1
|
Hagarty-Waite KA, Emmons HA, Fordahl SC, Erikson KM. The Influence of Strain and Sex on High Fat Diet-Associated Alterations of Dopamine Neurochemistry in Mice. Nutrients 2024; 16:3301. [PMID: 39408267 PMCID: PMC11479034 DOI: 10.3390/nu16193301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Objective: The objective of this study was to determine the influence of sex and strain on striatal and nucleus accumbens dopamine neurochemistry and dopamine-related behavior due to a high-saturated-fat diet (HFD). Methods: Male and female C57B6/J (B6J) and Balb/cJ (Balb/c) mice were randomly assigned to a control-fat diet (CFD) containing 10% kcal fat/g or a mineral-matched HFD containing 60% kcal fat/g for 12 weeks. Results: Intraperitoneal glucose tolerance testing (IPGTT) and elevated plus maze experiments (EPM) confirmed that an HFD produced marked blunting of glucose clearance and increased anxiety-like behavior, respectively, in male and female B6J mice. Electrically evoked dopamine release in the striatum and reuptake in the nucleus accumbens (NAc), as measured by ex vivo fast scan cyclic voltammetry, was reduced for HFD-fed B6J females. Impairment in glucose metabolism explained HFD-induced changes in dopamine neurochemistry for B6J males and, to a lesser extent, Balb/c males. The relative expressions of protein markers associated with the activation of microglia, ionized calcium binding adaptor molecule (Iba1) and cluster of differentiation molecule 11b (CD11b) in the striatum were increased due to an HFD for B6J males but were unchanged or decreased amongst HFD-fed Balb/c mice. Conclusions: Our findings demonstrate that strain and sex influence the insulin- and microglia-dependent mechanisms of alterations to dopamine neurochemistry and associated behavior due to an HFD.
Collapse
Affiliation(s)
| | | | | | - Keith M. Erikson
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (K.A.H.-W.); (H.A.E.); (S.C.F.)
| |
Collapse
|
2
|
Hagena H, Manahan-Vaughan D. Interplay of hippocampal long-term potentiation and long-term depression in enabling memory representations. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230229. [PMID: 38853558 PMCID: PMC11343234 DOI: 10.1098/rstb.2023.0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024] Open
Abstract
Hippocampal long-term potentiation (LTP) and long-term depression (LTD) are Hebbian forms of synaptic plasticity that are widely believed to comprise the physiological correlates of associative learning. They comprise a persistent, input-specific increase or decrease, respectively, in synaptic efficacy that, in rodents, can be followed for days and weeks in vivo. Persistent (>24 h) LTP and LTD exhibit distinct frequency-dependencies and molecular profiles in the hippocampal subfields. Moreover, causal and genetic studies in behaving rodents indicate that both LTP and LTD fulfil specific and complementary roles in the acquisition and retention of spatial memory. LTP is likely to be responsible for the generation of a record of spatial experience, which may serve as an associative schema that can be re-used to expedite or facilitate subsequent learning. In contrast, LTD may enable modification and dynamic updating of this representation, such that detailed spatial content information is included and the schema is rendered unique and distinguishable from other similar representations. Together, LTP and LTD engage in a dynamic interplay that supports the generation of complex associative memories that are resistant to generalization. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Hardy Hagena
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum44780, Germany
| | - Denise Manahan-Vaughan
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum44780, Germany
| |
Collapse
|
3
|
Akillioglu K, Karadepe M. Effect Neonatal Ketamine Treatment on Exploratory and Anxiety-like Behaviours in Adulthood. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2021; 19:93-103. [PMID: 33508792 PMCID: PMC7851452 DOI: 10.9758/cpn.2021.19.1.93] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/17/2020] [Accepted: 06/15/2020] [Indexed: 11/18/2022]
Affiliation(s)
- Kübra Akillioglu
- Division of Neurophysiology, Department of Physiology, Medical Faculty, University of Cukurova, Turkey
| | - Mustafa Karadepe
- Department of Internal Medicine, Medical Faculty of Cukurova, Adana, Turkey
| |
Collapse
|
4
|
Manahan-Vaughan D. Special Considerations When Using Mice for In Vivo Electrophysiology and Long-Term Studies of Hippocampal Synaptic Plasticity During Behavior. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2018. [DOI: 10.1016/b978-0-12-812028-6.00003-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Xu X, Jaehne EJ, Greenberg Z, McCarthy P, Saleh E, Parish CL, Camera D, Heng J, Haas M, Baune BT, Ratnayake U, van den Buuse M, Lopez AF, Ramshaw HS, Schwarz Q. 14-3-3ζ deficient mice in the BALB/c background display behavioural and anatomical defects associated with neurodevelopmental disorders. Sci Rep 2015. [PMID: 26207352 PMCID: PMC4513550 DOI: 10.1038/srep12434] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Sequencing and expression analyses implicate 14-3-3ζ as a genetic risk factor for neurodevelopmental disorders such as schizophrenia and autism. In support of this notion, we recently found that 14-3-3ζ−/− mice in the Sv/129 background display schizophrenia-like defects. As epistatic interactions play a significant role in disease pathogenesis we generated a new congenic strain in the BALB/c background to determine the impact of genetic interactions on the 14-3-3ζ−/− phenotype. In addition to replicating defects such as aberrant mossy fibre connectivity and impaired spatial memory, our analysis of 14-3-3ζ−/− BALB/c mice identified enlarged lateral ventricles, reduced synaptic density and ectopically positioned pyramidal neurons in all subfields of the hippocampus. In contrast to our previous analyses, 14-3-3ζ−/− BALB/c mice lacked locomotor hyperactivity that was underscored by normal levels of the dopamine transporter (DAT) and dopamine signalling. Taken together, our results demonstrate that dysfunction of 14-3-3ζ gives rise to many of the pathological hallmarks associated with the human condition. 14-3-3ζ-deficient BALB/c mice therefore provide a novel model to address the underlying biology of structural defects affecting the hippocampus and ventricle, and cognitive defects such as hippocampal-dependent learning and memory.
Collapse
Affiliation(s)
- Xiangjun Xu
- Centre for Cancer Biology, SA Pathology and University of South Australia, Frome Road, Adelaide, 5000, Australia
| | - Emily J Jaehne
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA 5005, Australia
| | - Zarina Greenberg
- Centre for Cancer Biology, SA Pathology and University of South Australia, Frome Road, Adelaide, 5000, Australia
| | - Peter McCarthy
- Centre for Cancer Biology, SA Pathology and University of South Australia, Frome Road, Adelaide, 5000, Australia
| | - Eiman Saleh
- Centre for Cancer Biology, SA Pathology and University of South Australia, Frome Road, Adelaide, 5000, Australia
| | - Clare L Parish
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, 3010, Australia
| | - Daria Camera
- School of Medical Sciences, RMIT University, Bundoora, 3083, Australia
| | - Julian Heng
- 1] Harry Perkins Institute of Medical Research, Perth, Australia [2] School of Medicine and Pharmacology, University of Western Australia, Crawley, 6009, Australia
| | - Matilda Haas
- Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - Bernhard T Baune
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA 5005, Australia
| | - Udani Ratnayake
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, 3010, Australia
| | - Maarten van den Buuse
- 1] The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, 3010, Australia [2] Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - Angel F Lopez
- Centre for Cancer Biology, SA Pathology and University of South Australia, Frome Road, Adelaide, 5000, Australia
| | - Hayley S Ramshaw
- Centre for Cancer Biology, SA Pathology and University of South Australia, Frome Road, Adelaide, 5000, Australia
| | - Quenten Schwarz
- Centre for Cancer Biology, SA Pathology and University of South Australia, Frome Road, Adelaide, 5000, Australia
| |
Collapse
|
6
|
Zimprich A, Garrett L, Deussing JM, Wotjak CT, Fuchs H, Gailus-Durner V, de Angelis MH, Wurst W, Hölter SM. A robust and reliable non-invasive test for stress responsivity in mice. Front Behav Neurosci 2014; 8:125. [PMID: 24782732 PMCID: PMC3995076 DOI: 10.3389/fnbeh.2014.00125] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/25/2014] [Indexed: 12/24/2022] Open
Abstract
Stress and an altered stress response have been associated with many multifactorial diseases, such as psychiatric disorders or neurodegenerative diseases. As currently mouse mutants for each single gene are generated and phenotyped in a large-scale manner, it seems advisable also to test these mutants for alterations in their stress responses. Here we present the determinants of a robust and reliable non-invasive test for stress-responsivity in mice. Stress is applied through restraining the mice in tubes and recording behavior in the Open Field 20 min after cessation of the stress. Two hours, but not 15 or 50 min of restraint lead to a robust and reproducible increase in distance traveled and number of rearings during the first 5 min in the Open Field in C57BL/6 mice. This behavioral response is blocked by the corticosterone synthesis inhibitor metyrapone, but not by RU486 treatment, indicating that it depends on corticosteroid secretion, but is not mediated via the glucocorticoid receptor type II. We assumed that with a stress duration of 15 min one could detect hyper-responsivity, and with a stress duration of 2 h hypo-responsivity in mutant mouse lines. This was validated with two mutant lines known to show opposing effects on corticosterone secretion after stress exposure, corticotropin-releasing hormone (CRH) over-expressing mice and CRH receptor 1 knockout (KO) mice. Both lines showed the expected phenotype, i.e., increased stress responsivity in the CRH over-expressing mouse line (after 15 min restraint stress) and decreased stress responsivity in the CRHR1-KO mouse line (after 2 h of restraint stress). It is possible to repeat the acute stress test several times without the stressed animal adapting to it, and the behavioral response can be robustly evoked at different ages, in both sexes and in different mouse strains. Thus, locomotor and rearing behavior in the Open Field after an acute stress challenge can be used as reliable, non-invasive indicators of stress responsivity and corticosterone secretion in mice.
Collapse
Affiliation(s)
- Annemarie Zimprich
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics Neuherberg, Germany ; German Mouse Clinic, Helmholtz Zentrum München Neuherberg, Germany
| | - Lillian Garrett
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics Neuherberg, Germany ; German Mouse Clinic, Helmholtz Zentrum München Neuherberg, Germany
| | - Jan M Deussing
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics Neuherberg, Germany ; Max Planck Institute of Psychiatry Munich, Germany
| | | | - Helmut Fuchs
- German Mouse Clinic, Helmholtz Zentrum München Neuherberg, Germany ; Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics Neuherberg, Germany
| | - Valerie Gailus-Durner
- German Mouse Clinic, Helmholtz Zentrum München Neuherberg, Germany ; Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics Neuherberg, Germany
| | - Martin Hrabě de Angelis
- German Mouse Clinic, Helmholtz Zentrum München Neuherberg, Germany ; Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics Neuherberg, Germany ; Lehrstuhl für Experimentelle Genetik, Technische Universität München München, Germany ; German Center for Diabetes Research (DZD) Neuherberg, Germany
| | - Wolfgang Wurst
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics Neuherberg, Germany ; Max Planck Institute of Psychiatry Munich, Germany ; Lehrstuhl für Entwicklungsgenetik, Technische Universität München München, Germany ; Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. Munich, Germany ; Munich Cluster for Systems Neurology München, Germany
| | - Sabine M Hölter
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics Neuherberg, Germany ; German Mouse Clinic, Helmholtz Zentrum München Neuherberg, Germany
| |
Collapse
|
7
|
The effect of neonatal N-methyl-d-aspartate receptor blockade on exploratory and anxiety-like behaviors in adult BALB/c and C57BL/6 mice. Behav Brain Res 2012; 233:157-61. [DOI: 10.1016/j.bbr.2012.04.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/20/2012] [Accepted: 04/23/2012] [Indexed: 01/10/2023]
|
8
|
Flood ZC, Engel DLJ, Simon CC, Negherbon KR, Murphy LJ, Tamavimok W, Anderson GM, Janušonis S. Brain growth trajectories in mouse strains with central and peripheral serotonin differences: relevance to autism models. Neuroscience 2012; 210:286-95. [PMID: 22450231 DOI: 10.1016/j.neuroscience.2012.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 03/01/2012] [Accepted: 03/03/2012] [Indexed: 10/28/2022]
Abstract
The genetic heterogeneity of autism spectrum disorders (ASDs) suggests that their underlying neurobiology involves dysfunction at the neural network level. Understanding these neural networks will require a major collaborative effort and will depend on validated and widely accepted animal models. Many mouse models have been proposed in autism research, but the assessment of their validity often has been limited to measuring social interactions. However, two other well-replicated findings have been reported in ASDs: transient brain overgrowth in early postnatal life and elevated 5-HT (serotonin) levels in blood platelets (platelet hyperserotonemia). We examined two inbred mouse strains (C57BL/6 and BALB/c) with respect to these phenomena. The BALB/c strain is less social and exhibits some other autistic-like behaviors. In addition, it has a lower 5-HT synthesis rate in the central nervous system due to a single-nucleotide polymorphism in the tryptophan hydroxylase 2 (Tph2) gene. The postnatal growth of brain mass was analyzed with mixed-effects models that included litter effects. The volume of the hippocampal complex and the thickness of the somatosensory cortex were measured in 3D-brain reconstructions from serial sections. The postnatal whole-blood 5-HT levels were assessed with high-performance liquid chromatography. With respect to the BALB/c strain, the C57BL/6 strain showed transient brain overgrowth and persistent blood hyperserotonemia. The hippocampal volume was permanently enlarged in the C57BL/6 strain, with no change in the adult brain mass. These results indicate that, in mice, autistic-like shifts in the brain and periphery may be associated with less autistic-like behaviors. Importantly, they suggest that consistency among behavioral, anatomical, and physiological measures may expedite the validation of new and previously proposed mouse models of autism, and that the construct validity of models should be demonstrated when these measures are inconsistent.
Collapse
Affiliation(s)
- Z C Flood
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Akillioglu K, Melik EB, Melik E, Boga A. Effect of ketamine on exploratory behaviour in BALB/C and C57BL/6 mice. Pharmacol Biochem Behav 2011; 100:513-7. [PMID: 22037409 DOI: 10.1016/j.pbb.2011.10.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 10/05/2011] [Accepted: 10/14/2011] [Indexed: 11/17/2022]
Abstract
In this study, we evaluated the effect of ketamine on exploratory locomotion behaviours in the Balb/c and C57BL/6 strains of mice, which differ in their locomotion behaviours. Intraperitoneal administration of ketamine at three different doses (1, 5 or 10 mg/kg, 0.1 ml/10 gr body weight) was performed on adult male Balb/c and C57BL/6 mice. The same volume of saline was applied to the control group. The open-field and elevated plus maze apparatus were used to evaluate exploratory locomotion. In the open-field test, Balb/c mice less spend time in the centre of the field and was decreased locomotor activity compared to C57BL/6 mice (p<0.01). Ketamine treatment of Balb/c mice at 10 mg/kg dose caused an increase in locomotor activity and an increase in the amount of time spent in the centre in the open-field test, compared to the control group (p<0.05). In C57BL/6 mice, ketamine treatment (1 and 10 mg/kg) decreased locomotor activity (p<0.05). In C57BL/6 mice, the three different doses of ketamine application each caused a decrease in the frequency of centre crossing (p<0.001) and the spent time in the centre (p<0.05). In the elevated plus maze, the number of open-arm entries, the percentage of open-arm time and total arm entries were decreased in Balb/c mice compared to C57BL/6 mice (p<0.001). Ketamine treatment of Balb/c mice at 10 mg/kg dose caused an increase in the open-arm activity (p<0.001). Ketamine application (10 mg/kg) decreased the open-arm activity in C57BL/6 mice (p<0.05). A subanaesthetic dose of ketamine increased exploratory locomotion in Balb/c mice. In contrast, a subanaesthetic dose of ketamine decreased exploratory locomotion in C57BL/6 mice. In conclusion, hereditary factors may play an important role in ketamine-induced responses.
Collapse
Affiliation(s)
- Kubra Akillioglu
- Division of Neurophysiology, Department of Physiology, Medical Faculty, University of Çukurova, 01330 Balcali, Adana, Turkey.
| | | | | | | |
Collapse
|