1
|
Meloxicam Inhibits Apoptosis in Neurons by Deactivating Tumor Necrosis Factor Receptor Superfamily Member 25, Leading to the Decreased Cleavage of DNA Fragmentation Factor Subunit α in Alzheimer's Disease. Mol Neurobiol 2023; 60:395-412. [PMID: 36279100 DOI: 10.1007/s12035-022-03091-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/10/2022] [Indexed: 12/30/2022]
Abstract
Neuronal apoptosis is considered to be a critical cause of Alzheimer's disease (AD). Recently, meloxicam has shown neuroprotective effects; however, the inherent mechanisms are highly overlooked. Using APP/PS1 transgenic (Tg) mice as in vivo animal models, we found that meloxicam inhibits apoptosis in neurons by deactivating tumor necrosis factor receptor superfamily member 25 (TNFRSF25), leading to the suppression of the expression of fas-associated protein with death domain (FADD) and the cleavage of DNA fragmentation factor subunit α (DFFA) and cysteine aspartic acid protease-3 (caspase 3) via β-amyloid protein (Aβ)-depressing mechanisms. Moreover, the meloxicam treatment blocked the effects of β-amyloid protein oligomers (Aβo) on stimulating the synthesis of tumor necrosis factor α (TNF-α) and TNF-like ligand 1A (TL1A) in neuroblastoma (N) 2a cells. TNF-α and TL1A induce apoptosis in neurons via TNFR- and TNFRSF25-dependent caspase 3-activating mechanisms, respectively. Knocking down the expression of TNFRSF25 blocked the effects of TL1A on inducing apoptosis in neurons by deactivating the signaling cascades of FADD, caspase 3, and DFFA. Consistently, TNFRSF25 shRNA blocked the effects of Aβo on inducing neuronal apoptosis, which was corroborated by the efficacy of meloxicam in inhibiting Aβo-induced neuronal apoptosis. By ameliorating neuronal apoptosis, meloxicam improved memory loss in APP/PS1 Tg mice.
Collapse
|
2
|
Jadiya P, Garbincius JF, Elrod JW. Reappraisal of metabolic dysfunction in neurodegeneration: Focus on mitochondrial function and calcium signaling. Acta Neuropathol Commun 2021; 9:124. [PMID: 34233766 PMCID: PMC8262011 DOI: 10.1186/s40478-021-01224-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/27/2021] [Indexed: 02/06/2023] Open
Abstract
The cellular and molecular mechanisms that drive neurodegeneration remain poorly defined. Recent clinical trial failures, difficult diagnosis, uncertain etiology, and lack of curative therapies prompted us to re-examine other hypotheses of neurodegenerative pathogenesis. Recent reports establish that mitochondrial and calcium dysregulation occur early in many neurodegenerative diseases (NDDs), including Alzheimer's disease, Parkinson's disease, Huntington's disease, and others. However, causal molecular evidence of mitochondrial and metabolic contributions to pathogenesis remains insufficient. Here we summarize the data supporting the hypothesis that mitochondrial and metabolic dysfunction result from diverse etiologies of neuropathology. We provide a current and comprehensive review of the literature and interpret that defective mitochondrial metabolism is upstream and primary to protein aggregation and other dogmatic hypotheses of NDDs. Finally, we identify gaps in knowledge and propose therapeutic modulation of mCa2+ exchange and mitochondrial function to alleviate metabolic impairments and treat NDDs.
Collapse
Affiliation(s)
- Pooja Jadiya
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, 3500 N Broad St, MERB 949, Philadelphia, PA, 19140, USA
| | - Joanne F Garbincius
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, 3500 N Broad St, MERB 949, Philadelphia, PA, 19140, USA
| | - John W Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, 3500 N Broad St, MERB 949, Philadelphia, PA, 19140, USA.
| |
Collapse
|
3
|
Enogieru AB, Haylett W, Hiss DC, Ekpo OE. Regulation of AKT/AMPK signaling, autophagy and mitigation of apoptosis in Rutin-pretreated SH-SY5Y cells exposed to MPP . Metab Brain Dis 2021; 36:315-326. [PMID: 33146846 DOI: 10.1007/s11011-020-00641-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/30/2020] [Indexed: 11/25/2022]
Abstract
Accumulating evidence suggest that apoptosis, autophagy and dysregulation of signaling pathways are common mechanisms involved in Parkinson's disease (PD) pathogenesis, and thus development of therapeutic agents targeting these mechanisms may be useful for the treatment of this disease. Although rutin (a bioflavonoid) is reported to have pharmacological benefits such as antioxidant, anti-inflammatory and antitumor activities, there are very few reports on the activity of this compound in 1-methyl-4-phenylpyridinium (MPP+)-induced PD models. Accordingly, we investigated the effects of rutin on apoptosis, autophagy and cell signaling markers (AKT/AMPK) in SH-SY5Y cells exposed to MPP+. Results show reduced changes in nuclear morphology and mitigation of caspase 3/7 and 9 activities in rutin pre-treated cells exposed to MPP+. Likewise, rutin regulated cell signaling pathways (AKT/AMPK) and significantly decreased protein expression levels of cleaved PARP, cytochrome c, LC3-II and p62. Also, rutin significantly increased protein expression levels of full-length caspase 3 in SH-SY5Y cells treated with MPP+. Transmission electron microscope (TEM) images demonstrated a reduction in autophagosomes in rutin-pretreated SH-SY5Y cells exposed to MPP+. These results provide experimental support for rutin's neuroprotective activity against MPP+-induced toxicity in SH-SY5Y cells, which is as a promising therapeutic agent for clinical trials in humans.
Collapse
Affiliation(s)
- Adaze Bijou Enogieru
- Department of Medical Biosciences, University of the Western Cape, Robert Sobukwe Road, Private Bag X17, Bellville, 7535, South Africa
- Department of Anatomy, School of Basic Medical Sciences, University of Benin, Benin City, Edo State, Nigeria
| | - William Haylett
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Donavon Charles Hiss
- Department of Medical Biosciences, University of the Western Cape, Robert Sobukwe Road, Private Bag X17, Bellville, 7535, South Africa
| | - Okobi Eko Ekpo
- Department of Medical Biosciences, University of the Western Cape, Robert Sobukwe Road, Private Bag X17, Bellville, 7535, South Africa.
| |
Collapse
|
4
|
Szczęśniak-Sięga BM, Wiatrak B, Czyżnikowska Ż, Janczak J, Wiglusz RJ, Maniewska J. Synthesis and biological evaluation as well as in silico studies of arylpiperazine-1,2-benzothiazine derivatives as novel anti-inflammatory agents. Bioorg Chem 2020; 106:104476. [PMID: 33250206 DOI: 10.1016/j.bioorg.2020.104476] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022]
Abstract
Novel arylpiperazine-1,2-benzothiazine derivatives have been designed and synthesized as potential anti-inflammatory agents. Their structure and properties have been studied using spectroscopic techniques (1H NMR, 13C NMR, FT-IR), MS, elemental analyses, and single-crystal X-ray diffraction (SCXRD, for compound 7b). This study aimed to evaluate the inhibitory activity of new derivatives against both cyclooxygenase isoforms COX-1 and COX-2 due to the similarity of new compounds to oxicams drugs from the NSAIDs group. All new compounds were divided into two series - A and B - with a different linker between thiazine and piperazines nitrogens. Series A included the three-carbon aliphatic linker and series B - two-carbon with a carbonyl group. According to in vitro and molecular docking studies all new compounds exhibited cyclooxygenase inhibitory activity. The series of A compounds included COX-1 inhibitors only. In contrast, the B series showed inhibition of both COX-1 and COX-2, which suggested the importance of the acetoxy linker for COX-2 inhibition. Moreover, the most selective compound 7b, towards COX-2, was non-toxic for the normal human cell line (in concentration of 10 µM) comparable to reference drug meloxicam. Additionally, investigation of influence on model membranes confirmed the ability of the compound 7b to penetrate lipid bilayers which seemed to be important to the influence with membrane protein-cyclooxygenase.
Collapse
Affiliation(s)
- Berenika M Szczęśniak-Sięga
- Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland.
| | - Benita Wiatrak
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland; Department of Basic Medical Sciences, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Żaneta Czyżnikowska
- Department of Inorganic Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wrocław, Poland
| | - Jan Janczak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2 Str., 50-422 Wrocław, Poland
| | - Rafal J Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2 Str., 50-422 Wrocław, Poland
| | - Jadwiga Maniewska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland
| |
Collapse
|
5
|
Liu PK, Wen YT, Lin W, Kapupara K, Tai M, Tsai RK. Neuroprotective effects of low-dose G-CSF plus meloxicam in a rat model of anterior ischemic optic neuropathy. Sci Rep 2020; 10:10351. [PMID: 32587280 PMCID: PMC7316837 DOI: 10.1038/s41598-020-66977-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 05/19/2020] [Indexed: 11/29/2022] Open
Abstract
Non-arteritic anterior ischemic optic neuropathy (NAION) causes a sudden loss of vision and lacks effective treatment. Granulocyte colony-stimulating factor (G-CSF) provides neuroprotection against the experimental optic nerve injuries but also induce leukocytosis upon typical administration. We found synergetic neuroprotective effects of meloxicam and low dose G-CSF without leukocytosis in a rat model of anterior ischemic optic neuropathy (rAION). The WBC counts in the low-dose G-CSF-plus meloxicam-treated group were similar to the sham-operated group. Combination treatment of low-dose G-CSF plus meloxicam preserved RGCs survival and visual function, reduced RGC apoptosis and the macrophages infiltration, and promote more M2 phenotype of macrophage/microglial transition than the low-dose GCSF treatment or the meloxicam treatment. Moreover, the combination treatment induced higher serine/threonine kinase 1 (Akt1) expression. The combination treatment of low-dose G-CSF plus meloxicam lessened the leukocytotic side effect and provided neuroprotective effects via Akt1 activation in the rAION model. This approach provides crucial preclinical information for the development of alternative therapy in AION.
Collapse
Affiliation(s)
- Pei-Kang Liu
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Ophthalmology, Yuan's General Hospital, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yao-Tseng Wen
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei Lin
- Department of Optometry, Da-Yeh University, Changhwa, Taiwan
| | - Kishan Kapupara
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Minghong Tai
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan. .,Center for Neuroscience, National Sun Yat-Sen University, Kaohsiung, Taiwan. .,Graduate Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| | - Rong-Kung Tsai
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan. .,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
6
|
Zindo FT, Malan SF, Omoruyi SI, Enogieru AB, Ekpo OE, Joubert J. Design, synthesis and evaluation of pentacycloundecane and hexacycloundecane propargylamine derivatives as multifunctional neuroprotective agents. Eur J Med Chem 2019; 163:83-94. [DOI: 10.1016/j.ejmech.2018.11.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/09/2018] [Accepted: 11/21/2018] [Indexed: 01/15/2023]
|
7
|
Neuroprotective effects of Astilbin on MPTP-induced Parkinson's disease mice: Glial reaction, α-synuclein expression and oxidative stress. Int Immunopharmacol 2018; 66:19-27. [PMID: 30419450 DOI: 10.1016/j.intimp.2018.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/24/2018] [Accepted: 11/05/2018] [Indexed: 11/21/2022]
Abstract
Astilbin (AST), a dihydro-flavonol glycoside, is a major bioactive ingredient in Astilbe thunbergii, Engelhardia roxburghiana, Smilax corbularia and Erythroxylum gonocladum, and has been shown to have anti-inflammatory, antioxidative and neuroprotective effects, suggesting potential therapeutic value in the treatment of Parkinson's disease (PD). We explored the neuroprotective effects of AST in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease mice. Mice were administered with MPTP (30 mg/kg, i.p) daily for 5 days, to establish a subacute Parkinson's disease model, followed by daily treatment with AST or saline for 7 days. Pole and traction tests showed that AST ameliorated the impaired motor functions in MPTP-induced Parkinson's disease mice. High performance liquid chromatography analysis revealed that AST treatment prevented MPTP-induced decreases in striatal dopamine levels. Immunofluorescence assays showed that AST reduced the loss of dopaminergic neurons and the activation of microglia and astrocytes in the substantia nigra. Western blot analyses revealed that AST suppressed α-synuclein overexpression and activated PI3K/Akt in the striatum following MPTP treatment. AST also prevented the MPTP-induced reduction in total superoxide dismutase and glutathione activity in the striatum. AST exerts neuroprotective effects on MPTP-induced PD mice by suppressing gliosis, α-synuclein overexpression and oxidative stress, suggesting that AST could serve as a therapeutic drug to ameliorate PD.
Collapse
|
8
|
Omura T, Sasaoka M, Hashimoto G, Imai S, Yamamoto J, Sato Y, Nakagawa S, Yonezawa A, Nakagawa T, Yano I, Tasaki Y, Matsubara K. Oxicam-derived non-steroidal anti-inflammatory drugs suppress 1-methyl-4-phenyl pyridinium-induced cell death via repression of endoplasmic reticulum stress response and mitochondrial dysfunction in SH-SY5Y cells. Biochem Biophys Res Commun 2018; 503:2963-2969. [DOI: 10.1016/j.bbrc.2018.08.078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/08/2018] [Indexed: 10/28/2022]
|
9
|
Landucci E, Llorente IL, Anuncibay-Soto B, Pellegrini-Giampietro DE, Fernández-López A. Bicuculline Reverts the Neuroprotective Effects of Meloxicam in an Oxygen and Glucose Deprivation (OGD) Model of Organotypic Hippocampal Slice Cultures. Neuroscience 2018; 386:68-78. [PMID: 29949743 DOI: 10.1016/j.neuroscience.2018.06.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/25/2018] [Accepted: 06/18/2018] [Indexed: 01/17/2023]
Abstract
We previously demonstrated that the non-steroidal anti-inflammatory agent meloxicam has neuroprotective effects in an oxygen and glucose deprivation model (OGD) of rat organotypic hippocampal slice cultures. We wondered if GABAergic transmission changed the neuroprotective effects of meloxicam and if meloxicam was able to modulate endoplasmic reticulum stress (ER stress) in this model. Mortality was measured using propidium iodide. Western blot assays were performed to measure levels of cleaved and non-cleaved caspase-3 to quantify apoptosis, while levels of GRP78, GRP94 and phosphorylated eIF2α were used to detect unfolded protein response (UPR). Transcript levels of GRP78, GRP94 and GABAergic receptor α, β, and γ subunits were measured by real-time quantitative polymerase chain reaction (qPCR). In the present study, we show that the presence of meloxicam in a 30 min OGD assay, followed by 24 h of normoxic conditions, presented an antiapoptotic effect. The simultaneous presence of the GABAA receptor antagonist, bicuculline, in combination with meloxicam blocked the neuroprotective effect provided by the latter. However, in light of its effects on caspase 3 and PARP, bicuculline did not seem to promote the apoptotic pathway. Our results also showed that meloxicam modified the unfolded protein response (UPR), as well as the transcriptional response of different genes, including the GABAA receptor, alpha1, beta3 and gamma2 subunits. We concluded that meloxicam has a neuroprotective anti-apoptotic action, is able to enhance the UPR independently of the systemic anti-inflammatory response and its neuroprotective effect can be inhibited by blocking GABAA receptors.
Collapse
Affiliation(s)
- Elisa Landucci
- Sezione di Farmacologia Clinica e Oncologia, Dipartimento di Scienze della Salute, Università di Firenze, Viale Pieraccini 6, 50139 Firenze, Italy.
| | - Irene L Llorente
- Neurology Department, David Geffen School of Medicine, University of California, Los Angeles, USA.
| | - Berta Anuncibay-Soto
- Área de Biología Celular, Instituto de Biomedicina, Universidad de León, 24071 León, Spain; Neural Therapies SL, Edificio Institutos de Investigación, Local B14, Universidad de León, 24071 León, Spain.
| | - Domenico E Pellegrini-Giampietro
- Sezione di Farmacologia Clinica e Oncologia, Dipartimento di Scienze della Salute, Università di Firenze, Viale Pieraccini 6, 50139 Firenze, Italy.
| | | |
Collapse
|
10
|
Dai C, Ciccotosto GD, Cappai R, Wang Y, Tang S, Hoyer D, Schneider EK, Velkov T, Xiao X. Rapamycin Confers Neuroprotection against Colistin-Induced Oxidative Stress, Mitochondria Dysfunction, and Apoptosis through the Activation of Autophagy and mTOR/Akt/CREB Signaling Pathways. ACS Chem Neurosci 2018; 9:824-837. [PMID: 29257864 DOI: 10.1021/acschemneuro.7b00323] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Our previous studies showed that colistin-induced neurotoxicity involves apoptosis and oxidative damage. The present study demonstrates a neuroprotective effect of rapamycin against colistin-induced neurotoxicity in vitro and in vivo. In a mouse model, colistin treatment (18 mg/kg/d; 14 days) produced marked neuronal mitochondria damage in the cerebral cortex and increased activation of caspase-9 and -3. Rapamycin cotreatment (2.5 mg/kg/d) effectively reduced this neurotoxic effect. In an in vitro mouse neuroblastoma-2a (N2a) cell culture model, rapamycin pretreatment (500 nM) reduced colistin (200 μM) induced cell death from ∼50% to 72%. Moreover, rapamycin showed a marked neuroprotective effect in the N2a cells by decreasing intracellular reactive oxygen species (ROS) production and by up-regulating the activities of the anti-ROS enzymes superoxide dismutase and catalase and recovering glutathione (GSH) levels to normal. Moreover, rapamycin pretreatment protected against colistin-induced mitochondrial dysfunction, caspase activation, and subsequent apoptosis by up-regulating autophagy and activating the Akt/CREB, NGF, and Nrf2 pathways, while inhibiting p53 signaling. Taken together, this is the first study to demonstrate that rapamycin protects against colistin-induced neurotoxicity by activating autophagy, inhibiting oxidative stress, mitochondria dysfunction, and apoptosis. Our data highlight that regulating autophagy to rescue neurons from apoptosis may become a new targeted therapy to relieve the adverse neurotoxic effects associated with colistin therapy.
Collapse
Affiliation(s)
- Chongshan Dai
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Giuseppe D. Ciccotosto
- Department of Pathology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Roberto Cappai
- Department of Pathology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Yang Wang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Shusheng Tang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Daniel Hoyer
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Elena K. Schneider
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Tony Velkov
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Xilong Xiao
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| |
Collapse
|
11
|
Kim C, Park S. IGF-1 protects SH-SY5Y cells against MPP +-induced apoptosis via PI3K/PDK-1/Akt pathway. Endocr Connect 2018; 7:443-455. [PMID: 29459421 PMCID: PMC5843822 DOI: 10.1530/ec-17-0350] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 02/19/2018] [Indexed: 01/13/2023]
Abstract
Insulin-like growth factor (IGF)-1 is a well-known anti-apoptotic pro-survival factor and phosphatidylinositol-3-kinase (PI3K)/Akt pathway is linked to cell survival induced by IGF-1. It is also reported that Akt signaling is modulated by 3-phosphoinositide-dependent kinase-1 (PDK1). In the current study, we investigated whether the anti-apoptotic effect of IGF-1 in SH-SY5Y cells exposed to 1-methyl-4-phenylpyridinium (MPP+) is associated with the activity of PI3K/PDK1/Akt pathway. Treatment of cells with IGF-1 inhibited MPP+-induced apoptotic cell death. IGF-1-induced activation of Akt and the protective effect of IGF-1 on MPP+-induced apoptosis were abolished by chemical inhibition of PDK1 (GSK2334470) or PI3K (LY294002). The phosphorylated levels of Akt and PDK1 were significantly suppressed after MPP+ exposure, while IGF-1 treatment completely restored MPP+-induced reductions in phosphorylation. IGF-1 protected cells from MPP+ insult by suppressing intracellular reactive oxygen species (ROS) production and malondialdehyde levels and increasing superoxide dismutase activity. Mitochondrial ROS levels were also increased during MPP+ exposure, which were attenuated by IGF-1 treatment. In addition, IGF-1-treated cells showed increased activities of succinate dehydrogenase and citrate synthase, stabilization of mitochondrial transmembrane potential, increased ratio of Bcl-2 to Bax, prevention of cytochrome c release and inhibition of caspase-3 activation with PARP cleavage. Furthermore, the protective effects of IGF-1 on oxidative stress and mitochondrial dysfunction were attenuated when cells were preincubated with GSK2334470 or LY294002. Our data suggest that IGF-1 protects SH-SY5Y cells against MPP+-associated oxidative stress by preserving mitochondrial integrity and inhibiting mitochondrial apoptotic cascades via the activation of PI3K/PDK1/Akt pathway.
Collapse
Affiliation(s)
- Chanyang Kim
- Department of Biomedical ScienceGraduate School, Kyung Hee University, Seoul, Korea
| | - Seungjoon Park
- Department of Pharmacology and Medical Research Center for Bioreaction to ROS and Biomedical Science InstituteSchool of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
12
|
Denya I, Malan SF, Enogieru AB, Omoruyi SI, Ekpo OE, Kapp E, Zindo FT, Joubert J. Design, synthesis and evaluation of indole derivatives as multifunctional agents against Alzheimer's disease. MEDCHEMCOMM 2018; 9:357-370. [PMID: 30108930 DOI: 10.1039/c7md00569e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/14/2018] [Indexed: 12/25/2022]
Abstract
A series of indole derivatives was designed and synthesised to improve on activity and circumvent pharmacokinetic limitations experienced with the structurally related compound, ladostigil. The compounds consisted of a propargylamine moiety (a known MAO inhibitor and neuroprotector) at the N1 position and a ChE inhibiting diethyl-carbamate/urea moiety at the 5 or 6 position of the indole ring. In order to prevent or slow down the in vivo hydrolysis and deactivation associated with the carbamate function of ladostigil, a urea moeity was incorporated into selected compounds to obtain more metabolically stable structures. The majority of the synthesised compounds showed improved MAO-A inhibitory activity compared to ladostigil. The compounds possessing the propargylamine moiety showed good MAO-B inhibitory activity with 6 and 8 portraying IC50 values between 14-20 fold better than ladostigil. The ChE assay results indicated that the compounds have non-selective inhibitory activities on eeAChE and eqBuChE regardless of the type or position of substitution (IC50: 2-5 μM). MAO-A and MAO-B docking results showed that the propargylamine moiety was positioned in close proximity to the FAD cofactor suggesting that the good inhibitory activity may be attributed to the propargylamine moiety and irreversible inhibition as confirmed in the reversibility studies. Docking results also indicated that the compounds have interactions with important amino acids in the AChE and BuChE catalytic sites. Compound 6 was the most potent multifunctional agent showing better inhibitory activity than ladostigil in vitro on all enzymes tested (hMAO-A IC50 = 4.31 μM, hMAO-B IC50 = 2.62 μM, eeAChE IC50 = 3.70 μM, eqBuChE IC50 = 2.82 μM). Chemical stability tests confirmed the diethyl-urea containing compound 6 to be more stable than its diethyl-carbamate containing counterpart compound 8. Compound 6 also exerted significant neuroprotection (52.62% at 1 μM) against MPP+ insult to SH-SY5Y neural cells and has good in silico predicted ADMET properties. The favourable neuronal enzyme inhibitory activity, likely improved pharmacokinetic properties in vivo and the potent neuroprotective ability of compound 6 make it a promising compound for further development.
Collapse
Affiliation(s)
- Ireen Denya
- Pharmaceutical Chemistry , School of Pharmacy , University of the Western Cape , Private Bag X17 , Bellville 7535 , South Africa . ; Tel: +27 21 959 2195
| | - Sarel F Malan
- Pharmaceutical Chemistry , School of Pharmacy , University of the Western Cape , Private Bag X17 , Bellville 7535 , South Africa . ; Tel: +27 21 959 2195
| | - Adaze B Enogieru
- Department of Medical Biosciences , University of the Western Cape , Private Bag X17 , Bellville 7535 , South Africa
| | - Sylvester I Omoruyi
- Department of Medical Biosciences , University of the Western Cape , Private Bag X17 , Bellville 7535 , South Africa
| | - Okobi E Ekpo
- Department of Medical Biosciences , University of the Western Cape , Private Bag X17 , Bellville 7535 , South Africa
| | - Erika Kapp
- Pharmaceutical Chemistry , School of Pharmacy , University of the Western Cape , Private Bag X17 , Bellville 7535 , South Africa . ; Tel: +27 21 959 2195
| | - Frank T Zindo
- Pharmaceutical Chemistry , School of Pharmacy , University of the Western Cape , Private Bag X17 , Bellville 7535 , South Africa . ; Tel: +27 21 959 2195
| | - Jacques Joubert
- Pharmaceutical Chemistry , School of Pharmacy , University of the Western Cape , Private Bag X17 , Bellville 7535 , South Africa . ; Tel: +27 21 959 2195
| |
Collapse
|
13
|
Kapp E, Visser H, Sampson SL, Malan SF, Streicher EM, Foka GB, Warner DF, Omoruyi SI, Enogieru AB, Ekpo OE, Zindo FT, Joubert J. Versatility of 7-Substituted Coumarin Molecules as Antimycobacterial Agents, Neuronal Enzyme Inhibitors and Neuroprotective Agents. Molecules 2017; 22:molecules22101644. [PMID: 28973990 PMCID: PMC6151660 DOI: 10.3390/molecules22101644] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 09/21/2017] [Accepted: 09/27/2017] [Indexed: 11/16/2022] Open
Abstract
A medium-throughput screen using Mycobacterium tuberculosis H37Rv was employed to screen an in-house library of structurally diverse compounds for antimycobacterial activity. In this initial screen, eleven 7-substituted coumarin derivatives with confirmed monoamine oxidase-B and cholinesterase inhibitory activities, demonstrated growth inhibition of more than 50% at 50 µM. This prompted further exploration of all the 7-substituted coumarins in our library. Four compounds showed promising MIC99 values of 8.31–29.70 µM and 44.15–57.17 µM on M. tuberculosis H37Rv in independent assays using GAST-Fe and 7H9+OADC media, respectively. These compounds were found to bind to albumin, which may explain the variations in MIC between the two assays. Preliminary data showed that they were able to maintain their activity in fluoroquinolone resistant mycobacteria. Structure-activity relationships indicated that structural modification on position 4 and/or 7 of the coumarin scaffold could direct the selectivity towards either the inhibition of neuronal enzymes or the antimycobacterial effect. Moderate cytotoxicities were observed for these compounds and slight selectivity towards mycobacteria was indicated. Further neuroprotective assays showed significant neuroprotection for selected compounds irrespective of their neuronal enzyme inhibitory properties. These coumarin molecules are thus interesting lead compounds that may provide insight into the design of new antimicrobacterial and neuroprotective agents.
Collapse
Affiliation(s)
- Erika Kapp
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Cape Town, Bellville 7550, South Africa.
| | - Hanri Visser
- DST/NRF Centre of Excellence in Biomedical Tuberculosis Research, SA MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, University of Stellenbosch, Cape Town, Tygerberg 7505, South Africa.
| | - Samantha L Sampson
- DST/NRF Centre of Excellence in Biomedical Tuberculosis Research, SA MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, University of Stellenbosch, Cape Town, Tygerberg 7505, South Africa.
| | - Sarel F Malan
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Cape Town, Bellville 7550, South Africa.
| | - Elizabeth M Streicher
- DST/NRF Centre of Excellence in Biomedical Tuberculosis Research, SA MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, University of Stellenbosch, Cape Town, Tygerberg 7505, South Africa.
| | - Germaine B Foka
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Cape Town, Bellville 7550, South Africa.
| | - Digby F Warner
- Medical Research Council/National Health Laboratory Service/University of Cape Town Molecular Mycobacteriology Research Unit, Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Institute of Infectious Disease and Molecular Medicine and Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, Rondebosch 7700, South Africa.
| | - Sylvester I Omoruyi
- Department of Medical Biosciences, University of the Western Cape, Cape Town, Bellville 7550, South Africa.
| | - Adaze B Enogieru
- Department of Medical Biosciences, University of the Western Cape, Cape Town, Bellville 7550, South Africa.
| | - Okobi E Ekpo
- Department of Medical Biosciences, University of the Western Cape, Cape Town, Bellville 7550, South Africa.
| | - Frank T Zindo
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Cape Town, Bellville 7550, South Africa.
| | - Jacques Joubert
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Cape Town, Bellville 7550, South Africa.
| |
Collapse
|
14
|
Salidroside attenuates colistin-induced neurotoxicity in RSC96 Schwann cells through PI3K/Akt pathway. Chem Biol Interact 2017; 271:67-78. [PMID: 28465020 DOI: 10.1016/j.cbi.2017.04.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 02/17/2017] [Accepted: 04/28/2017] [Indexed: 11/24/2022]
Abstract
Neurotoxicity is a key dose-limiting factor for colistin therapy. This study aimed to investigate the protective effect of Salidroside on colistin-induced neurotoxicity in RSC96 Schwann cells and the underlying mechanisms. After Salidroside (12.5, 25, 50 μg/mL) treatment for 2 h, the cells were cultured with 250 μg/mL colistin for 24 h. In order to investigate the role of phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway, the cells were pre-treated with LY294002 (12.5 μmol/L, a specific inhibitor of PI3K phosphorylation) for 1 h before Salidroside (50 μg/mL) treatment, then were co-cultured with colistin (250 μg/mL) for 24 h. The results showed that colistin treatment could induce apoptotic cell death which was associated with oxidative stress injury. Salidroside could reduce colistin-induced neurotoxicity, decrease the effect of colistin on the reduced expression levels of p-Akt and Bcl-2, and increased the expresion of Bax, release of Cyt c, and activation of caspase-3. However, the protective effect of Salidroside against colistin-induced apoptosis was partly abolished by LY294002. These findings suggest that Salidroside could attenuate colistin-induced neurotoxicity in RSC96 Schwann cells via the PI3K/Akt pathway.
Collapse
|
15
|
Neuroprotective Effects of Salidroside in the MPTP Mouse Model of Parkinson's Disease: Involvement of the PI3K/Akt/GSK3 β Pathway. PARKINSONS DISEASE 2016; 2016:9450137. [PMID: 27738547 PMCID: PMC5050371 DOI: 10.1155/2016/9450137] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 12/11/2022]
Abstract
The degenerative loss through apoptosis of dopaminergic neurons in the substantia nigra pars compacta plays a primary role in the progression of Parkinson's disease (PD). Our in vitro experiments suggested that salidroside (Sal) could protect against 1-methyl-4-phenylpyridine-induced cell apoptosis in part by regulating the PI3K/Akt/GSK3β pathway. The current study aims to increase our understanding of the protective mechanisms of Sal in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropypridine- (MPTP-) induced PD mouse model. We found that pretreatment with Sal could protect against MPTP-induced increase of the time of turning downwards and climbing down to the floor. Sal also prevented MPTP-induced decrease of locomotion frequency and the increase of the immobile time. Sal provided a protection of in MPTP-induced loss of tyrosine hydroxylase-positive neurons in SNpc and the level of DA, DOPAC, and HVA in the striatum. Furthermore, Sal could increase the phosphorylation level of Akt and GSK3β, upregulate the ratio of Bcl-2/Bax, and inhibit the activation of caspase-3, caspase-6, and caspase-9. These results show that Sal prevents the loss of dopaminergic neurons and the PI3K/Akt/GSK3β pathway signaling pathway may have mediated the protection of Sal against MPTP, suggesting that Sal may be a potential candidate in neuroprotective treatment for PD.
Collapse
|
16
|
Zhao Q, Ye J, Wei N, Fong C, Dong X. Protection against MPP(+)-induced neurotoxicity in SH-SY5Y cells by tormentic acid via the activation of PI3-K/Akt/GSK3β pathway. Neurochem Int 2016; 97:117-23. [PMID: 26994872 DOI: 10.1016/j.neuint.2016.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 03/08/2016] [Accepted: 03/14/2016] [Indexed: 01/08/2023]
Abstract
The cause of Parkinson's disease (PD) could be ascribed to the progressive and selective loss of dopaminergic neurons in the substantia nigra pars compacta, and thus molecules with neuroprotective ability may have therapeutic value against PD. In the current study, the neuroprotective effects and underlying mechanisms of tormentic acid (TA), a naturally occurring triterpene extracted from medicinal plants such as Rosa rugosa and Potentilla chinensis, were evaluated in a widely used cellular PD model in which neurotoxicity was induced by MPP(+) in cultured SH-SY5Y cells. We found that TA at 1-30 μM substantially protected against MPP(+)-induced neurotoxicity, as evidenced by the increase in cell viability, decrease in lactate dehydrogenase release and the reduction in apoptotic nuclei. Moreover, TA effectively inhibited the elevated intracellular accumulation of reactive oxygen species as well as Bax/Bcl-2 ratio caused by MPP(+). Most importantly, TA markedly reversed the inhibition of protein expression of phosphorylated Akt (Ser 473) and phosphorylated GSK3β (Ser 9) caused by MPP(+). LY294002, the specific inhibitor of PI3-K, significantly abrogated the up-regulated phosphorylated Akt and phosphorylated GSK3β offered by TA, suggesting that the neuroprotection of TA was mainly dependent on the activation of PI3-K/Akt/GSK3β signaling pathway. The results taken together indicate that TA may be a potential candidate for further preclinical study aimed at the prevention and treatment of PD.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Neurology, Linzi Maternal & Child Health Hospital of Zibo, Zibo, Shandong, China
| | - Junli Ye
- Department of Pathophysiology, Medical College, Qingdao University, Qingdao, Shandong, China
| | - Na Wei
- Department of Neurology, Linzi Maternal & Child Health Hospital of Zibo, Zibo, Shandong, China
| | - Chichun Fong
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Xiaoli Dong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China; Shenzhen Research Institute of the Hong Kong Polytechnic University, State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen, Guangdong, China.
| |
Collapse
|
17
|
Gilbert K, Malick M, Madingou N, Touchette C, Bourque-Riel V, Tomaro L, Rousseau G. Metabolites derived from omega-3 polyunsaturated fatty acids are important for cardioprotection. Eur J Pharmacol 2015; 769:147-53. [DOI: 10.1016/j.ejphar.2015.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 01/20/2023]
|
18
|
Park JH, Park YS, Lee JB, Park KH, Paik MK, Jeong M, Koh HC. Meloxicam inhibits fipronil-induced apoptosis via modulation of the oxidative stress and inflammatory response in SH-SY5Y cells. J Appl Toxicol 2015; 36:10-23. [PMID: 25772694 DOI: 10.1002/jat.3136] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/05/2015] [Accepted: 01/26/2015] [Indexed: 12/20/2022]
Abstract
Oxidative stress and inflammatory responses have been identified as key elements of neuronal cell apoptosis. In this study, we investigated the mechanisms by which inflammatory responses contribute to apoptosis in human neuroblastoma SH-SY5Y cells treated with fipronil (FPN). Based on the cytotoxic mechanism of FPN, we examined the neuroprotective effects of meloxicam against FPN-induced neuronal cell death. Treatment of SH-SY5Y cells with FPN induced apoptosis via activation of caspase-9 and -3, leading to nuclear condensation. In addition, FPN induced oxidative stress and increased expression of cyclooxygenase-2 (COX-2) and tumor necrosis factor-α (TNF-α) via inflammatory stimulation. Pretreatment of cells with meloxicam enhanced the viability of FPN-exposed cells through attenuation of oxidative stress and inflammatory response. FPN activated mitogen activated protein kinase (MAPK) and inhibitors of MAPK abolished FPN-induced COX-2 expression. Meloxicam also attenuated FPN-induced cell death by reducing MAPK-mediated pro-inflammatory factors. Furthermore, we observed both nuclear accumulation of p53 and enhanced levels of cytosolic p53 in a concentration-dependent manner after FPN treatment. Pretreatment of cells with meloxicam blocked the translocation of p53 from the cytosol to the nucleus. Together, these data suggest that meloxicam may exert anti-apoptotic effects against FPN-induced cytotoxicity by both attenuating oxidative stress and inhibiting the inflammatory cascade via inactivation of MAPK and p53 signaling.
Collapse
Affiliation(s)
- Jae Hyeon Park
- Department of Pharmacology, College of Medicine, Hanyang University, Korea.,Hanyang Biomedical Research Institute, Seoul, Korea.,Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Youn Sun Park
- Department of Pharmacology, College of Medicine, Hanyang University, Korea.,Hanyang Biomedical Research Institute, Seoul, Korea
| | - Je-Bong Lee
- Department of Agro-food Safety, National Academy of Agricultural Science, Rural Development Administration, Suwon, Korea
| | - Kyung-Hun Park
- Department of Agro-food Safety, National Academy of Agricultural Science, Rural Development Administration, Suwon, Korea
| | - Min-kyoung Paik
- Department of Agro-food Safety, National Academy of Agricultural Science, Rural Development Administration, Suwon, Korea
| | - Mihye Jeong
- Department of Agro-food Safety, National Academy of Agricultural Science, Rural Development Administration, Suwon, Korea
| | - Hyun Chul Koh
- Department of Pharmacology, College of Medicine, Hanyang University, Korea.,Hanyang Biomedical Research Institute, Seoul, Korea.,Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| |
Collapse
|
19
|
Neuroprotective Effects of 3,6′-Disinapoyl Sucrose Through Increased BDNF Levels and CREB Phosphorylation via the CaMKII and ERK1/2 Pathway. J Mol Neurosci 2014; 53:600-7. [DOI: 10.1007/s12031-013-0226-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 12/29/2013] [Indexed: 12/23/2022]
|
20
|
Bao XQ, Kong XC, Kong LB, Wu LY, Sun H, Zhang D. Squamosamide derivative FLZ protected dopaminergic neuron by activating Akt signaling pathway in 6-OHDA-induced in vivo and in vitro Parkinson's disease models. Brain Res 2014; 1547:49-57. [DOI: 10.1016/j.brainres.2013.12.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 11/30/2022]
|
21
|
Madathil SK, Karuppagounder SS, Mohanakumar KP. Sodium salicylate protects against rotenone-induced Parkinsonism in rats. Synapse 2013; 67:502-14. [DOI: 10.1002/syn.21658] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 02/22/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Sindhu K. Madathil
- Division of Cell Biology and Physiology; Laboratory of Clinical and Experimental Neuroscience, CSIR-Indian Institute of Chemical Biology; Kolkata; 700032; West Bengal; India
| | - Saravanan S. Karuppagounder
- Division of Cell Biology and Physiology; Laboratory of Clinical and Experimental Neuroscience, CSIR-Indian Institute of Chemical Biology; Kolkata; 700032; West Bengal; India
| | - Kochupurackal P. Mohanakumar
- Division of Cell Biology and Physiology; Laboratory of Clinical and Experimental Neuroscience, CSIR-Indian Institute of Chemical Biology; Kolkata; 700032; West Bengal; India
| |
Collapse
|
22
|
Huang Y, Xu J, Liang M, Hong X, Suo H, Liu J, Yu M, Huang F. RESP18 is involved in the cytotoxicity of dopaminergic neurotoxins in MN9D cells. Neurotox Res 2013; 24:164-75. [PMID: 23319378 DOI: 10.1007/s12640-013-9375-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 12/08/2012] [Accepted: 01/03/2013] [Indexed: 01/06/2023]
Abstract
RESP18 (Regulated endocrine-specific protein, 18 kDa) was first identified as a dopaminergic drugs-regulated intermediate pituitary transcript. RESP18 protein is a unique endoplasmic reticulum (ER) resident protein. Its functions in the brain especially in the nervous system disorders remain unknown. ER stress (ERS) has been proved to be one of the important pathogenesis of neurodegenerative diseases, including Parkinson's disease (PD). Here, we explored the association of RESP18 and ERS in cell models of PD. Dopaminergic neurotoxin 1-methyl-4-phenyl-pyridinium ion (MPP⁺), 6-hydroxydopamine (6-OHDA), and rotenone evoked dramatic MN9D cell death. The transcriptional expressions of RESP18 and two ERS markers--binding immunoglobulin protein/glucose-regulated protein 78 (BiP/GRP78) and CCAAT/enhancer-binding protein homologous protein (CHOP) manifested differential changes in MN9D cells treated with MPP⁺, 6-OHDA, and rotenone. The RESP18 protein levels increased in MPP⁺ and 6-OHDA-treated cells, but did not change in the cells treated with rotenone, while the protein levels of ER molecular chaperone heat shock protein 90 kDa beta member 1/glucose-regulated protein 94 (HSP90B1/GRP94) and BiP in the cells were up-regulated by MPP⁺ and 6-OHDA, respectively. Salubrinal, an ERS inhibitor, significantly reduced MPP⁺ and 6-OHDA-induced cell death. Moreover, ERS inducer--thapsigargin and tunicamycin, decreased the expression of RESP18, which is different from the changes of BiP, GRP94, and CHOP. Silencing RESP18 expression with Lenti-shRNA alleviated MPP⁺-induced cell death, while over-expression of RESP18 resulted in aggravated cell death induced by MPP⁺ and 6-OHDA. Taken together, our results suggest that RESP18 is involved in the cytotoxicity of dopaminergic neurotoxins.
Collapse
Affiliation(s)
- Yufang Huang
- State Key Laboratory of Medical Neurobiology, Shanghai Medical College and Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Kim DS, Sohn EJ, Kim DW, Kim YN, Eom SA, Yoon GH, Cho SW, Lee SH, Hwang HS, Cho YS, Park JS, Eum WS, Choi SY. PEP-1-p18 prevents neuronal cell death by inhibiting oxidative stress and Bax expression. BMB Rep 2012; 45:532-7. [DOI: 10.5483/bmbrep.2012.45.9.083] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
24
|
Tasaki Y, Yamamoto J, Omura T, Sakaguchi T, Kimura N, Ohtaki KI, Ono T, Suno M, Asari M, Ohkubo T, Noda T, Awaya T, Shimizu K, Matsubara K. Meloxicam ameliorates motor dysfunction and dopaminergic neurodegeneration by maintaining Akt-signaling in a mouse Parkinson's disease model. Neurosci Lett 2012; 521:15-9. [DOI: 10.1016/j.neulet.2012.05.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/11/2012] [Accepted: 05/14/2012] [Indexed: 01/10/2023]
|
25
|
Zhang L, Ding W, Sun H, Zhou Q, Huang J, Li X, Xie Y, Chen J. Salidroside protects PC12 cells from MPP⁺-induced apoptosis via activation of the PI3K/Akt pathway. Food Chem Toxicol 2012; 50:2591-7. [PMID: 22664423 DOI: 10.1016/j.fct.2012.05.045] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 05/22/2012] [Accepted: 05/25/2012] [Indexed: 11/17/2022]
Abstract
Oxidative stress plays an important role in the pathogenesis of Parkinson's disease (PD). Salidroside (SAL), a phenylpropanoid glycoside isolated from Rhodiola rosea L., can exert potent antioxidant properties. In this study, we investigated the protective effects, and the possible mechanism of action, of SAL against 1-methyl-4-phenylpyridinium (MPP(+))-induced cell damage in rat adrenal pheochromocytoma PC12 cells. Pretreatment of PC12 cells with SAL significantly reduced the ability of MPP(+) to induce apoptosis in a dose and time-dependent manner. SAL significantly and dose-dependently inhibited MPP(+)-induced chromatin condensation and MPP(+)-induced release of lactate dehydrogenase by PC12 cells. SAL enhanced Akt phosphorylation in PC12 cells, and the protective effects of SAL against MPP(+)-induced apoptosis were abolished by LY294002, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K) phosphorylation. These findings suggest that SAL prevents MPP(+)-induced apoptosis in PC12 cells, at least in part through activation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Lingling Zhang
- Research Center of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Lee YP, Kim DW, Kang HW, Hwang JH, Jeong HJ, Sohn EJ, Kim MJ, Ahn EH, Shin MJ, Kim DS, Kang TC, Kwon OS, Cho SW, Park J, Eum WS, Choi SY. PEP-1-heat shock protein 27 protects from neuronal damage in cells and in a Parkinson’s disease mouse model. FEBS J 2012; 279:1929-42. [DOI: 10.1111/j.1742-4658.2012.08574.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
27
|
Tasaki Y, Yamamoto J, Omura T, Noda T, Kamiyama N, Yoshida K, Satomi M, Sakaguchi T, Asari M, Ohkubo T, Shimizu K, Matsubara K. Oxicam structure in non-steroidal anti-inflammatory drugs is essential to exhibit Akt-mediated neuroprotection against 1-methyl-4-phenyl pyridinium-induced cytotoxicity. Eur J Pharmacol 2012; 676:57-63. [DOI: 10.1016/j.ejphar.2011.11.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 11/22/2011] [Accepted: 11/27/2011] [Indexed: 12/17/2022]
|
28
|
Zhu G, Wang X, Wu S, Li Q. Involvement of activation of PI3K/Akt pathway in the protective effects of puerarin against MPP+-induced human neuroblastoma SH-SY5Y cell death. Neurochem Int 2012; 60:400-8. [PMID: 22265823 DOI: 10.1016/j.neuint.2012.01.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 12/28/2011] [Accepted: 01/04/2012] [Indexed: 01/01/2023]
Abstract
In an attempt to clarify the protective effect of puerarin on toxin-insulted dopaminergic neuronal death, this present study was carried out by using a typical Parkinson's disease (PD) model - 1-methyl-4-phenylpyridinium iodide (MPP(+))-induced dopaminergic SH-SY5Y cellular model. Data are presented, which showed that puerarin up-regulated Akt phosphorylation in both of MPP(+)-treated and non-MPP(+)-treated cells. The presence of PI3K inhibitor LY294002 completely blocked puerarin-induced activation of Akt phosphorylation. Moreover, puerarin decreased MPP(+)-induced cell death, which was blocked by phosphoinositide 3-kinase (PI3K) inhibitor LY294002. We further demonstrated that puerarin protected against MPP(+)-induced p53 nuclear accumulation, Puma (p53-upregulated mediator of apoptosis) and Bax expression and caspase-3-dependent programmed cell death (PCD). This protection was blocked by applying a PI3K/Akt inhibitor. Additionally, it was Pifithrin-α, but not Pifithrin-μ, which blocked MPP(+)-induced Puma and Bax expression, caspase-3 activation and cell death. Collectively, these data suggest that the activation of PI3K/Akt pathway is involved in the protective effect of puerarin against MPP(+)-induced neuroblastoma SH-SY5Y cell death through inhibiting nuclear p53 accumulation and subsequently caspase-3-dependent PCD. Puerarin might be a potential therapeutic agent for PD.
Collapse
Affiliation(s)
- Guoqi Zhu
- Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Traditional Chinese Medicine, Hefei, China
| | | | | | | |
Collapse
|
29
|
Bao XQ, Kong XC, Qian C, Zhang D. FLZ protects dopaminergic neuron through activating protein kinase B/mammalian target of rapamycin pathway and inhibiting RTP801 expression in Parkinson's disease models. Neuroscience 2012; 202:396-404. [DOI: 10.1016/j.neuroscience.2011.11.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 10/25/2011] [Accepted: 11/16/2011] [Indexed: 01/05/2023]
|
30
|
Durgadoss L, Nidadavolu P, Valli RK, Saeed U, Mishra M, Seth P, Ravindranath V. Redox modification of Akt mediated by the dopaminergic neurotoxin MPTP, in mouse midbrain, leads to down‐regulation of pAkt. FASEB J 2011; 26:1473-83. [DOI: 10.1096/fj.11-194100] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Lalitha Durgadoss
- Division of Molecular and Cellular NeurosciencesNational Brain Research CentreNainwal ModeManesarIndia
| | - Prakash Nidadavolu
- Division of Molecular and Cellular NeurosciencesNational Brain Research CentreNainwal ModeManesarIndia
- Centre for NeuroscienceIndian Institute of ScienceBangaloreIndia
| | - Rupanagudi Khader Valli
- Division of Molecular and Cellular NeurosciencesNational Brain Research CentreNainwal ModeManesarIndia
| | - Uzma Saeed
- Division of Molecular and Cellular NeurosciencesNational Brain Research CentreNainwal ModeManesarIndia
| | - Mamata Mishra
- Division of Molecular and Cellular NeurosciencesNational Brain Research CentreNainwal ModeManesarIndia
| | - Pankaj Seth
- Division of Molecular and Cellular NeurosciencesNational Brain Research CentreNainwal ModeManesarIndia
| | - Vijayalakshmi Ravindranath
- Division of Molecular and Cellular NeurosciencesNational Brain Research CentreNainwal ModeManesarIndia
- Centre for NeuroscienceIndian Institute of ScienceBangaloreIndia
| |
Collapse
|
31
|
Greene LA, Levy O, Malagelada C. Akt as a victim, villain and potential hero in Parkinson's disease pathophysiology and treatment. Cell Mol Neurobiol 2011; 31:969-78. [PMID: 21547489 PMCID: PMC3678379 DOI: 10.1007/s10571-011-9671-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 02/24/2011] [Indexed: 12/25/2022]
Abstract
There are two major purposes of this essay. The first is to summarize existing evidence that irrespective of the initiating causes, neuron death and degeneration in Parkinson's disease (PD) are due to the common feature of failure of signaling by Akt, a kinase involved in neuron survival and maintenance of synaptic contacts. The second is to consider possible means by which such a failure of Akt signaling might be benignly prevented or reversed in neurons affected by PD, so as to treat PD symptoms, block disease progression, and potentially, promote recovery.
Collapse
Affiliation(s)
- Lloyd A Greene
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, 630W. 168th Street, New York, NY 10032, USA.
| | | | | |
Collapse
|