disorder, the relationship between PTSD and reward functioning is still under-researched. To date, the majority of research on PTSD has focused on fear: fear learning, maintenance, and extinction. Here we review the relevant literature-including clinical observations, self-report data, neuroimaging research, and animal studies-in order to examine the potential effects of post-traumatic stress disorder on the reward system. Our current lack of sufficient insight into how trauma affects the reward system is one possible hindrance to clinical progress. The current review highlights the need for further investigation into the complex relationship between exposure to trauma and the reward system to further our understandings of the ethology of PTSD.
Collapse
Affiliation(s)
- Rebecca Seidemann
- Yale University School of Medicine, New Haven, CT, USA
- National Center for PTSD, West Haven, CT, USA
| | - Or Duek
- Yale University School of Medicine, New Haven, CT, USA
- National Center for PTSD, West Haven, CT, USA
| | - Ruonan Jia
- Yale University School of Medicine, New Haven, CT, USA
| | - Ifat Levy
- Yale University School of Medicine, New Haven, CT, USA
| | - Ilan Harpaz-Rotem
- Yale University School of Medicine, New Haven, CT, USA
- National Center for PTSD, West Haven, CT, USA
| |
Collapse
|
47
|
Terock J, Hannemann A, Janowitz D, Müller J, Völzke H, Grabe HJ. Vitamin D levels are associated with trait resilience but not depression in a general population sample. Brain Behav 2020; 10:e01884. [PMID: 33052028 PMCID: PMC7749610 DOI: 10.1002/brb3.1884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Insufficient vitamin D levels were found to be related to various psychiatric disorders and particularly depression. The functional polymorphisms rs4588 and rs7041 of the vitamin D-binding protein (also group-specific component or Gc) influence vitamin D level and activity. Resilience is considered the individual predisposition to maintain psychological functioning in the face of adversities. We sought to investigate whether associations of vitamin D levels and genotypes of rs4588 and rs7041 were associated with trait resilience and symptoms of depression. METHODS Serum levels of total 25(OH)D were measured in a general population sample (n = 1,908) of the Study of Health in Pomerania (SHIP-1). The Resilience Scale-25 (RS-25) was applied to assess trait resilience. Lifetime depressive symptoms were assessed using the CID-S, while current depressive symptoms were measured using the Beck Depression Inventory II (BDI-II). Study participants were genotyped for rs4588 and rs7041. RESULTS Participants with vitamin D insufficiency had lower adjusted mean RS-25 scores as compared to vitamin D replete subjects (p = .002). Linear regression analyses revealed a positive association between 25(OH)D and RS-25 scores (ß = 2.782, p = .002). Additional adjustment for BDI-II scores slightly attenuated this result (ß = 1.830 and p = .026). Symptoms of depression and the lifetime diagnosis of MDD were not significantly associated with vitamin D concentrations. rs4588 and rs7041 showed strong associations with vitamin D concentrations (both p < .001), but not RS-25 scores. CONCLUSIONS In contrast with previous studies, our findings do not provide evidence for a strong role of vitamin D in the psychopathology of depression. However, considering the role of trait resilience as a common protective factor to different psychiatric disorders, our results support the concept of low vitamin D as a general risk factor to stress-related psychopathologies.
Collapse
Affiliation(s)
- Jan Terock
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany.,Department of Psychiatry and Psychotherapy, HELIOS Hanseklinikum Stralsund, Stralsund, Germany
| | - Anke Hannemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Deborah Janowitz
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Jasmin Müller
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany.,Department of Psychiatry and Psychotherapy, HELIOS Hanseklinikum Stralsund, Stralsund, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany.,German Center for Neurodegenerative Diseases (DZNE), Greifswald, Germany
| |
Collapse
|
48
|
Development of a Practice Tool for Primary Care Providers: Medication Management of Posttraumatic Stress Disorder in Veterans with Mild Traumatic Brain Injury. Psychiatr Q 2020; 91:1465-1478. [PMID: 32430697 DOI: 10.1007/s11126-020-09767-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Posttraumatic stress disorder (PTSD) and comorbid mild traumatic brain injury (mTBI) are highly prevalent in veterans who served in Iraq [Operation Iraqi Freedom/Operation New Dawn] and Afghanistan [Operation Enduring Freedom]. Complicated psychotropic medications are used for treatment of PTSD and comorbid mTBI symptoms lead to polypharmacy related complications. Primary care providers (PCPs) working in Community Based Outpatient Clinics (CBOCs) are usually burdened with the responsibility of managing this complicated medication regimen or relevant side effects. The PCPs do not feel equipped to provide this complicated psychopharmacological management. Thus, there is a need for a comprehensive yet concise tool for the medication management of PTSD in veterans with comorbid mTBI. (1) To conduct focus groups of interdisciplinary team of experts and other stake holders to assess need, (2) To carefully review current VA/Department of Defense practice guideline to identify content, (3) To develop an evidence based, user friendly, and concise pocket guide for the PCP's. Content was identified by review of current guidelines and available literature and was finalized after input from stakeholders, multidisciplinary team of experts, and review of qualitative data from focus groups/interviews of clinicians working in remote CBOCs. The pocket tool was formatted and designed by multimedia service. A pocket guide in the form of a bi-fold, 4″ × 5.5″ laminated card was developed. One thousand hard copies were distributed in the local VA medical center. This product is available online for download at the South-Central Mental Illness Research, Education, and Clinical Center website ( https://www.mirecc.va.gov/VISN16/ptsd-and-mtbi-pocket-card.asp ). This pocket card provides PCPs an easy to carry and user-friendly clinical decision-making tool to effectively treat veterans with PTSD and comorbid mTBI.
Collapse
|
49
|
Prajapati SK, Krishnamurthy S. Non-selective orexin-receptor antagonist attenuates stress-re-stress-induced core PTSD-like symptoms in rats: Behavioural and neurochemical analyses. Behav Brain Res 2020; 399:113015. [PMID: 33212086 DOI: 10.1016/j.bbr.2020.113015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 01/21/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a psychological disorder affecting many around the world. Growing evidence suggests that orexin-A is involved in the pathophysiology of depression and panic anxiety disorder. However, the role of orexin-A in PTSD remains unclear. Therefore, pharmacological manipulation of orexin-A can be a potential approach for the treatment of PTSD. Male Wistar rats were subjected to stress re-stress (SRS) by restraining them for 2 h followed by foot shock (FS) and halothane exposure on day-2 (D-2). Then the rats were weekly exposed to FS as re-stress cue . Suvorexant, an orexin antagonist (10, 20 and 30 mg/kg p.o.) and paroxetine (10 mg/kg p.o.) were administered from D-8 to D-32. Plasma and cerebrospinal fluid (CSF) were collected for corticosterone and orexin-A measurement. The analysis of serotonin and corticotropin-releasing factor receptor-1 (CRF-R1) were performed in the amygdalar tissue. SRS-induced PTSD-like symptoms like fear response, anxiety-like behaviour and hypocorticosteronism were attenuated by suvorexant and paroxetine. Interestingly, SRS exposed rats showed activation of orexin-A and serotonergic systems, which were also attenuated by suvorexant. Additionally, suvorexant ameliorated the extrahypothalamic induced upregulation of CRH-R1 in SRS-exposed rats. Therefore, orexin-A may be considered as a neurochemical-marker for PTSD and suvorexant alleviated PTSD-like symptoms through modulating orexinergic, serotonergic and neuroendocrine systems.
Collapse
Affiliation(s)
- Santosh Kumar Prajapati
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi- 221 005, U.P., India
| | - Sairam Krishnamurthy
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi- 221 005, U.P., India.
| |
Collapse
|
50
|
Schulz A, Schultchen D, Vögele C. Interoception, Stress, and Physical Symptoms in Stress-Associated Diseases. EUROPEAN JOURNAL OF HEALTH PSYCHOLOGY 2020. [DOI: 10.1027/2512-8442/a000063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract. The brain and peripheral bodily organs continuously exchange information. Exemplary, interoception refers to the processing and perception of ascending information from the body to the brain. Stress responses involve a neurobehavioral cascade, which includes the activation of peripheral organs via neural and endocrine pathways and can thus be seen as an example for descending information on the brain-body axis. Hence, the interaction of interoception and stress represents bi-directional communication on the brain-body axis. The main hypothesis underlying this review is that the dysregulation of brain-body communication represents an important mechanism for the generation of physical symptoms in stress-related disorders. The aims of this review are, therefore, (1) to summarize current knowledge on acute stress effects on different stages of interoceptive signal processing, (2) to discuss possible patterns of abnormal brain-body communication (i.e., alterations in interoception and physiological stress axes activation) in mental disorders and chronic physical conditions, and (3) to consider possible approaches to modify interoception. Due to the regulatory feedback loops underlying brain-body communication, the modification of interoceptive processes (ascending signals) may, in turn, affect physiological stress axes activity (descending signals), and, ultimately, also physical symptoms.
Collapse
Affiliation(s)
- André Schulz
- Research Group Self-Regulation and Health, Institute for Health and Behaviour, Department of Behavioural and Cognitive Sciences Faculty of Humanities, Education and Social Sciences, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Dana Schultchen
- Department of Clinical and Health Psychology, Ulm University, Germany
| | - Claus Vögele
- Research Group Self-Regulation and Health, Institute for Health and Behaviour, Department of Behavioural and Cognitive Sciences Faculty of Humanities, Education and Social Sciences, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|