1
|
Zhang ET, Saglimbeni GS, Feng J, Li Y, Bruchas MR. Dentate gyrus norepinephrine ramping facilitates aversive contextual processing. Nat Commun 2025; 16:454. [PMID: 39774642 PMCID: PMC11707070 DOI: 10.1038/s41467-025-55817-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025] Open
Abstract
Dysregulation in aversive contextual processing is believed to affect several forms of psychopathology, including post-traumatic stress disorder (PTSD). The dentate gyrus (DG) is an important brain region in contextual discrimination and disambiguation of new experiences from prior memories. The DG also receives dense projections from the locus coeruleus (LC), the primary source of norepinephrine (NE) in the mammalian brain, which is active during stressful events. However, how noradrenergic dynamics impact DG-dependent function during contextual discrimination and pattern separation remains unclear. Here, we report that aversive contextual processing in mice is linked to linear elevations in tonic norepinephrine release dynamics within the DG and report that this engagement of prolonged norepinephrine release is sufficient to produce contextual disambiguation, even in the absence of a salient aversive stimulus. These findings suggest that spatiotemporal ramping characteristics of LC-NE release in the DG during stress likely serve an important role in driving contextual processing.
Collapse
Affiliation(s)
- Eric T Zhang
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Grace S Saglimbeni
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
| | - Michael R Bruchas
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
- Department of Pharmacology, University of Washington, Seattle, WA, USA.
- Center for the Neurobiology of Addiction, Pain and Emotion, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Zhang ET, Saglimbeni GS, Feng J, Li Y, Bruchas MR. Dentate Gyrus Norepinephrine Ramping Facilitates Aversive Contextual Processing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621389. [PMID: 39554120 PMCID: PMC11565931 DOI: 10.1101/2024.10.31.621389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Dysregulation in aversive contextual processing is believed to affect several forms of psychopathology, including post-traumatic stress disorder (PTSD). The dentate gyrus (DG) is an important brain region in contextual discrimination and disambiguation of new experiences from prior memories. The DG also receives dense projections from the locus coeruleus (LC), the primary source of norepinephrine (NE) in the mammalian brain, which is active during stressful events. However, how noradrenergic dynamics impact DG-dependent function during contextual discrimination and pattern separation remains unclear. Here, we report that aversive contextual processing in mice is linked to linear elevations in tonic norepinephrine release dynamics within the DG and report that this engagement of prolonged norepinephrine release is sufficient to produce contextual disambiguation, even in the absence of a salient aversive stimulus. These findings suggest that spatiotemporal ramping characteristics of LC-NE release in the DG during stress likely serve an important role in driving contextual processing.
Collapse
|
3
|
Monfared RV, Alhassen W, Truong TM, Gonzales MAM, Vachirakorntong V, Chen S, Baldi P, Civelli O, Alachkar A. Transcriptome Profiling of Dysregulated GPCRs Reveals Overlapping Patterns across Psychiatric Disorders and Age-Disease Interactions. Cells 2021; 10:2967. [PMID: 34831190 PMCID: PMC8616384 DOI: 10.3390/cells10112967] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 12/29/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) play an integral role in the neurobiology of psychiatric disorders. Almost all neurotransmitters involved in psychiatric disorders act through GPCRs, and GPCRs are the most common targets of therapeutic drugs currently used in the treatment of psychiatric disorders. However, the roles of GPCRs in the etiology and pathophysiology of psychiatric disorders are not fully understood. Using publically available datasets, we performed a comprehensive analysis of the transcriptomic signatures of G-protein-linked signaling across the major psychiatric disorders: autism spectrum disorder (ASD), schizophrenia (SCZ), bipolar disorder (BP), and major depressive disorder (MDD). We also used the BrainSpan transcriptomic dataset of the developing human brain to examine whether GPCRs that exhibit chronological age-associated expressions have a higher tendency to be dysregulated in psychiatric disorders than age-independent GPCRs. We found that most GPCR genes were differentially expressed in the four disorders and that the GPCR superfamily as a gene cluster was overrepresented in the four disorders. We also identified a greater amplitude of gene expression changes in GPCRs than other gene families in the four psychiatric disorders. Further, dysregulated GPCRs overlapped across the four psychiatric disorders, with SCZ exhibiting the highest overlap with the three other disorders. Finally, the results revealed a greater tendency of age-associated GPCRs to be dysregulated in ASD than random GPCRs. Our results substantiate the central role of GPCR signaling pathways in the etiology and pathophysiology of psychiatric disorders. Furthermore, our study suggests that common GPCRs' signaling may mediate distinct phenotypic presentations across psychiatric disorders. Consequently, targeting these GPCRs could serve as a common therapeutic strategy to treat specific clinical symptoms across psychiatric disorders.
Collapse
Affiliation(s)
- Roudabeh Vakil Monfared
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California Irvine, Irvine, CA 92697, USA; (R.V.M.); (W.A.); (T.M.T.); (M.A.M.G.); (V.V.); (O.C.)
| | - Wedad Alhassen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California Irvine, Irvine, CA 92697, USA; (R.V.M.); (W.A.); (T.M.T.); (M.A.M.G.); (V.V.); (O.C.)
| | - Tri Minh Truong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California Irvine, Irvine, CA 92697, USA; (R.V.M.); (W.A.); (T.M.T.); (M.A.M.G.); (V.V.); (O.C.)
| | - Michael Angelo Maglalang Gonzales
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California Irvine, Irvine, CA 92697, USA; (R.V.M.); (W.A.); (T.M.T.); (M.A.M.G.); (V.V.); (O.C.)
| | - Vincent Vachirakorntong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California Irvine, Irvine, CA 92697, USA; (R.V.M.); (W.A.); (T.M.T.); (M.A.M.G.); (V.V.); (O.C.)
| | - Siwei Chen
- Department of Computer Science, School of Information and Computer Sciences, University of California Irvine, Irvine, CA 92697, USA; (S.C.); (P.B.)
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Pierre Baldi
- Department of Computer Science, School of Information and Computer Sciences, University of California Irvine, Irvine, CA 92697, USA; (S.C.); (P.B.)
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Olivier Civelli
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California Irvine, Irvine, CA 92697, USA; (R.V.M.); (W.A.); (T.M.T.); (M.A.M.G.); (V.V.); (O.C.)
| | - Amal Alachkar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California Irvine, Irvine, CA 92697, USA; (R.V.M.); (W.A.); (T.M.T.); (M.A.M.G.); (V.V.); (O.C.)
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California Irvine, Irvine, CA 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
4
|
Martorell-Ribera J, Venuto MT, Otten W, Brunner RM, Goldammer T, Rebl A, Gimsa U. Time-Dependent Effects of Acute Handling on the Brain Monoamine System of the Salmonid Coregonus maraena. Front Neurosci 2020; 14:591738. [PMID: 33343287 PMCID: PMC7746803 DOI: 10.3389/fnins.2020.591738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
The immediate stress response involves the activation of the monoaminergic neurotransmitter systems including serotonin, dopamine and noradrenaline in particular areas of the fish brain. We chose maraena whitefish as a stress-sensitive salmonid species to investigate the influence of acute and chronic handling on the neurochemistry of monoamines in the brain. Plasma cortisol was quantified to assess the activation of the stress axis. In addition, we analyzed the expression of 37 genes related to the monoamine system to identify genes that could be used as markers of neurophysiological stress effects. Brain neurochemistry responded to a single handling (1 min netting and chasing) with increased serotonergic activity 3 h post-challenge. This was accompanied by a modulated expression of monoaminergic receptor genes in the hindbrain and a significant increase of plasma cortisol. The initial response was compensated by an increased monoamine synthesis at 24 h post-challenge, combined with the modulated expression of serotonin-receptor genes and plasma cortisol concentrations returning to control levels. After 10 days of repeated handling (1 min per day), we detected a slightly increased noradrenaline synthesis and a down-regulated expression of dopamine-receptor genes without effect on plasma cortisol levels. In conclusion, the changes in serotonergic neurochemistry and selected gene-expression profiles, together with the initial plasma cortisol variation, indicate an acute response and a subsequent recovery phase with signs of habituation after 10 days of daily exposure to handling. Based on the basal expression patterns of particular genes and their significant regulation upon handling conditions, we suggest a group of genes as potential biomarkers that indicate handling stress on the brain monoamine systems.
Collapse
Affiliation(s)
- Joan Martorell-Ribera
- Fish Genetics Unit, Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.,Psychophysiology Unit, Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Marzia Tindara Venuto
- Glycobiology Group, Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Winfried Otten
- Psychophysiology Unit, Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Ronald M Brunner
- Fish Genetics Unit, Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Tom Goldammer
- Fish Genetics Unit, Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Alexander Rebl
- Fish Genetics Unit, Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Ulrike Gimsa
- Psychophysiology Unit, Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
5
|
Alluri SR, Kim SW, Volkow ND, Kil KE. PET Radiotracers for CNS-Adrenergic Receptors: Developments and Perspectives. Molecules 2020; 25:molecules25174017. [PMID: 32899124 PMCID: PMC7504810 DOI: 10.3390/molecules25174017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 12/30/2022] Open
Abstract
Epinephrine (E) and norepinephrine (NE) play diverse roles in our body’s physiology. In addition to their role in the peripheral nervous system (PNS), E/NE systems including their receptors are critical to the central nervous system (CNS) and to mental health. Various antipsychotics, antidepressants, and psychostimulants exert their influence partially through different subtypes of adrenergic receptors (ARs). Despite the potential of pharmacological applications and long history of research related to E/NE systems, research efforts to identify the roles of ARs in the human brain taking advantage of imaging have been limited by the lack of subtype specific ligands for ARs and brain penetrability issues. This review provides an overview of the development of positron emission tomography (PET) radiotracers for in vivo imaging of AR system in the brain.
Collapse
Affiliation(s)
- Santosh Reddy Alluri
- University of Missouri Research Reactor, University of Missouri, Columbia, MO 65211-5110, USA;
| | - Sung Won Kim
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-1013, USA;
| | - Nora D. Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-1013, USA;
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892-1013, USA
- Correspondence: (N.D.V.); (K.-E.K.); Tel.: +1-(301)-443-6480 (N.D.V.); +1-(573)-884-7885 (K.-E.K.)
| | - Kun-Eek Kil
- University of Missouri Research Reactor, University of Missouri, Columbia, MO 65211-5110, USA;
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO 65211, USA
- Correspondence: (N.D.V.); (K.-E.K.); Tel.: +1-(301)-443-6480 (N.D.V.); +1-(573)-884-7885 (K.-E.K.)
| |
Collapse
|
6
|
Juszczak GR, Stankiewicz AM. Glucocorticoids, genes and brain function. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:136-168. [PMID: 29180230 DOI: 10.1016/j.pnpbp.2017.11.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/18/2017] [Accepted: 11/23/2017] [Indexed: 01/02/2023]
Abstract
The identification of key genes in transcriptomic data constitutes a huge challenge. Our review of microarray reports revealed 88 genes whose transcription is consistently regulated by glucocorticoids (GCs), such as cortisol, corticosterone and dexamethasone, in the brain. Replicable transcriptomic data were combined with biochemical and physiological data to create an integrated view of the effects induced by GCs. The most frequently reported genes were Errfi1 and Ddit4. Their up-regulation was associated with the altered transcription of genes regulating growth factor and mTORC1 signaling (Gab1, Tsc22d3, Dusp1, Ndrg2, Ppp5c and Sesn1) and progression of the cell cycle (Ccnd1, Cdkn1a and Cables1). The GC-induced reprogramming of cell function involves changes in the mRNA level of genes responsible for the regulation of transcription (Klf9, Bcl6, Klf15, Tle3, Cxxc5, Litaf, Tle4, Jun, Sox4, Sox2, Sox9, Irf1, Sall2, Nfkbia and Id1) and the selective degradation of mRNA (Tob2). Other genes are involved in the regulation of metabolism (Gpd1, Aldoc and Pdk4), actin cytoskeleton (Myh2, Nedd9, Mical2, Rhou, Arl4d, Osbpl3, Arhgef3, Sdc4, Rdx, Wipf3, Chst1 and Hepacam), autophagy (Eva1a and Plekhf1), vesicular transport (Rhob, Ehd3, Vps37b and Scamp2), gap junctions (Gjb6), immune response (Tiparp, Mertk, Lyve1 and Il6r), signaling mediated by thyroid hormones (Thra and Sult1a1), calcium (Calm2), adrenaline/noradrenaline (Adcy9 and Adra1d), neuropeptide Y (Npy1r) and histamine (Hdc). GCs also affected genes involved in the synthesis of polyamines (Azin1) and taurine (Cdo1). The actions of GCs are restrained by feedback mechanisms depending on the transcription of Sgk1, Fkbp5 and Nr3c1. A side effect induced by GCs is increased production of reactive oxygen species. Available data show that the brain's response to GCs is part of an emergency mode characterized by inactivation of non-core activities, restrained inflammation, restriction of investments (growth), improved efficiency of energy production and the removal of unnecessary or malfunctioning cellular components to conserve energy and maintain nutrient supply during the stress response.
Collapse
Affiliation(s)
- Grzegorz R Juszczak
- Department of Animal Behavior, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552 Magdalenka, Poland.
| | - Adrian M Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552 Magdalenka, Poland
| |
Collapse
|
7
|
Clark PJ, Ghasem PR, Mika A, Day HE, Herrera JJ, Greenwood BN, Fleshner M. Wheel running alters patterns of uncontrollable stress-induced cfos mRNA expression in rat dorsal striatum direct and indirect pathways: A possible role for plasticity in adenosine receptors. Behav Brain Res 2014; 272:252-63. [PMID: 25017571 DOI: 10.1016/j.bbr.2014.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/22/2014] [Accepted: 07/03/2014] [Indexed: 01/22/2023]
Abstract
Emerging evidence indicates that adenosine is a major regulator of striatum activity, in part, through the antagonistic modulation of dopaminergic function. Exercise can influence adenosine and dopamine activity, which may subsequently promote plasticity in striatum adenosine and dopamine systems. Such changes could alter activity of medium spiny neurons and impact striatum function. The purpose of this study was twofold. The first was to characterize the effect of long-term wheel running on adenosine 1 (A1R), adenosine 2A (A2AR), dopamine 1 (D1R), and dopamine 2 (D2R) receptor mRNA expression in adult rat dorsal and ventral striatum structures using in situ hybridization. The second was to determine if changes to adenosine and dopamine receptor mRNA from running are associated with altered cfos mRNA induction in dynorphin- (direct pathway) and enkephalin- (indirect pathway) expressing neurons of the dorsal striatum following stress exposure. We report that chronic running, as well as acute uncontrollable stress, reduced A1R and A2AR mRNA levels in the dorsal and ventral striatum. Running also modestly elevated D2R mRNA levels in striatum regions. Finally, stress-induced cfos was potentiated in dynorphin and attenuated in enkephalin expressing neurons of running rats. These data suggest striatum adenosine and dopamine systems are targets for neuroplasticity from exercise, which may contribute to changes in direct and indirect pathway activity. These findings may have implications for striatum mediated motor and cognitive processes, as well as exercise facilitated stress-resistance.
Collapse
Affiliation(s)
- Peter J Clark
- Integrative Physiology, University of Colorado Boulder, 354 UCB, Boulder, CO 80309, United States.
| | - Parsa R Ghasem
- Integrative Physiology, University of Colorado Boulder, 354 UCB, Boulder, CO 80309, United States
| | - Agnieszka Mika
- Integrative Physiology, University of Colorado Boulder, 354 UCB, Boulder, CO 80309, United States
| | - Heidi E Day
- Integrative Physiology, University of Colorado Boulder, 354 UCB, Boulder, CO 80309, United States; Department of Psychology & Neuroscience, University of Colorado Boulder, Muenzinger D244, 345 UCB, Boulder, CO 80309, United States
| | - Jonathan J Herrera
- Integrative Physiology, University of Colorado Boulder, 354 UCB, Boulder, CO 80309, United States
| | - Benjamin N Greenwood
- Integrative Physiology, University of Colorado Boulder, 354 UCB, Boulder, CO 80309, United States
| | - Monika Fleshner
- Integrative Physiology, University of Colorado Boulder, 354 UCB, Boulder, CO 80309, United States
| |
Collapse
|
8
|
Laitman BM, Gajewski ND, Mann GL, Kubin L, Morrison AR, Ross RJ. The α1 adrenoceptor antagonist prazosin enhances sleep continuity in fear-conditioned Wistar-Kyoto rats. Prog Neuropsychopharmacol Biol Psychiatry 2014; 49:7-15. [PMID: 24246572 PMCID: PMC3969852 DOI: 10.1016/j.pnpbp.2013.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 11/06/2013] [Accepted: 11/06/2013] [Indexed: 11/16/2022]
Abstract
Fragmentation of rapid eye movement sleep (REMS) is well described in individuals with posttraumatic stress disorder (PTSD) and likely has significant functional consequences. Fear-conditioned rodents may offer an attractive model of the changes in sleep that characterize PTSD. Following fear conditioning (FC), Wistar-Kyoto (WKY) rats, a strain known to be particularly stress-sensitive, have increased REMS fragmentation that can be quantified as a shift in the distribution of REMS episodes towards the more frequent occurrence of sequential REMS (inter-REMS episode interval≤3 min) vs. single REMS (interval>3 min). The α1 adrenoceptor antagonist prazosin has demonstrated efficacy in normalizing sleep in PTSD. To determine the utility of fear-conditioned WKY rats as a model of sleep disturbances typical of PTSD and as a platform for the development of new treatments, we tested the hypothesis that prazosin would reduce REMS fragmentation in fear-conditioned WKY rats. Sleep parameters and freezing (a standard measure of anxiety in rodents) were quantified at baseline and on Days 1, 7, and 14 following FC, with either prazosin (0.01mg/kg, i.p.) or vehicle injections administered prior to testing in a between-group design. Fear conditioning was achieved by pairing tones with a mild electric foot shock (1.0mA, 0.5s). One, 7, and 14 days following FC, prazosin or vehicle was injected, the tone was presented, freezing was measured, and then sleep was recorded from 11 AM to 3 PM. WKY rats given prazosin, compared to those given vehicle, had a lower amount of seq-REMS relative to total REMS time 14 days after FC. They also had a shorter non-REMS latency and fewer non-REMS arousals at baseline and on Days 1 and 7 after FC. Thus, in FC rats, prazosin reduced both REMS fragmentation and non-REMS discontinuity.
Collapse
Affiliation(s)
- Benjamin M. Laitman
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA,Address correspondence to: Benjamin M. Laitman, The Graduate School of Biological Sciences, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029, Tel. 516 2368979, Fax. 215 8235171 (Attn: Dr. Richard Ross),
| | - Nicholas D. Gajewski
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Graziella L. Mann
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Leszek Kubin
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Adrian R. Morrison
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Richard J. Ross
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA,Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA,Veterans Affairs Medical Center, Philadelphia, PA
| |
Collapse
|
9
|
Fleshner M, Greenwood BN, Yirmiya R. Neuronal-glial mechanisms of exercise-evoked stress robustness. Curr Top Behav Neurosci 2014; 18:1-12. [PMID: 24481547 DOI: 10.1007/7854_2014_277] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Stress robustness by definition, incorporates both stress resistance (organisms endure greater stressor intensity or duration before suffering negative consequences) and stress resilience (organisms recover faster after suffering negative consequences). Factors that influence stress robustness include the nature of the stressor, (i.e., controllability, intensity, chronicity) and features of the organism (i.e., age, genetics, sex, and physical activity status). Here we present a novel hypothesis for how physically active versus sedentary living promotes stress robustness in the face of intense uncontrollable stress. Advances in neurobiology have established microglia as an active player in the regulation of synaptic activity, and recent work has revealed mechanisms for modulating glial function, including cross talk between neurons and glia. This chapter presents supporting evidence that the physical activity status of an organism may modulate stress-evoked neuronal-glial responses by changing the CX3CL1-CX3CR1 axis. Specifically, we propose that sedentary animals respond to an intense acute uncontrollable stressor with excessive serotonin (5-HT) and noradrenergic (NE) activity and/or prolonged down-regulation of the CX3CL1-CX3CR1 axis resulting in activation and proliferation of hippocampal microglia in the absence of pathogenic signals and consequent hippocampal-dependent memory deficits and reduced neurogenesis. In contrast, physically active animals respond to the same stressor with constrained 5-HT and NE activity and rapidly recovering CX3CL1-CX3CR1 axis responses resulting in the quieting of microglia, and protection from negative cognitive and neurobiological effects of stress.
Collapse
Affiliation(s)
- Monika Fleshner
- Department of Integrative Physiology and The Center for Neuroscience, University of Colorado, Boulder, CO, 80309, USA,
| | | | | |
Collapse
|
10
|
Stojkov NJ, Baburski AZ, Bjelic MM, Sokanovic SJ, Mihajlovic AI, Drljaca DM, Janjic MM, Kostic TS, Andric SA. In vivo blockade of α1-adrenergic receptors mitigates stress-disturbed cAMP and cGMP signaling in Leydig cells. Mol Hum Reprod 2013; 20:77-88. [PMID: 23894150 DOI: 10.1093/molehr/gat052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The molecular mechanism of stress-associated reproductive dysfunction is complex and largely unknown. This study was designed to systematically analyze molecular effects of systemic in vivo blockade of α1-adrenergic receptors (α1-ADRs) on stress-induced disturbance of cAMP/cGMP signaling in testosterone-producing Leydig cells using the following parameters (i) level of circulating stress hormones, LH and testosterone; (ii) level of main molecular markers of Leydig cell functionality (testosterone, Insl3, cAMP); (iii) expression of cAMP signaling (cAMP 'producers'/'effectors'/'removers') and (iv) expression of NO-cGMP signaling (NO-cGMP 'producers'/'effectors'/'removers'). The results showed that oral administration of α1-ADR blocker before stress increased cGMP and diminished stress-reduced cAMP production in Leydig cells. In the same cells, stress-induced effects on cAMP/cGMP signaling pathways elements were changed. Sustained in vivo α1-ADR blockade completely abolished stress-increased transcription of most abundantly expressed phosphodiesterase that remove cAMP (Pde4b) and potentiated stress-increased expression of PRKA, the main stimulator of Leydig cell steroidogenesis. In the same Leydig cells, stress-decreased NOS3 expression was abolished, while stress-increased GUCY1 (cGMP 'producer') and PRKG1 (cGMP 'effector') were potentiated. It is possible that all molecules mentioned could contribute, at least in part, in recovery of Leydig cell testosterone production. Presented data provide new role of α1-ADRs in stress-triggered disturbance of cAMP/cGMP signaling, and new molecular insights into the relationship between stress and mammalian reproduction. Regardless of whether the effects of α1-blocker + stress are direct or indirect, the results are important in terms of human reproductive health and the wide use of α1-ADR antagonists, alone or in combination, to treat post-traumatic stress disorders, hypertension, benign prostatic hyperplasia symptoms and potential drugs for prostate cancer prevention/treatment.
Collapse
Affiliation(s)
- Natasa J Stojkov
- Reproductive Endocrinology and Signaling Group, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Dositeja Obradovica Square 2, Novi Sad 21000, Serbia
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Stojkov NJ, Janjic MM, Baburski AZ, Mihajlovic AI, Drljaca DM, Sokanovic SJ, Bjelic MM, Kostic TS, Andric SA. Sustained in vivo blockade of α₁-adrenergic receptors prevented some of stress-triggered effects on steroidogenic machinery in Leydig cells. Am J Physiol Endocrinol Metab 2013; 305:E194-204. [PMID: 23695211 DOI: 10.1152/ajpendo.00100.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This study was designed to systematically analyze and evaluate the effects of in vivo blockade of α₁-adrenergic receptors (α₁-ADRs) on the stress-induced disturbance of steroidogenic machinery in Leydig cells. Parameters followed 1) steroidogenic enzymes/proteins, transcription factors, and cAMP/testosterone production; 2) the main hallmarks of stress (epinephrine, glucocorticoids); and 3) transcription profiles of ADRs and oxidases with high affinity to inactivate glucocorticoids. Results showed that sustained blockade of α₁-ADRs prevented stress-induced 1) decrease of the transcripts/proteins for main steroidogenic CYPs (CYP11A1, CYP17A1); 2) decrease of Scarb1 and Hsd3b1 transcripts; 3) decrease of transcript for Nur77, one of the main activator of the steroidogenic expression; and 4) increase of Dax1 and Arr19, the main steroidogenic repressors in Leydig cells. In the same cells, the expression of steroidogenic stimulatory factor Creb1, StAR, and androgen receptor increased. In this signaling scenario, stress-induced stimulation of Adra1a/Adra1b/Adrbk1 and Hsd11b2 (the unidirectional oxidase with high affinity to inactivate glucocorticoids) was not changed. Blockade additionally stimulated stress-increased transcription of the most abundantly expressed ADRs Adra1d/Adrb1/Adrb2 in Leydig cells. In the same cells, stress-decreased testosterone production, the main marker of Leydig cells functionality, was completely prevented, while reduction of cAMP, the main regulator of androgenesis, was partially prevented. Accordingly, the presented data provide a new molecular/transcriptional base for "fight/adaptation" of steroidogenic cells and new molecular insights into the role of α₁-ADRs in stress-impaired Leydig cell steroidogenesis. The results are important in term of wide use of α₁-ADR selective antagonists, alone/in combination, to treat high blood pressure, nightmares associated with posttraumatic stress disorder, and disrupted sexual health.
Collapse
Affiliation(s)
- Natasa J Stojkov
- Reproductive Endocrinology and Signaling Group, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Andric SA, Kojic Z, Bjelic MM, Mihajlovic AI, Baburski AZ, Sokanovic SJ, Janjic MM, Stojkov NJ, Stojilkovic SS, Kostic TS. The opposite roles of glucocorticoid and α1-adrenergic receptors in stress triggered apoptosis of rat Leydig cells. Am J Physiol Endocrinol Metab 2013; 304:E51-9. [PMID: 23149620 PMCID: PMC3774172 DOI: 10.1152/ajpendo.00443.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The stress-induced initiation of proapoptotic signaling in Leydig cells is relatively well defined, but the duration of this signaling and the mechanism(s) involved in opposing the stress responses have not been addressed. In this study, immobilization stress (IMO) was applied for 2 h daily, and animals were euthanized immediately after the first (IMO1), second (IMO2), and 10th (IMO10) sessions. In IMO1 and IMO2 rats, serum corticosterone and adrenaline were elevated, whereas serum androgens and mRNA transcription of insulin-like factor-3 in Leydig cells were inhibited. Reduced oxygen consumption and the mitochondrial membrane potential coupled with a leak of cytochrome c from mitochondria and increased caspase-9 expression, caspase-3 activity, and number of apoptotic Leydig cells was also observed. Corticosterone and adrenaline were also elevated in IMO10 rats but were accompanied with a partial recovery of androgen secretion and normalization of insulin-like factor-3 transcription coupled with increased cytochrome c expression, abolition of proapoptotic signaling, and normalization of the apoptotic events. Blockade of intratesticular glucocorticoid receptors diminished proapoptotic effects without affecting antiapoptotic effects, whereas blockade of intratesticular α(1)-adrenergic receptors diminished the antiapoptotic effects without affecting proapoptotic effects. These results confirmed a critical role of glucocorticoids in mitochondria-dependent apoptosis and showed for the first time the relevance of stress-induced upregulation of α(1)-adrenergic receptor expression in cell apoptotic resistance to repetitive IMOs. The opposite role of two hormones in control of the apoptotic rate in Leydig cells also provides a rationale for a partial recovery of androgen production in chronically stressed animals.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Apoptosis/genetics
- Apoptosis/physiology
- Cells, Cultured
- Corticosterone/blood
- Corticosterone/metabolism
- Corticosterone/pharmacology
- Corticosterone/physiology
- Drug Antagonism
- Glucocorticoids/pharmacology
- Glucocorticoids/physiology
- Immobilization/psychology
- Leydig Cells/drug effects
- Leydig Cells/metabolism
- Leydig Cells/physiology
- Male
- Mitochondria/drug effects
- Mitochondria/metabolism
- Mitochondria/physiology
- Rats
- Rats, Wistar
- Receptors, Adrenergic, alpha-1/genetics
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, Adrenergic, alpha-1/physiology
- Receptors, Glucocorticoid/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Stress, Psychological/blood
- Stress, Psychological/genetics
- Stress, Psychological/metabolism
Collapse
Affiliation(s)
- Silvana A Andric
- Reproductive Endocrinology and Signaling Group, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Stojkov NJ, Janjic MM, Bjelic MM, Mihajlovic AI, Kostic TS, Andric SA. Repeated immobilization stress disturbed steroidogenic machinery and stimulated the expression of cAMP signaling elements and adrenergic receptors in Leydig cells. Am J Physiol Endocrinol Metab 2012; 302:E1239-51. [PMID: 22374756 DOI: 10.1152/ajpendo.00554.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This study was designed to evaluate the effect of acute (2 h daily) and repeated (2 h daily for 2 or 10 consecutive days) immobilization stress (IMO) on: 1) the steroidogenic machinery homeostasis; 2) cAMP signaling; and the expression of receptors for main markers of 3) adrenergic and 4) glucocorticoid signaling in Leydig cells of adult rats. The results showed that acute IMO inhibited steroidogenic machinery in Leydig cells by downregulation of Scarb1 (scavenger receptor class B), Cyp11a1 (cholesterol side-chain cleavage enzyme), Cyp17a1 (17α-hydroxylase/17,20 lyase), and Hsd17b3 (17β-hydroxysteroid dehydrogenase) expression. In addition to acute IMO effects, repeated IMO increased transcription of Star (steroidogenic acute regulatory protein) and Arr19 (androgen receptor corepressor 19 kDa) in Leydig cells. In the same cells, the transcription of adenylyl cyclases (Adcy7, Adcy9, Adcy10) and cAMP-specific phosphodiesterases (Pde4a, Pde4b, Pde4d, Pde7a, Pde8a) was stimulated, whereas the expression of the genes encoding protein kinase A subunits were unaffected. Ten times repeated IMO increased the levels of all adrenergic receptors and β-adrenergic receptor kinase (Adrbk1) in Leydig cells. The transcription analysis was supported by cAMP/testosterone production. In this signaling scenario, partial recovery of testosterone production in medium/content was detected. The physiological significance of the present results was proven by ex vivo application of epinephrine, which increased cAMP/testosterone production by Leydig cells from control rats in greater fashion than from stressed. IMO did not affect the expression of transcripts for Crhr1/Crhr2 (corticotropin releasing hormone receptors), Acthr (adrenocorticotropin releasing hormone receptor), Gr (glucocorticoid receptor), and Hsd11b1 [hydroxysteroid (11-β) dehydrogenase 1], while all types of IMO stimulated the expression of Hsd11b2, the unidirectional oxidase with high affinity to inactivate glucocorticoids. Thus, presented data provide new molecular/transcriptional base for "fight/adaptation" of Leydig cells and new insights into the role of cAMP, epinephrine, and glucocorticoid signaling in recovery of stress-impaired Leydig cell steroidogenesis.
Collapse
MESH Headings
- 3',5'-Cyclic-AMP Phosphodiesterases/genetics
- 3',5'-Cyclic-AMP Phosphodiesterases/metabolism
- Adenylyl Cyclases/genetics
- Adenylyl Cyclases/metabolism
- Androgens/blood
- Animals
- Cholesterol Side-Chain Cleavage Enzyme/genetics
- Cholesterol Side-Chain Cleavage Enzyme/metabolism
- Corticosterone/blood
- Cyclic AMP/metabolism
- Leydig Cells/physiology
- Luteinizing Hormone/blood
- Male
- Rats
- Rats, Wistar
- Receptors, Adrenergic/metabolism
- Receptors, Adrenergic, alpha-1/genetics
- Receptors, Adrenergic, alpha-1/metabolism
- Restraint, Physical
- Scavenger Receptors, Class B/genetics
- Scavenger Receptors, Class B/metabolism
- Signal Transduction/physiology
- Steroid 17-alpha-Hydroxylase/genetics
- Steroid 17-alpha-Hydroxylase/metabolism
- Steroids/blood
- Stress, Physiological/physiology
- Transcription, Genetic/physiology
Collapse
Affiliation(s)
- Natasa J Stojkov
- Reproductive Endocrinology and Signaling Group, Dept. of Biology and Ecology, Faculty of Sciences at Univ. of Novi Sad, Dositeja Obradovica Square 2, 21000 Novi Sad, Serbia
| | | | | | | | | | | |
Collapse
|
14
|
Nyhuis TJ, Masini CV, Sasse SK, Day HEW, Campeau S. Physical activity, but not environmental complexity, facilitates HPA axis response habituation to repeated audiogenic stress despite neurotrophin mRNA regulation in both conditions. Brain Res 2010; 1362:68-77. [PMID: 20851112 DOI: 10.1016/j.brainres.2010.09.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 09/03/2010] [Accepted: 09/10/2010] [Indexed: 02/05/2023]
Abstract
Stress exacerbates several physical and psychological disorders. Voluntary exercise can reduce susceptibility to many of these stress-associated disorders. In rodents, voluntary exercise can reduce hypothalamic-pituitary-adrenocortical (HPA) axis activity in response to various stressors as well as upregulate several brain neurotrophins. An important issue regarding voluntary exercise is whether its effect on the reduction of HPA axis activation in response to stress is due to the physical activity itself or simply the enhanced environmental complexity provided by the running wheels. The present study compared the effects of physical activity and environmental complexity (that did not increase physical activity) on HPA axis habituation to repeated stress and modulation of brain neurotrophin mRNA expression. For six weeks, male rats were given free access to running wheels (exercise group), given 4 objects that were repeatedly exchanged (increased environmental complexity group), or housed in standard cages. On week 7, animals were exposed to 11 consecutive daily 30-min sessions of 98-dBA noise. Plasma corticosterone and adrenocorticotropic hormone were measured from blood collected directly after noise exposures. Tissue, including brains, thymi, and adrenal glands was collected on Day 11. Although rats in both the exercise and enhanced environmental complexity groups expressed higher levels of BDNF and NGF mRNA in several brain regions, only exercise animals showed quicker glucocorticoid habituation to repeated audiogenic stress. These results suggest that voluntary exercise, independent from other environmental manipulations, accounts for the reduction in susceptibility to stress.
Collapse
Affiliation(s)
- Tara J Nyhuis
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO 80309, USA.
| | | | | | | | | |
Collapse
|