1
|
Jaskiw GE, Obrenovich ME, Donskey CJ, Briggs FBS, Chung SS, Kalinina AI, Bolomey A, Hayes LN, Yang K, Yolken RH, Sawa A. Targeted and Non-Targeted Metabolomic Evaluation of Cerebrospinal Fluid in Early Phase Schizophrenia: A Pilot Study from the Hopkins First Episode Psychosis Project. Metabolites 2025; 15:275. [PMID: 40278404 PMCID: PMC12029220 DOI: 10.3390/metabo15040275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/07/2025] [Accepted: 04/12/2025] [Indexed: 04/26/2025] Open
Abstract
(1) Background: The lack of reliable biomarkers remains a significant barrier to improving outcomes for patients with schizophrenia. While metabolomic analyses of blood, urine, and feces have been explored, results have been inconsistent. Compared to peripheral compartments, cerebrospinal fluid (CSF) more closely reflects the chemical composition of brain extracellular fluid. Given that brain dysregulation may be more pronounced during the first episode of psychosis (FEP), we hypothesized that metabolomic analysis of CSF from FEP patients could reveal disease-associated biomarkers. (2) Methods: We recruited 15 patients within 24 months of psychosis onset (DSM-4 criteria) and 14 control participants through the Johns Hopkins Schizophrenia Center. CSF samples were analyzed using both non-targeted and targeted liquid chromatography-mass spectrometry. (3) Results: The non-targeted analysis identified lower levels of N-acetylneuraminic acid and N-acetyl-L-aspartic acid in the FEP group, while levels of uric acid were elevated. The targeted analysis focused on indolic and phenolic molecules previously linked to neuropsychiatric disorders. Notably, L-phenylalanine and 4-hydroxycinnamic acid levels were lower in the FEP group, and this difference remained significant after adjusting for age and sex. However, none of the significant differences in analyte levels between the groups survived an adjustment for multiple comparisons. (4) Conclusions: Our intriguing but preliminary associations align with results from other investigational approaches and highlight potential CSF analytes that warrant further study in larger samples.
Collapse
Affiliation(s)
- George E. Jaskiw
- Veterans Affairs Northeast Ohio Healthcare System, Cleveland, OH 44106, USA; (M.E.O.); (C.J.D.); (A.B.)
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mark E. Obrenovich
- Veterans Affairs Northeast Ohio Healthcare System, Cleveland, OH 44106, USA; (M.E.O.); (C.J.D.); (A.B.)
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Medicinal and Biological Chemistry, University of Toledo, Toledo, OH 43606, USA
| | - Curtis J. Donskey
- Veterans Affairs Northeast Ohio Healthcare System, Cleveland, OH 44106, USA; (M.E.O.); (C.J.D.); (A.B.)
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Farren B. S. Briggs
- Department Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Sun Sunnie Chung
- Department of Computer Science, Cleveland State University, Cleveland, OH 44115, USA; (S.S.C.); (A.I.K.)
| | - Anastasiya I. Kalinina
- Department of Computer Science, Cleveland State University, Cleveland, OH 44115, USA; (S.S.C.); (A.I.K.)
| | - Austin Bolomey
- Veterans Affairs Northeast Ohio Healthcare System, Cleveland, OH 44106, USA; (M.E.O.); (C.J.D.); (A.B.)
| | - Lindsay N. Hayes
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kun Yang
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - Robert H. Yolken
- Stanley Division of Developmental Neurovirology, Johns Hopkins School of Medicine, The Johns Hopkins Hospital, Baltimore, MD 21287, USA;
| | - Akira Sawa
- Departments of Psychiatry, Neuroscience, Biomedical Engineering, Pharmacology, Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
2
|
Longitudinal metabolomics profiling of serum amino acids in rotenone-induced Parkinson's mouse model. Amino Acids 2022; 54:111-121. [PMID: 35028704 DOI: 10.1007/s00726-021-03117-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/01/2021] [Indexed: 11/27/2022]
Abstract
Recently, the detailed etiology and pathogenesis of Parkinson's disease (PD) have not been fully clarified yet. Increasing evidences suggested that the disturbance of peripheral branched-chain amino acids (BCAAs) metabolism can promote the occurrence and progression of neurodegenerative diseases through neuroinflammatory signaling. Although there are several studies on the metabolomics of PD, longitudinal study of metabolic pathways is still lacking. Therefore, the purpose of the present study was to determine the longitudinal alterations in serum amino acid profiles in PD mouse model. Gas chromatography-mass spectrometry (GC-MS) was applied to detect serum amino acid concentrations in C57BL/6 mice after 0, 3 and 4 weeks of oral administration with rotenone. Then the data were analysed by principal component analysis (PCA) and orthogonal projection to latent structures (OPLS) analysis. Finally, the correlations between different kinds of serum amino acids and behaviors in rotenone-treated mice were also explored. Compared with 0-week mice, the levels of L-isoleucine and L-leucine were down-regulated in 3-week and 4-week mice, especially in 4-week mice. Moreover, the comprehensive analysis showed that L-isoleucine and L-leucine were negatively correlated with pole-climbing time and positively correlated with fecal weight and water content of PD mice. These results not only suggested that L-isoleucine and L-leucine may be potential biomarkers, but also pointed out the possibility of treating PD by intervening in the circulating amino acids metabolism.
Collapse
|
3
|
Jaskiw GE, Xu D, Obrenovich ME, Donskey CJ. Small phenolic and indolic gut-dependent molecules in the primate central nervous system: levels vs. bioactivity. Metabolomics 2022; 18:8. [PMID: 34989922 DOI: 10.1007/s11306-021-01866-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 12/12/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION A rapidly growing body of data documents associations between disease of the brain and small molecules generated by gut-microbiota (GMB). While such metabolites can affect brain function through a variety of mechanisms, the most direct action would be on the central nervous system (CNS) itself. OBJECTIVE Identify indolic and phenolic GMB-dependent small molecules that reach bioactive concentrations in primate CNS. METHODS We conducted a PubMed search for metabolomic studies of the primate CNS [brain tissue or cerebrospinal fluid (CSF)] and then selected for phenolic or indolic metabolites that (i) had been quantified, (ii) were GMB-dependent. For each chemical we then conducted a search for studies of bioactivity conducted in vitro in human cells of any kind or in CNS cells from the mouse or rat. RESULTS 36 metabolites of interests were identified in primate CNS through targeted metabolomics. Quantification was available for 31/36 and in vitro bioactivity for 23/36. The reported CNS range for 8 metabolites 2-(3-hydroxyphenyl)acetic acid, 2-(4-hydroxyphenyl)acetic acid, 3-(3-hydroxyphenyl)propanoic acid, (E)-3-(3,4-dihydroxyphenyl)prop-2-enoic acid [caffeic acid], 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, 2-acetamido-3-(1H-indol-3-yl)propanoic acid [N-acetyltryptophan], 1H-indol-3-yl hydrogen sulfate [indoxyl-3-sulfate] overlapped with a bioactive concentration. However, the number and quality of relevant studies of CNS neurochemistry as well as of bioactivity were highly limited. Structural isomers, multiple metabolites and potential confounders were inadequately considered. CONCLUSION The potential direct bioactivity of GMB-derived indolic and phenolic molecules on primate CNS remains largely unknown. The field requires additional strategies to identify and prioritize screening of the most promising small molecules that enter the CNS.
Collapse
Affiliation(s)
- George E Jaskiw
- Psychiatry Service 116(A), Veterans Affairs Northeast Ohio Healthcare System (VANEOHS), 10701 East Blvd., Cleveland, OH, 44106, USA.
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | - Dongyan Xu
- Psychiatry Service 116(A), Veterans Affairs Northeast Ohio Healthcare System (VANEOHS), 10701 East Blvd., Cleveland, OH, 44106, USA
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Mark E Obrenovich
- Pathology and Laboratory Medicine Service, VANEOHS, Cleveland, OH, USA
- Research Service, VANEOHS, Cleveland, OH, USA
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Curtis J Donskey
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Geriatric Research, Education and Clinical Center (GRECC), VANEOHS, Cleveland, OH, USA
| |
Collapse
|
4
|
Peel JS, McNarry MA, Heffernan SM, Nevola VR, Kilduff LP, Waldron M. The Effect of Dietary Supplements on Endurance Exercise Performance and Core Temperature in Hot Environments: A Meta-analysis and Meta-regression. Sports Med 2021; 51:2351-2371. [PMID: 34129223 PMCID: PMC8514372 DOI: 10.1007/s40279-021-01500-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND The ergogenic effects of dietary supplements on endurance exercise performance are well-established; however, their efficacy in hot environmental conditions has not been systematically evaluated. OBJECTIVES (1) To meta-analyse studies investigating the effects of selected dietary supplements on endurance performance and core temperature responses in the heat. Supplements were included if they were deemed to: (a) have a strong evidence base for 'directly' improving thermoneutral endurance performance, based on current position statements, or (b) have a proposed mechanism of action that related to modifiable factors associated with thermal balance. (2) To conduct meta-regressions to evaluate the moderating effect of selected variables on endurance performance and core temperature responses in the heat following dietary supplementation. METHODS A search was performed using various databases in May 2020. After screening, 25 peer-reviewed articles were identified for inclusion, across three separate meta-analyses: (1) exercise performance; (2) end core temperature; (3) submaximal core temperature. The moderating effect of several variables were assessed via sub-analysis and meta-regression. RESULTS Overall, dietary supplementation had a trivial significant positive effect on exercise performance (Hedges' g = 0.18, 95% CI 0.007-0.352, P = 0.042), a trivial non-significant positive effect on submaximal core temperature (Hedges' g = 0.18, 95% CI - 0.021 to 0.379, P = 0.080) and a small non-significant positive effect on end core temperature (Hedges' g = 0.20, 95% CI - 0.041 to 0.439, P = 0.104) in the heat. There was a non-significant effect of individual supplements on exercise performance (P = 0.973) and submaximal core temperature (P = 0.599). However, end core temperature was significantly affected by supplement type (P = 0.003), which was attributable to caffeine's large significant positive effect (n = 8; Hedges' g = 0.82, 95% CI 0.433-1.202, P < 0.001) and taurine's medium significant negative effect (n = 1; Hedges' g = - 0.96, 95% CI - 1.855 to - 0.069, P = 0.035). CONCLUSION Supplements such as caffeine and nitrates do not enhance endurance performance in the heat, with caffeine also increasing core temperature responses. Some amino acids might offer the greatest performance benefits in the heat. Exercising in the heat negatively affected the efficacy of many dietary supplements, indicating that further research is needed and current guidelines for performance in hot environments likely require revision.
Collapse
Affiliation(s)
- Jennifer S Peel
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK.
| | - Melitta A McNarry
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK
| | - Shane M Heffernan
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK
| | - Venturino R Nevola
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK
- Defence Science and Technology Laboratory (Dstl), Fareham, Hampshire, UK
| | - Liam P Kilduff
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK
- Welsh Institute of Performance Science, Swansea University, Swansea, UK
| | - Mark Waldron
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK
- Welsh Institute of Performance Science, Swansea University, Swansea, UK
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| |
Collapse
|
5
|
Tumilty L, Gregory N, Beckmann M, Thatcher R. No Influence of Low-, Medium-, or High-Dose Tyrosine on Exercise in a Warm Environment. Med Sci Sports Exerc 2019; 52:1404-1413. [PMID: 31834099 DOI: 10.1249/mss.0000000000002245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Tyrosine administration may counter exercise fatigue in a warm environment, but the typical dose is inconclusive, with little known about higher doses. We explored how three tyrosine doses influenced the circulating ratio of tyrosine/amino acids competing for brain uptake and hypothesized that a medium and high dose would enhance exercise performance in a warm environment. METHODS Eight recreationally trained, non-heat-acclimated male individuals (mean ± SD age, 23 ± 4 yr; stature, 181 ± 7 cm; body mass, 76.1 ± 5.9 kg; peak oxygen uptake, 4.1 ± 0.5 L·min) performed a peak oxygen uptake test, two familiarization trials, then four experimental trials in a randomized order separated by 7 d. Before exercise, subjects drank 2 × 300 mL sugar-free drinks delivering 0 (PLA), 150 (LOW), 300 (MED), or 400 (HIGH) mg·kg body mass tyrosine in a double-blind fashion. Subjects performed a 60-min constant intensity cycling then a simulated time trial in 30°C and 60% relative humidity. RESULTS Time trial performance (P = 0.579) was not influenced by tyrosine ingestion. The plasma ratio of tyrosine/∑(free-tryptophan, leucine, isoleucine, valine, phenylalanine, methionine), a key determinant of brain tyrosine influx, increased relative to PLA (P < 0.001). The increase was similar (P > 0.05) in MED (7.7-fold) and HIGH (8.2-fold), and greater than that in LOW (5.3-fold; P < 0.05). No differences existed between trials in core and skin temperature, heart rate, RPE, or thermal sensation (P > 0.05). CONCLUSION Exercise performance in a warm environment was not influenced by tyrosine availability in recreationally trained male individuals. The results provide novel data informing future studies, on the tyrosine dose maximizing the circulating ratio of tyrosine/amino acids competing for brain uptake.
Collapse
Affiliation(s)
- Les Tumilty
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Wales, UNITED KINGDOM
| | | | | | | |
Collapse
|
6
|
Picca A, Calvani R, Landi G, Marini F, Biancolillo A, Gervasoni J, Persichilli S, Primiano A, Urbani A, Bossola M, Bentivoglio AR, Cesari M, Landi F, Bernabei R, Marzetti E, Lo Monaco MR. Circulating amino acid signature in older people with Parkinson's disease: A metabolic complement to the EXosomes in PArkiNson Disease (EXPAND) study. Exp Gerontol 2019; 128:110766. [PMID: 31666195 DOI: 10.1016/j.exger.2019.110766] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/18/2019] [Accepted: 10/25/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIM Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder in old age. Neurotoxicity of dopaminergic neurons triggered by aggregation of misfolded α-synuclein is a major pathogenic trait of PD. However, growing evidence indicates that peripheral processes, including metabolic changes, may precede and contribute to neurodegeneration. The present study was undertaken to identify a metabolic signature of PD through the quantification of serum amino acids and derivatives. PARTICIPANTS AND METHODS Twenty older adults with PD (11 men and 9 women; mean age 73.1 ± 10.2 years) and 30 age-matched controls (14 men and 16 women; mean age 74.6 ± 4.3 years) were enrolled. A panel of 37 serum amino acids and derivatives was assessed by ultra-performance liquid chromatography/mass spectrometry. Partial least squares - discriminant analysis (PLS-DA) followed by double cross-validation was used to characterize the relationship between amino acid profiles and PD. RESULTS The optimal complexity of the PLS-DA model was found to be three latent variables. The proportion of correct classifications was 99.3 ± 2.5% for participants with PD and 94.7 ± 3.0% for non-PD controls. Higher levels of β-amino butyric acid, cystine, ornithine, phosphoethanolamine, and proline defined the circulating amino acid profile of older people with PD. Controls were characterized by higher concentrations of 3-methyl-histidine, citrulline, and serine. CONCLUSION Our findings indicate the existence of a distinct metabotype in older persons with PD. Future studies will have to establish whether changes in amino acid metabolism are involved in the pathogenesis of PD. This knowledge may be harnessed to identify novel disease biomarkers as well as new targets for interventions.
Collapse
Affiliation(s)
- Anna Picca
- Università Cattolica del Sacro Cuore, Institute of Internal Medicine and Geriatrics, Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Riccardo Calvani
- Università Cattolica del Sacro Cuore, Institute of Internal Medicine and Geriatrics, Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Giovanni Landi
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Federico Marini
- Department of Chemistry, Sapienza Università di Roma, Rome, Italy
| | - Alessandra Biancolillo
- Department of Chemistry, Sapienza Università di Roma, Rome, Italy; Department of Physical and Chemical Sciences, University of L'Aquila, Italy
| | - Jacopo Gervasoni
- Università Cattolica del Sacro Cuore, Institute of Internal Medicine and Geriatrics, Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Silvia Persichilli
- Università Cattolica del Sacro Cuore, Institute of Internal Medicine and Geriatrics, Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Aniello Primiano
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Andrea Urbani
- Università Cattolica del Sacro Cuore, Institute of Internal Medicine and Geriatrics, Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Maurizio Bossola
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Institute of Clinical Surgery, Rome, Italy
| | - Anna Rita Bentivoglio
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Institute of Neurology, Rome, Italy
| | - Matteo Cesari
- Department of Clinical Sciences and Community Health, Università di Milano, Milan, Italy; Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Landi
- Università Cattolica del Sacro Cuore, Institute of Internal Medicine and Geriatrics, Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Roberto Bernabei
- Università Cattolica del Sacro Cuore, Institute of Internal Medicine and Geriatrics, Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy.
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy.
| | | |
Collapse
|
7
|
Large Neutral Amino Acid Therapy Increases Tyrosine Levels in Adult Patients with Phenylketonuria: A Long-Term Study. Nutrients 2019; 11:nu11102541. [PMID: 31640267 PMCID: PMC6835503 DOI: 10.3390/nu11102541] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 12/23/2022] Open
Abstract
The standard treatment for phenylketonuria (PKU) is a lifelong low-phenylalanine (Phe) diet, supplemented with Phe-free protein substitutes; however, adult patients often show poor adherence to therapy. Alternative treatment options include the use of large neutral amino acids (LNAA). The aim of this study was to determine the Phe, tyrosine (Tyr), and Phe/Tyr ratio in a cohort of sub-optimally controlled adult patients with classical PKU treated with a new LNAA formulation. Twelve patients received a Phe-restricted diet plus a slow-release LNAA product taken three times per day, at a dose of 1 g/kg body weight (mean 0.8 ± 0.24 g/kg/day), over a 12-month period. The product is in a microgranulated formulation, which incorporates all amino acids and uses sodium alginate as a hydrophilic carrier to prolong its release. This LNAA formulation provides up to 80% of the total protein requirement, with the rest of the protein supplied by natural food. Patients had fortnightly measurements of Phe and Tyr levels over a 12-month period after the introduction of LNAA. All patients completed the 12-month treatment period. Overall, adherence to the new LNAA tablets was very good compared with a previous amino acid mixture, for which taste was a major complaint by patients. Phe levels remained unchanged (p = 0.0522), and Tyr levels increased (p = 0.0195). Consequently, the Phe/Tyr ratio decreased significantly (p < 0.05) in the majority of patients treated. In conclusion, LNAA treatment increases Tyr levels in sub-optimally controlled adult PKU patients, while offering the potential to improve their adherence to treatment.
Collapse
|
8
|
Changes of plasma acetylcholine and inflammatory markers in critically ill patients during early enteral nutrition: A prospective observational study. J Crit Care 2019; 52:219-226. [PMID: 31108325 DOI: 10.1016/j.jcrc.2019.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 04/23/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Acetylcholine (Ach) is the key anti-inflammatory transmitter in the cholinergic anti-inflammatory pathway. In this study, critically ill patients treated with early enteral nutrition (EEN) were observed to explore whether EEN affected Ach levels and inflammation. METHODS One hundred thirteen patients were included in this prospective observational study. All patients were provided the early enteral nutrition protocol 24-48 h after admission to the intensive care unit (ICU). Blood samples were collected, and the plasma levels of Ach, cholecystokinin (CCK), and inflammatory markers (tumour necrosis factor alpha (TNF-α), interleukin 1beta (IL1-β), and IL6) were measured on Days 0, 1, 3, 5, and 7. Nutritional intervention data were recorded within one week, including the number of patients receiving nutrition, the number of days nutrition was provided, the caloric intake and protein intake, feeding intolerance and prokinetic drug administration. Other collected data included the sequential organ failure assessment score (SOFA score), the Acute Physiology and Chronic Health Evaluation (APACHE) II score, the use of mechanical ventilation (the number of patients and the duration), use of vasoactive drugs and the number of renal replacement treatments (RRT) received by each patient during their ICU stay. The primary outcome was 28-day mortality. Additionally, we analysed the correlation between plasma Ach levels and inflammation, as well as the correlation between plasma Ach and CCK levels. Moreover, a multivariate regression analysis was performed to examine the independent effects of different variables on 28-day mortality and Ach levels. RESULTS The overall 28-day mortality was 28.3% (32/113). Eighty-two patients tolerated enteral nutrition. Compared with Day 0 15.6 (2.8) nmol/l, the plasma Ach level was significantly increased on Day 3 18.6 (6.7) nmol/l, Day 5 19.3 (6.2) nmol/l and Day 7 19.7 (4.3) nmol/l (p < .001). Compared with Day 0176.2 (50.4) pg/ml, the plasma TNF-α level was significantly decreased on Day 3144.0 (77.4) pg/ml, Day 5127.3 (51.8) pg/ml and Day 7111.4 (42.5) pg/ml (p < .05). Compared with Day 0, the plasma IL1-β level was significantly decreased on Day 7 (p < .05). The plasma IL6 level was significantly decreased on Day 5 and Day 7 (p < .05) compared with Day 0. Compared with Day 0, the plasma CCK level was significantly increased on Day 3, 5 and 7 (p < .001). The correlation analysis revealed negative correlations between Ach levels and inflammation (p < .001), and a positive correlation between CCK and Ach levels (r = 0.775, p < .001). A comparison of patients who did or did not tolerate EEN revealed significant differences in the plasma levels of Ach, TNF-α, IL6 and CCK (p < .05). Significant differences in plasma levels of Ach, TNF-α, IL1-β, IL6 and CCK were observed between 28-day survivors and non-survivors (p < .05). The multivariate logistic regression analysis identified vasopressor support, RRT, the administration of EEN, SOFA score, APACHE II score at ICU admission and plasma Ach levels as independent determinants of 28-day mortality. Additionally, the multivariate linear regression analysis identified EEN, plasma lactate, mechanical ventilation, the SOFA score and plasma CCK levels as independent determinants of plasma Ach levels. CONCLUSIONS The administration of EEN to critically ill patients contributed to the increased plasma Ach levels and decreased inflammatory markers. The effect of EEN on Ach levels is partially attributed to the increase in CCK levels. Elevated plasma Ach levels indicate a better prognosis. Clinical trials identifier: NCT03612206.
Collapse
|
9
|
Jaskiw GE, Obrenovich ME, Donskey CJ. The phenolic interactome and gut microbiota: opportunities and challenges in developing applications for schizophrenia and autism. Psychopharmacology (Berl) 2019; 236:1471-1489. [PMID: 31197432 DOI: 10.1007/s00213-019-05267-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/01/2019] [Indexed: 12/14/2022]
Abstract
Schizophrenia and autism spectrum disorder have long been associated with elevated levels of various small phenolic molecules (SPMs). In turn, the gut microbiota (GMB) has been implicated in the kinetics of many of these analytes. Unfortunately, research into the possible relevance of GMB-mediated SPMs to neuropsychiatry continues to be limited by heterogeneous study design, numerous sources of variance and technical challenges. Some SPMs have multiple structural isomers and most have conjugates. Without specialized approaches, SPMs can be incorrectly assigned or inaccurately quantified. In addition, SPM levels can be affected by dietary polyphenol or protein consumption and by various medications and diseases. Nonetheless, heterotypical excretion of various SPMs in association with schizophrenia or autism continues to be reported in independent samples. Recent studies in human cerebrospinal fluid demonstrate the presence of many SPMs A large number of these are bioactive in experimental models. Whether such mechanisms are relevant to the human brain in health or disease is not known. Systematic metabolomic and microbiome studies of well-characterized populations, an appreciation of multiple confounds, and implementation of standardized approaches across platforms and sites are needed to delineate the potential utility of the phenolic interactome in neuropsychiatry.
Collapse
Affiliation(s)
- George E Jaskiw
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA. .,School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | - Mark E Obrenovich
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA.,Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA.,Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, USA.,Department of Chemistry, Cleveland State University, Cleveland, OH, USA
| | - Curtis J Donskey
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA.,School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
10
|
CSF miR-16 expression and its association with miR-16 and serotonin transporter in the raphe of a rat model of depression. J Affect Disord 2018; 238:609-614. [PMID: 29957478 DOI: 10.1016/j.jad.2018.06.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/15/2018] [Accepted: 06/13/2018] [Indexed: 11/23/2022]
Abstract
BACKGROUND Depression is a common mental disorder with unknown mechanism. Emerging evidence shows that miRNAs play a critical role in the process of depression. Here we reported the cerebrospinal fluid (CSF) miR-16 expression and its association with miR-16 and serotonin transporter (SERT) in the raphe of a rat model of depression. METHODS 20 rats were randomized to the control or CUMS (chronic unpredictable mild stress) group. The rats in the CUMS group underwent CUMS for 21 days, while those in the control group received no treatment. After anesthetization, CSF was collected for the measurement of miR-16. Then raphes from all rats were separated for determination of miR-16 and SERT protein. RESULTS The expression levels of miR-16 in CSF and raphe of the CUMS group were significantly lower than those of the control group (P = 0.007 and 0.031). However, SERT protein in raphe of the CUMS group was obviously increased as compared that of the control group (P = 0.005). There was a positive correlation between CSF miR-16 and raphe miR-16 (r = 0.95, P = 0.000). Meanwhile, negative correlations between miR-16 and SERT protein in raphe (r = -0.70 P = 0.02), between CSF miR-16 and raphe SERT protein (r = -0.86, P = 0.002) were observed in the CUMS group. LIMITATIONS We have not explored the reason why CSF miR-16 was decreased in the rat model of depression and only tested the association of miR-16 between CSF and raphe. CONCLUSIONS CSF miR-16 was involved in the pathogenesis of depression via reflecting raphe miR-16 level, and thus affecting raphe SERT expression.
Collapse
|
11
|
Jang JH, Kim H, Jung I, Yoo H. Acupuncture for improving gait disturbance in Parkinson’s disease: A study protocol for a pilot randomized controlled trial. Eur J Integr Med 2018. [DOI: 10.1016/j.eujim.2018.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Taslimifar M, Buoso S, Verrey F, Kurtcuoglu V. Functional Polarity of Microvascular Brain Endothelial Cells Supported by Neurovascular Unit Computational Model of Large Neutral Amino Acid Homeostasis. Front Physiol 2018; 9:171. [PMID: 29593549 PMCID: PMC5859092 DOI: 10.3389/fphys.2018.00171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/20/2018] [Indexed: 11/13/2022] Open
Abstract
The homeostatic regulation of large neutral amino acid (LNAA) concentration in the brain interstitial fluid (ISF) is essential for proper brain function. LNAA passage into the brain is primarily mediated by the complex and dynamic interactions between various solute carrier (SLC) transporters expressed in the neurovascular unit (NVU), among which SLC7A5/LAT1 is considered to be the major contributor in microvascular brain endothelial cells (MBEC). The LAT1-mediated trans-endothelial transport of LNAAs, however, could not be characterized precisely by available in vitro and in vivo standard methods so far. To circumvent these limitations, we have incorporated published in vivo data of rat brain into a robust computational model of NVU-LNAA homeostasis, allowing us to evaluate hypotheses concerning LAT1-mediated trans-endothelial transport of LNAAs across the blood brain barrier (BBB). We show that accounting for functional polarity of MBECs with either asymmetric LAT1 distribution between membranes and/or intrinsic LAT1 asymmetry with low intraendothelial binding affinity is required to reproduce the experimentally measured brain ISF response to intraperitoneal (IP) L-tyrosine and L-phenylalanine injection. On the basis of these findings, we have also investigated the effect of IP administrated L-tyrosine and L-phenylalanine on the dynamics of LNAAs in MBECs, astrocytes and neurons. Finally, the computational model was shown to explain the trans-stimulation of LNAA uptake across the BBB observed upon ISF perfusion with a competitive LAT1 inhibitor.
Collapse
Affiliation(s)
- Mehdi Taslimifar
- The Interface Group, Institute of Physiology, University of Zurich, Zurich, Switzerland.,Epithelial Transport Group, Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Stefano Buoso
- The Interface Group, Institute of Physiology, University of Zurich, Zurich, Switzerland.,Institute for Diagnostic and Interventional Radiology, Zurich University Hospital, Zurich, Switzerland
| | - Francois Verrey
- Epithelial Transport Group, Institute of Physiology, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,National Center of Competence in Research, Kidney.CH, Zurich, Switzerland
| | - Vartan Kurtcuoglu
- The Interface Group, Institute of Physiology, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,National Center of Competence in Research, Kidney.CH, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Brodnik ZD, Double M, España RA, Jaskiw GE. L-Tyrosine availability affects basal and stimulated catecholamine indices in prefrontal cortex and striatum of the rat. Neuropharmacology 2017; 123:159-174. [PMID: 28571714 DOI: 10.1016/j.neuropharm.2017.05.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/22/2017] [Accepted: 05/26/2017] [Indexed: 12/15/2022]
Abstract
We previously found that L-tyrosine (L-TYR) but not D-TYR administered by reverse dialysis elevated catecholamine synthesis in vivo in medial prefrontal cortex (MPFC) and striatum of the rat (Brodnik et al., 2012). We now report L-TYR effects on extracellular levels of catecholamines and their metabolites. In MPFC, reverse dialysis of L-TYR elevated in vivo levels of dihydroxyphenylacetic acid (DOPAC) (L-TYR 250-1000 μM), homovanillic acid (HVA) (L-TYR 1000 μM) and 3-methoxy-4-hydroxyphenylglycol (MHPG) (L-TYR 500-1000 μM). In striatum L-TYR 250 μM elevated DOPAC. We also examined L-TYR effects on extracellular dopamine (DA) and norepinephrine (NE) levels during two 30 min pulses (P2 and P1) of K+ (37.5 mM) separated by t = 2.0 h. L-TYR significantly elevated the ratio P2/P1 for DA (L-TYR 125 μM) and NE (L-TYR 125-250 μM) in MPFC but lowered P2/P1 for DA (L-TYR 250 μM) in striatum. Finally, we measured DA levels in brain slices using ex-vivo voltammetry. Perfusion with L-TYR (12.5-50 μM) dose-dependently elevated stimulated DA levels in striatum. In all the above studies, D-TYR had no effect. We conclude that acute increases within the physiological range of L-TYR levels can increase catecholamine metabolism and efflux in MPFC and striatum. Chronically, such repeated increases in L-TYR availability could induce adaptive changes in catecholamine transmission while amplifying the metabolic cost of catecholamine synthesis and degradation. This has implications for neuropsychiatric conditions in which neurotoxicity and/or disordered L-TYR transport have been implicated.
Collapse
Affiliation(s)
- Zachary D Brodnik
- Drexel University College of Medicine, Department of Neurobiology and Anatomy, 2900 W. Queen Lane, Philadelphia, PA 19129, United States
| | - Manda Double
- Medical Research Service, Louis Stokes Cleveland DVAMC, 10701 East Blvd., Cleveland, OH 44106, United States
| | - Rodrigo A España
- Drexel University College of Medicine, Department of Neurobiology and Anatomy, 2900 W. Queen Lane, Philadelphia, PA 19129, United States
| | - George E Jaskiw
- Medical Research Service, Louis Stokes Cleveland DVAMC, 10701 East Blvd., Cleveland, OH 44106, United States; Dept. of Psychiatry, Case Western University Medical Center at W.O. Walker 10524 Euclid Ave, Cleveland, OH 44133, United States.
| |
Collapse
|
14
|
Dolgodilina E, Imobersteg S, Laczko E, Welt T, Verrey F, Makrides V. Brain interstitial fluid glutamine homeostasis is controlled by blood-brain barrier SLC7A5/LAT1 amino acid transporter. J Cereb Blood Flow Metab 2016; 36:1929-1941. [PMID: 26661195 PMCID: PMC5094305 DOI: 10.1177/0271678x15609331] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/20/2015] [Accepted: 08/31/2015] [Indexed: 01/26/2023]
Abstract
L-glutamine (Gln) is the most abundant amino acid in plasma and cerebrospinal fluid and a precursor for the main central nervous system excitatory (L-glutamate) and inhibitory (γ-aminobutyric acid (GABA)) neurotransmitters. Concentrations of Gln and 13 other brain interstitial fluid amino acids were measured in awake, freely moving mice by hippocampal microdialysis using an extrapolation to zero flow rate method. Interstitial fluid levels for all amino acids including Gln were ∼5-10 times lower than in cerebrospinal fluid. Although the large increase in plasma Gln by intraperitoneal (IP) injection of 15N2-labeled Gln (hGln) did not increase total interstitial fluid Gln, low levels of hGln were detected in microdialysis samples. Competitive inhibition of system A (SLC38A1&2; SNAT1&2) or system L (SLC7A5&8; LAT1&2) transporters in brain by perfusion with α-(methylamino)-isobutyric acid (MeAIB) or 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH) respectively, was tested. The data showed a significantly greater increase in interstitial fluid Gln upon BCH than MeAIB treatment. Furthermore, brain BCH perfusion also strongly increased the influx of hGln into interstitial fluid following IP injection consistent with transstimulation of LAT1-mediated transendothelial transport. Taken together, the data support the independent homeostatic regulation of amino acids in interstitial fluid vs. cerebrospinal fluid and the role of the blood-brain barrier expressed SLC7A5/LAT1 as a key interstitial fluid gatekeeper.
Collapse
Affiliation(s)
- Elena Dolgodilina
- Institute of Physiology, Zurich Center for Integrative Human Physiology (ZIHP) and NCCR Kidney. CH, University of Zurich, Zurich, Switzerland
| | - Stefan Imobersteg
- Division of Psychiatry Research, University of Zurich, Schlieren, Switzerland
| | - Endre Laczko
- Functional Genomic Center Zurich (FGCZ), ETH and University of Zurich, Zurich, Switzerland
| | - Tobias Welt
- Division of Psychiatry Research, University of Zurich, Schlieren, Switzerland
| | - Francois Verrey
- Institute of Physiology, Zurich Center for Integrative Human Physiology (ZIHP) and NCCR Kidney. CH, University of Zurich, Zurich, Switzerland
| | - Victoria Makrides
- Institute of Physiology, Zurich Center for Integrative Human Physiology (ZIHP) and NCCR Kidney. CH, University of Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Bongiovanni R, Mchaourab AS, McClellan F, Elsworth J, Double M, Jaskiw GE. Large neutral amino acids levels in primate cerebrospinal fluid do not confirm competitive transport under baseline conditions. Brain Res 2016; 1648:372-379. [DOI: 10.1016/j.brainres.2016.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 01/27/2023]
|
16
|
Solís O, García-Sanz P, Herranz AS, Asensio MJ, Moratalla R. L-DOPA Reverses the Increased Free Amino Acids Tissue Levels Induced by Dopamine Depletion and Rises GABA and Tyrosine in the Striatum. Neurotox Res 2016; 30:67-75. [PMID: 26966009 DOI: 10.1007/s12640-016-9612-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 12/30/2022]
Abstract
Perturbations in the cerebral levels of various amino acids are associated with neurological disorders, and previous studies have suggested that such alterations have a role in the motor and non-motor symptoms of Parkinson's disease. However, the direct effects of chronic L-DOPA treatment, that produces dyskinesia, on neural tissue amino acid concentrations have not been explored in detail. To evaluate whether striatal amino acid concentrations are altered in peak dose dyskinesia, 6-hydroxydopamine (6-OHDA)-lesioned hemiparkinsonian mice were treated chronically with L-DOPA and tissue amino acid concentrations were assessed by HPLC analysis. These experiments revealed that neither 6-OHDA nor L-DOPA treatment are able to alter glutamate in the striatum. However, glutamine increases after 6-OHDA and returns back to normal levels with L-DOPA treatment, suggesting increased striatal glutamatergic transmission with lack of dopamine. In addition, glycine and taurine levels are increased following dopamine denervation and restored to normal levels by L-DOPA. Interestingly, dyskinetic animals showed increased levels of GABA and tyrosine, while aspartate striatal tissue levels are not altered. Overall, our results indicate that chronic L-DOPA treatment, besides normalizing the altered levels of some amino acids after 6-OHDA, robustly increases striatal GABA and tyrosine levels which may in turn contribute to the development of L-DOPA-induced dyskinesia.
Collapse
Affiliation(s)
- Oscar Solís
- Instituto Cajal, CSIC, Av. Dr. Arce 37, 28002, Madrid, Spain.,CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia García-Sanz
- Instituto Cajal, CSIC, Av. Dr. Arce 37, 28002, Madrid, Spain.,CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio S Herranz
- Servicio Neurobiología, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain
| | - María-José Asensio
- Servicio Neurobiología, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain
| | - Rosario Moratalla
- Instituto Cajal, CSIC, Av. Dr. Arce 37, 28002, Madrid, Spain. .,CIBERNED, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
17
|
Correlations between plasma levels of amino acids and nonmotor symptoms in Parkinson’s disease. J Neural Transm (Vienna) 2014; 122:411-7. [DOI: 10.1007/s00702-014-1280-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 07/17/2014] [Indexed: 11/26/2022]
|
18
|
Kops MS, Kjaer JB, Güntürkün O, Westphal KGC, Korte-Bouws GAH, Olivier B, Bolhuis JE, Korte SM. Serotonin release in the caudal nidopallium of adult laying hens genetically selected for high and low feather pecking behavior: an in vivo microdialysis study. Behav Brain Res 2014; 268:81-7. [PMID: 24720936 DOI: 10.1016/j.bbr.2014.03.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 03/26/2014] [Accepted: 03/31/2014] [Indexed: 01/12/2023]
Abstract
Severe feather pecking (FP) is a detrimental behavior causing welfare problems in laying hens. Divergent genetic selection for FP in White Leghorns resulted in strong differences in FP incidences between lines. More recently, it was shown that the high FP (HFP) birds have increased locomotor activity as compared to hens of the low FP (LFP) line, but whether these lines differ in central serotonin (5-hydroxytryptamine, 5-HT) release is unknown. We compared baseline release levels of central 5-HT, and the metabolite 5-HIAA in the limbic and prefrontal subcomponents of the caudal nidopallium by in vivo microdialysis in adult HFP and LFP laying hens from the ninth generation of selection. A single subcutaneous d-fenfluramine injection (0.5 mg/kg) was given to release neuronal serotonin in order to investigate presynaptic storage capacity. The present study shows that HFP hens had higher baseline levels of 5-HT in the caudal nidopallium as compared to LFP laying hens. Remarkably, no differences in plasma tryptophan levels (precursor of 5-HT) between the lines were observed. d-fenfluramine increased 5-HT levels in both lines similarly indirectly suggesting that presynaptic storage capacity was the same. The present study shows that HFP hens release more 5-HT under baseline conditions in the caudal nidopallium as compared to the LFP birds. This suggests that HFP hens are characterized by a higher tonic 5-HT release.
Collapse
Affiliation(s)
- Marjolein S Kops
- Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands.
| | - Joergen B Kjaer
- Friedrich Loeffler Institut, Institute for Animal Welfare and Animal Husbandry, Celle, Germany.
| | - Onur Güntürkün
- Department of Psychology, Ruhr-University of Bochum, Bochum, Germany.
| | - Koen G C Westphal
- Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands.
| | - Gerdien A H Korte-Bouws
- Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands.
| | - Berend Olivier
- Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands.
| | - J Elizabeth Bolhuis
- Adaptation Physiology Group, Wageningen University, Wageningen, The Netherlands.
| | - S Mechiel Korte
- Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
19
|
Yuan YS, Zhou XJ, Tong Q, Zhang L, Zhang L, Qi ZQ, Ge S, Zhang KZ. Change in plasma levels of amino acid neurotransmitters and its correlation with clinical heterogeneity in early Parkinson's disease patients. CNS Neurosci Ther 2013; 19:889-96. [PMID: 23981689 PMCID: PMC6493594 DOI: 10.1111/cns.12165] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/22/2013] [Accepted: 07/23/2013] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The correlation between plasma amino acid (AA) neurotransmitters and clinical heterogeneity in early patients with Parkinson's disease (PD) is still poorly understood. AIMS To examine the plasma levels of AA neurotransmitters in early patients with PD and to evaluate their correlation with PD subtypes. METHODS Based on the predominant symptoms, fifty-one patients with PD were enrolled and divided into four subgroups: (1) akinetic-rigid type (ART), (2) tremor-dominant type (TDT), (3) postural instability/gait difficulty type (PIGD), and (4) mixed type (MT). Plasma levels of AA were measured by HPLC-RF, and their potential diagnostic practicality and their association with PD subtypes were evaluated by the receiver operating characteristic (ROC) and correlation analysis, respectively. RESULTS Patients with PD exhibited markedly lower levels of Asp, Glu, Tau, L-ser, and lower values of Glu/GABA ratio than healthy controls. The ROC analysis revealed their high sensitivity (77.1-87.5%) and specificity (58.8-88.2%). Furthermore, the glutamic acid (Glu), γ-aminobutyric acid (GABA) level in the PIGD subtype was increased as compared with other subtypes and was negatively correlated with the ART/PIGD ratio. CONCLUSION The decrease in plasma Asp, Glu, Tau, L-ser levels, and the value of Glu/GABA ratio may be helpful for early PD diagnosis. The elevated GABA level may be the biochemical basis for the specific symptoms of PIGD PD.
Collapse
Affiliation(s)
- Yong-Sheng Yuan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Brodnik Z, Bongiovanni R, Double M, Jaskiw GE. Increased tyrosine availability increases brain regional DOPA levels in vivo. Neurochem Int 2012; 61:1001-6. [DOI: 10.1016/j.neuint.2012.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 06/30/2012] [Accepted: 07/13/2012] [Indexed: 10/28/2022]
|
21
|
Bongiovanni R, Kyser AN, Jaskiw GE. Tyrosine depletion lowers in vivo DOPA synthesis in ventral hippocampus. Eur J Pharmacol 2012; 696:70-6. [PMID: 23022716 DOI: 10.1016/j.ejphar.2012.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 09/05/2012] [Accepted: 09/17/2012] [Indexed: 10/27/2022]
Abstract
In vivo dopamine synthesis in the medial prefrontal cortex of the rat is sensitive to the availability of tyrosine. Whether other limbic cortical dopamine terminal regions are similarly tyrosine-dependent is not known. In this study we examined the effects of tyrosine depletion on dopamine synthesis and catecholamine levels in the ventral hippocampus. A tyrosine- and phenylalanine-free neutral amino acid mixture was used to lower brain tyrosine levels in rats undergoing in vivo microdialysis. In one group, NSD-1015 was included in perfusate to permit measurement of DOPA levels. In a second group, NSD-1015 was not included in perfusate so that catecholamine levels could be assayed. Tyrosine depletion significantly lowered DOPA levels in the NSD-1015 treated group and lowered DOPAC but not dopamine or noradrenaline levels in the group not exposed to NSD-1015. We conclude that while catecholamine synthesis in the ventral hippocampus declines when tyrosine availability is lowered, under basal conditions, compensatory mechanisms are able to maintain stable extracellular catecholamine levels.
Collapse
Affiliation(s)
- Rodolfo Bongiovanni
- Psychiatry Service, Louis Stokes Cleveland VA Medical Center, 10701 East Blvd., Cleveland, Ohio 44106, USA.
| | | | | |
Collapse
|
22
|
Helmy A, De Simoni MG, Guilfoyle MR, Carpenter KLH, Hutchinson PJ. Cytokines and innate inflammation in the pathogenesis of human traumatic brain injury. Prog Neurobiol 2011; 95:352-72. [PMID: 21939729 DOI: 10.1016/j.pneurobio.2011.09.003] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 09/04/2011] [Accepted: 09/06/2011] [Indexed: 01/31/2023]
Abstract
There is an increasing recognition that following traumatic brain injury, a cascade of inflammatory mediators is produced, and contributes to the pathological consequences of central nervous system injury. This review summarises the key literature from pre-clinical models that underlies our understanding of innate inflammation following traumatic brain injury before focussing on the growing evidence from human studies. In addition, the underlying molecular mediators responsible for blood brain barrier dysfunction have been discussed. In particular, we have highlighted the different sampling methodologies available and the difficulties in interpreting human data of this sort. Ultimately, understanding the innate inflammatory response to traumatic brain injury may provide a therapeutic avenue in the treatment of central nervous system disease.
Collapse
Affiliation(s)
- Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Box 167, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK.
| | | | | | | | | |
Collapse
|