1
|
Corrê MDS, de Freitas BS, Machado GDB, Pires VN, Bromberg E, Hallak JEC, Zuardi AW, Crippa JAS, Schröder N. Cannabidiol reverses memory impairments and activates components of the Akt/GSK3β pathway in an experimental model of estrogen depletion. Behav Brain Res 2022; 417:113555. [PMID: 34450240 DOI: 10.1016/j.bbr.2021.113555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 11/28/2022]
Abstract
Clinical and preclinical evidence has indicated that estrogen depletion leads to memory impairments and increases the susceptibility to neural damage. Here, we have sought to investigate the effects of Cannabidiol (CBD) a non-psychotomimetic compound from Cannabis sativa, on memory deficits induced by estrogen depletion in rats, and its underlying mechanisms. Adult rats were subjected to bilateral ovariectomy, an established estrogen depletion model in rodents, or sham surgery and allowed to recover for three weeks. After that, they received daily injections of CBD (10 mg/kg) for fourteen days. Rats were tested in the inhibitory avoidance task, a type of emotionally-motivated memory. After behavioral testing they were euthanized, and their hippocampi were isolated for analysis of components of the Akt/GSK3β survival pathway and the antiapoptotic protein Bcl2. Results revealed that ovariectomy impaired avoidance memory, and CBD was able to completely reverse estrogen depletion-induced memory impairment. Ovariectomy also reduced Akt/GSK3β pathway's activation by decreasing the phosphorylation levels of Akt and GSK3β and Bcl2 levels, which were ameliorated by CBD. The present results indicate that CBD leads to a functional recovery accompanied by the Akt/GSK3β survival pathway's activation, supporting its potential as a treatment for estrogen decline-induced deterioration of neural functioning and maintenance.
Collapse
Affiliation(s)
- Márcio da Silveira Corrê
- Neurobiology and Developmental Biology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil; Faculty of Medicine, Department of Health, Integrated Regional University of Upper Uruguay and Missions, Erechim, Brazil
| | - Betânia Souza de Freitas
- Neurobiology and Developmental Biology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Gustavo Dalto Barroso Machado
- Neurobiology and Developmental Biology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Vivian Naziaseno Pires
- Neurobiology and Developmental Biology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Elke Bromberg
- Neurobiology and Developmental Biology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil; National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil
| | - Jaime E C Hallak
- National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil; Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Antônio Waldo Zuardi
- National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil; Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - José Alexandre S Crippa
- National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil; Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Nadja Schröder
- National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil; Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
2
|
Abstract
17β-Estradiol (E2) is a potent steroid hormone of both gonadal and neuronal origin that exerts profound effects on neuroplasticity in several brain regions. Dendritic spine and synapse formation and rearrangements are modulated and mediated by estrogens. In this chapter, we highlighted the essential background concerning the effects of E2 on synaptic rearrangements accompanied by synaptic plasticity in E2-sensitive brain regions that mediate learning and memory, i.e., cortex and hippocampus. We also address details of the molecular mechanisms underlying E2 regulation of spine dynamics. The proposed models of action of E2 overlaps with that for well-established synaptic modulators, such as adenosine. Thus, the possible synergistic effects of those two molecules in respect to synaptic rearrangement and plasticity were presented.
Collapse
|
3
|
Sahab-Negah S, Hajali V, Moradi HR, Gorji A. The Impact of Estradiol on Neurogenesis and Cognitive Functions in Alzheimer's Disease. Cell Mol Neurobiol 2020; 40:283-299. [PMID: 31502112 PMCID: PMC11448899 DOI: 10.1007/s10571-019-00733-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/31/2019] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is described as cognitive and memory impairments with a sex-related epidemiological profile, affecting two times more women than men. There is emerging evidence that alternations in the hippocampal neurogenesis occur at the early stage of AD. Therapies that may effectively slow, stop, or regenerate the dying neurons in AD are being extensively investigated in the last few decades, but none has yet been found to be effective. The regulation of endogenous neurogenesis is one of the main therapeutic targets for AD. Mounting evidence indicates that the neurosteroid estradiol (17β-estradiol) plays a supporting role in neurogenesis, neuronal activity, and synaptic plasticity of AD. This effect may provide preventive and/or therapeutic approaches for AD. In this article, we discuss the molecular mechanism of potential estradiol modulatory action on endogenous neurogenesis, synaptic plasticity, and cognitive function in AD.
Collapse
Affiliation(s)
- Sajad Sahab-Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Vahid Hajali
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Moradi
- Histology and Embryology Group, Basic Science Department, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Ali Gorji
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Department of Neurosurgery and Department of Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Domagkstr. 11, Münster, Germany.
| |
Collapse
|
4
|
Randesi M, Contoreggi NH, Zhou Y, Rubin BR, Bellamy JR, Yu F, Gray JD, McEwen BS, Milner TA, Kreek MJ. Sex Differences in Neuroplasticity- and Stress-Related Gene Expression and Protein Levels in the Rat Hippocampus Following Oxycodone Conditioned Place Preference. Neuroscience 2019; 410:274-292. [PMID: 31071414 DOI: 10.1016/j.neuroscience.2019.04.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/29/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022]
Abstract
Prescription opioid abuse is a serious public health issue. Recently, we showed that female and male Sprague-Dawley rats acquire conditioned place preference (CPP) to the mu opioid receptor agonist oxycodone. Anatomical analysis of the hippocampus from these rats unveiled sex differences in the opioid system in a way that would support excitation and opiate associative learning processes especially in females. In this study, we examined the expression and protein densities of opioid, plasticity, stress and related kinase and signaling molecules in the hippocampus of female and male rats following oxycodone CPP. Oxycodone CPP females have: a) increases in ARC (activity regulated cytoskeletal-associated protein)-immunoreactivity (ir) in CA3 pyramidal cells; b) decreases in Npy (neuropeptide Y) gene expression in the medial hippocampus but higher numbers of NPY-containing hilar interneurons compared to males; c) increases in Crhr2 (corticotropin releasing factor receptor 2) expression in CA2/3; d) increases in Akt1 (AKT serine/threonine kinase 1) expression in medial hippocampus; and e) decreases in phosphorylated MAPK (mitogen activated protein kinase)-ir in CA1 and dentate gyrus. Oxycodone CPP males have: a) increases in Bdnf (brain derived-neurotrophic factor) expression, which is known to be produced in granule cells, relative to females; b) elevated Mapk1 expression and pMAPK-ir in the dentate hilus which harbors newly generated granule cells; and c) increases in CRHR1-ir in CA3 pyramidal cell soma. These sex-specific changes in plasticity, stress and kinase markers in hippocampal circuitry parallel previously observed sex differences in the opioid system after oxycodone CPP.
Collapse
Affiliation(s)
- Matthew Randesi
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States of America
| | - Natalina H Contoreggi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States of America
| | - Yan Zhou
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States of America
| | - Batsheva R Rubin
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States of America
| | - Julia R Bellamy
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States of America
| | - Fangmin Yu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States of America
| | - Jason D Gray
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States of America
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States of America
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States of America; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States of America.
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States of America
| |
Collapse
|
5
|
Randesi M, Zhou Y, Mazid S, Odell SC, Gray JD, Correa da Rosa J, McEwen BS, Milner TA, Kreek MJ. Sex differences after chronic stress in the expression of opioid-, stress- and neuroplasticity-related genes in the rat hippocampus. Neurobiol Stress 2018; 8:33-41. [PMID: 29888302 PMCID: PMC5991341 DOI: 10.1016/j.ynstr.2018.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 12/22/2022] Open
Abstract
Opioid peptides and their receptors re-organize within hippocampal neurons of female, but not male, rats following chronic immobilization stress (CIS) in a manner that promotes drug-related learning. This study was conducted to determine if there are also sex differences in gene expression in the hippocampus following CIS. Adult female and male rats were subjected to CIS (30 min/day) for 10 days. Twenty-four hours after the last stressor, the rats were euthanized, the brains were harvested and the medial (dentate gyrus/CA1) and lateral (CA2/CA3) dorsal hippocampus were isolated. Following total RNA isolation, cDNA was prepared for gene expression analysis using a RT2 Profiler PCR expression array. This custom designed qPCR expression array contained genes for opioid peptides and receptors, as well as genes involved in stress-responses and candidate genes involved in synaptic plasticity, including those upregulated following oxycodone self-administration in mice. Few sex differences are seen in hippocampal gene expression in control (unstressed) rats. In response to CIS, gene expression in the hippocampus was altered in males but not females. In males, opioid, stress, plasticity and kinase/signaling genes were all down-regulated following CIS, except for the gene that codes for corticotropin releasing hormone, which was upregulated. Changes in opioid gene expression following chronic stress were limited to the CA2 and CA3 regions (lateral sample). In conclusion, modest sex- and regional-differences are seen in expression of the opioid receptor genes, as well as genes involved in stress and plasticity responses in the hippocampus following CIS. Unstressed female rats have less Arc expression in hippocampus than males. Chronic immobilization stress (CIS) down-regulates opioid gene expression in males. CIS up-regulates Crh but down-regulates other stress genes in male hippocampi. CIS down-regulates Arc and other plasticity genes in male hippocampi. CIS down-regulates select kinases and signaling molecules in male hippocampi.
Collapse
Affiliation(s)
- Matthew Randesi
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, United States
| | - Yan Zhou
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, United States
| | - Sanoara Mazid
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, United States
| | - Shannon C Odell
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, United States.,Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, United States
| | - Jason D Gray
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, United States
| | - J Correa da Rosa
- Center for Clinical and Translational Science, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, United States
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, United States
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, United States.,Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, United States.,Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, United States
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, United States
| |
Collapse
|
6
|
Zhao Y, He L, Zhang Y, Zhao J, Liu Z, Xing F, Liu M, Feng Z, Li W, Zhang J. Estrogen receptor alpha and beta regulate actin polymerization and spatial memory through an SRC-1/mTORC2-dependent pathway in the hippocampus of female mice. J Steroid Biochem Mol Biol 2017; 174:96-113. [PMID: 28789972 DOI: 10.1016/j.jsbmb.2017.08.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 07/29/2017] [Accepted: 08/03/2017] [Indexed: 12/18/2022]
Abstract
Aging-related decline of estrogens, especially 17β-estradiol (E2), has been shown to play an important role in the impairment of learning and memory in dementias, such as Alzheimer's disease (AD), but the underlying molecular mechanisms are poorly understood. In this study, we first demonstrated decreases in E2 signaling (aromatase, classic estrogen receptor ERα and ERβ and their coactivator SRC-1), mTORC2 signaling (Rictor and phospho-AKTser473) and actin polymerization (phospho-Cofilin, Profilin-1 and the F-actin/G-actin ratio) in the hippocampus of old female mice compared with those levels detected in the adult hippocampus. We then showed that ERα and ERβ antagonists induced a significant decrease in SRC-1, mTORC2 signaling, actin polymerization, and CA1 spine density, as well as impairments of learning and memory; however, ovariectomy-induced changes of these parameters could be significantly reversed by treatment with ER agonists. We further showed that expression of SRC-1, mTORC2 signaling and actin polymerization could be upregulated by E2 treatment, and the effects of E2 were blocked by the ER antagonists but mimicked by the agonists. We also showed that the lentivirus-mediated SRC-1 knockdown significantly inhibited the agonist-activated mTORC2 signaling and actin polymerization, and the lentivirus-mediated Rictor knockdown also significantly inhibited the agonist-activated actin polymerization. Finally, we demonstrated that the ERα and ERβ antagonists induced a disruption in actin polymerization and an impairment of spatial memory, which were rescued by activation of mTORC2. Taken together, the above results clearly demonstrated an mTORC2-dependent regulation of actin polymerization that contributed to the effects of ERα and ERβ on spatial learning, which may provide a novel target for the prevention and treatment of E2-related dementia in the aged population.
Collapse
Affiliation(s)
- Yangang Zhao
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Li He
- School of Nursing, Third Military Medical University, Chongqing 400038, China
| | - Yuanyuan Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Jikai Zhao
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Zhi Liu
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| | - Fangzhou Xing
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Mengying Liu
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Ziqi Feng
- Cadet Brigade, Third Military Medical University, Chongqing 400038, China
| | - Wei Li
- School of Nursing, Third Military Medical University, Chongqing 400038, China.
| | - Jiqiang Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
7
|
Marques-Lopes J, Tesfaye E, Israilov S, Van Kempen TA, Wang G, Glass MJ, Pickel VM, Iadecola C, Waters EM, Milner TA. Redistribution of NMDA Receptors in Estrogen-Receptor-β-Containing Paraventricular Hypothalamic Neurons following Slow-Pressor Angiotensin II Hypertension in Female Mice with Accelerated Ovarian Failure. Neuroendocrinology 2017; 104:239-256. [PMID: 27078860 PMCID: PMC5381723 DOI: 10.1159/000446073] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/09/2016] [Indexed: 12/11/2022]
Abstract
Hypertension in male and aging female rodents is associated with glutamate-dependent plasticity in the hypothalamus, but existing models have failed to capture distinct transitional menopausal phases that could have a significant impact on the synaptic plasticity and emergent hypertension. In rodents, accelerated ovarian failure (AOF) induced by systemic injection of 4-vinylcyclohexane diepoxide mimics the estrogen fluctuations seen in human menopause including the perimenopause transition (peri-AOF) and postmenopause (post-AOF). Thus, we used the mouse AOF model to determine the impact of slow-pressor angiotensin II (AngII) administration on blood pressure and on the subcellular distribution of obligatory N-methyl-D-aspartate (NMDA) receptor GluN1 subunits in the paraventricular hypothalamic nucleus (PVN), a key estrogen-responsive cardiovascular regulatory area. Estrogen-sensitive neuronal profiles were identified in mice expressing enhanced green fluorescent protein under the promoter for estrogen receptor (ER) β, a major ER in the PVN. Slow-pressor AngII increased arterial blood pressure in mice at peri- and post-AOF time points. In control oil-injected (nonhypertensive) mice, AngII decreased the total number of GluN1 in ERβ-containing PVN dendrites. In contrast, AngII resulted in a reapportionment of GluN1 from the cytoplasm to the plasma membrane of ERβ-containing PVN dendrites in peri-AOF mice. Moreover, in post-AOF mice, AngII increased total GluN1, dendritic size and radical production in ERβ-containing neurons. These results indicate that unique patterns of hypothalamic glutamate receptor plasticity and dendritic structure accompany the elevated blood pressure in peri- and post-AOF time points. Our findings suggest the possibility that distinct neurobiological processes are associated with the increased blood pressure during perimenopausal and postmenopausal periods.
Collapse
Affiliation(s)
- Jose Marques-Lopes
- Feil Family Brain and Mind Research Institute, The Rockefeller University, New York, N.Y., USA
| | - Ephrath Tesfaye
- Feil Family Brain and Mind Research Institute, The Rockefeller University, New York, N.Y., USA
| | - Sigal Israilov
- Feil Family Brain and Mind Research Institute, The Rockefeller University, New York, N.Y., USA
| | - Tracey A. Van Kempen
- Feil Family Brain and Mind Research Institute, The Rockefeller University, New York, N.Y., USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, The Rockefeller University, New York, N.Y., USA
| | - Gang Wang
- Feil Family Brain and Mind Research Institute, The Rockefeller University, New York, N.Y., USA
| | - Michael J. Glass
- Feil Family Brain and Mind Research Institute, The Rockefeller University, New York, N.Y., USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, The Rockefeller University, New York, N.Y., USA
| | - Virginia M. Pickel
- Feil Family Brain and Mind Research Institute, The Rockefeller University, New York, N.Y., USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, The Rockefeller University, New York, N.Y., USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, The Rockefeller University, New York, N.Y., USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, The Rockefeller University, New York, N.Y., USA
| | - Elizabeth M. Waters
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, N.Y., USA
| | - Teresa A. Milner
- Feil Family Brain and Mind Research Institute, The Rockefeller University, New York, N.Y., USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, The Rockefeller University, New York, N.Y., USA
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, N.Y., USA
| |
Collapse
|
8
|
Almey A, Milner TA, Brake WG. Estrogen receptors in the central nervous system and their implication for dopamine-dependent cognition in females. Horm Behav 2015; 74:125-38. [PMID: 26122294 PMCID: PMC4820286 DOI: 10.1016/j.yhbeh.2015.06.010] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 12/12/2022]
Abstract
This article is part of a Special Issue "Estradiol and cognition". Over the past 30 years, research has demonstrated that estrogens not only are important for female reproduction, but also play a role in a diverse array of cognitive functions. Originally, estrogens were thought to have only one receptor, localized exclusively to the cytoplasm and nucleus of cells. However, it is now known that there are at least three estrogen receptors (ERs): ERα, ERβ and G-protein coupled ER1 (GPER1). In addition to being localized to nuclei, ERα and ERβ are localized to the cell membrane, and GPER1 is also observed at the cell membrane. The mechanism through which ERs are associated with the membrane remains unclear, but palmitoylation of receptors and associations between ERs and caveolin are implicated in membrane association. ERα and ERβ are mostly observed in the nucleus using light microscopy unless they are particularly abundant. However, electron microscopy has revealed that ERs are also found at the membrane in complimentary distributions in multiple brain regions, many of which are innervated by dopamine inputs and were previously thought to contain few ERs. In particular, membrane-associated ERs are observed in the prefrontal cortex, dorsal striatum, nucleus accumbens, and hippocampus, all of which are involved in learning and memory. These findings provide a mechanism for the rapid effects of estrogens in these regions. The effects of estrogens on dopamine-dependent cognition likely result from binding at both nuclear and membrane-associated ERs, so elucidating the localization of membrane-associated ERs helps provide a more complete understanding of the cognitive effects of these hormones.
Collapse
Affiliation(s)
- Anne Almey
- Centre for Studies in Behavioral Neurobiology (CSBN), Department of Psychology, Concordia University, Montreal, QC, Canada.
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY USA; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA.
| | - Wayne G Brake
- Centre for Studies in Behavioral Neurobiology (CSBN), Department of Psychology, Concordia University, Montreal, QC, Canada.
| |
Collapse
|
9
|
Van Kempen TA, Gorecka J, Gonzalez AD, Soeda F, Milner TA, Waters EM. Characterization of neural estrogen signaling and neurotrophic changes in the accelerated ovarian failure mouse model of menopause. Endocrinology 2014; 155:3610-23. [PMID: 24926825 PMCID: PMC4138565 DOI: 10.1210/en.2014-1190] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Accelerated ovarian failure (AOF) can be induced in young mice with low doses of 4-vinylcyclohexene diepoxide (VCD), modeling the hormone changes observed across menopause. We assessed markers of synaptic plasticity in the hippocampus, anxiety-like behavior, and spatial learning longitudinally at 4 time points across the AOF model: premenopause, early perimenopause, late perimenopause, and postmenopause (POST). As others have shown, VCD administration decreased ovarian follicle counts and increased acyclicity as the model progressed to POST but with no impact on organ or body weights. The morphology of Iba1 immunoreactive microglia did not differ between vehicle- and VCD-administered mice. Hippocampal postsynaptic density 95 levels were minimally altered across the AOF model but decreased at POST in CA3b 24 hours after exogenous estradiol benzoate (EB). In contrast, hippocampal phosphorylated AKT levels transiently decreased in premenopause but increased at POST after 24 hours of EB in select subregions. Electron microscopy revealed fewer estrogen receptor α containing dendritic spines and terminals in CA1 stratum radiatum at POST. mRNA levels of most brain-derived neurotrophic factor exons (except V and VI) were lower in POST compared with ovariectomized mice. Exon V was sensitive to 24 hours of EB administration in POST-VCD. Anxiety-like behavior was unaffected at any menopause phase. Spatial learning was unaffected in all groups, but POST-VCD mice performed below chance. Our results suggest that the AOF model is suitable for longitudinal studies of neurobiological changes across the menopause transition in mice. Our findings also point to complex interactions between estrogen receptors and pathways involved in synaptic plasticity.
Collapse
Affiliation(s)
- Tracey A Van Kempen
- Brain and Mind Research Institute (T.A.V.K., T.A.M.) and Graduate Program in Neuroscience (T.A.V.K., A.D.G.), Weill Cornell Medical College, and Laboratory of Neuroendocrinology (J.G., T.A.M., E.M.W.), The Rockefeller University, New York, New York 10065; and Department of Environmental and Molecular Health Sciences (F.S.), Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Bangasser DA, Valentino RJ. Sex differences in stress-related psychiatric disorders: neurobiological perspectives. Front Neuroendocrinol 2014; 35:303-19. [PMID: 24726661 PMCID: PMC4087049 DOI: 10.1016/j.yfrne.2014.03.008] [Citation(s) in RCA: 500] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 02/26/2014] [Accepted: 03/28/2014] [Indexed: 12/14/2022]
Abstract
Stress is associated with the onset and severity of several psychiatric disorders that occur more frequently in women than men, including posttraumatic stress disorder (PTSD) and depression. Patients with these disorders present with dysregulation of several stress response systems, including the neuroendocrine response to stress, corticolimbic responses to negatively valenced stimuli, and hyperarousal. Thus, sex differences within their underlying circuitry may explain sex biases in disease prevalence. This review describes clinical studies that identify sex differences within the activity of these circuits, as well as preclinical studies that demonstrate cellular and molecular sex differences in stress responses systems. These studies reveal sex differences from the molecular to the systems level that increase endocrine, emotional, and arousal responses to stress in females. Exploring these sex differences is critical because this research can reveal the neurobiological underpinnings of vulnerability to stress-related psychiatric disorders and guide the development of novel pharmacotherapies.
Collapse
Affiliation(s)
- Debra A Bangasser
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, United States.
| | - Rita J Valentino
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
11
|
Bian C, Zhu H, Zhao Y, Cai W, Zhang J. Intriguing roles of hippocampus-synthesized 17β-estradiol in the modulation of hippocampal synaptic plasticity. J Mol Neurosci 2014; 54:271-81. [PMID: 24729128 DOI: 10.1007/s12031-014-0285-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/06/2014] [Indexed: 10/25/2022]
Abstract
Accumulated studies have shown that 17β-estradiol (E2) can be de novo synthesized in the hippocampus, and its role in the regulation of hippocampal synaptic plasticity, which is the basis of learning and memory, has long been exploring. Steroidogenic enzymes (e.g., aromatase) that are essential to the hippocampus-synthesized synthesis of E2 have been detected in the hippocampus. Inhibition of E2 synthesis by aromatase inhibitors significantly reduces the density of hippocampal spine synapses, levels of some synaptic proteins such as spinopholin and synaptophysin. Moreover, the electrophysiological properties of hippocampal neurons are also changed in response to this inhibition. The influences of gonadal and hippocampal E2 on synaptic plasticity may exist some differences, since some reports showed that gonadal (or circulating) estrogens have no obvious effects in the modulation of hippocampal synaptic proteins as evidenced in some ovariectomized animals and postmenopausal women who suffered from Alzheimer's disease (AD). These evidences leads to a hypothesis that hippocampal E2 may play a more important role in modulation of synaptic plasticity than gonadal E2. The signaling pathways, whereby hippocampal E2 modulates synaptic plasticity, insist of classical chronic genomic pathway and rapid nongenomic pathway, which mediated by nonnuclear estrogen receptor (GPER) and/or nuclear or nonnuclear estrogen receptors, which require coactivators for their transcription activity. Among which steroid receptor coactivator-1 (SRC-1) is the predominant coactivator p160 family members in the brain. Several clues have shown that SRC-1 is expressed in hippocampus and is highly correlated with some key synaptic proteins developmentally or after orchidectomy but not ovariectomy, indicating SRC-1 may be regulated by hippocampus-synthesized E2 and profoundly involved in the mediation of hippocampal E2 regulation of hippocampal synaptic plasticity. Further studies about the exact roles of hippocampus-synthesized E2 and therefore SRC-1 are urgently needed in order to facilitate our understanding of hippocampal E2, which will be very important to the development of novel strategies of estrogen replacement therapy against neurodegenerative deficits such as Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Chen Bian
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Gaotanyan 30, Chongqing, 400038, China
| | | | | | | | | |
Collapse
|
12
|
Zhang Z, Zhao C, Liu B, Liang D, Qin X, Li X, Zhang R, Li C, Wang H, Sun D, Cao F. Inositol pyrophosphates mediate the effects of aging on bone marrow mesenchymal stem cells by inhibiting Akt signaling. Stem Cell Res Ther 2014; 5:33. [PMID: 24670364 PMCID: PMC4055148 DOI: 10.1186/scrt431] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/06/2014] [Indexed: 01/02/2023] Open
Abstract
Introduction Bone marrow-derived mesenchymal stem cells (BM-MSCs) have been proposed as an ideal autologous stem cell source for cell-based therapy for myocardial infarction (MI). However, decreased viability and impaired function of aged MSCs hampered the therapeutic efficacy of engrafted MSCs, and the underlying mechanisms remain unclarified. Here, we investigated the role of inositol phosphates 6 kinase (IP6Ks) inhibition on the therapeutic efficacy of BM-MSCs and its underlying mechanism. Methods BM-MSCs isolated from young (8-week-old) or aged (18-month-old) donor male C57BL/6 mice, were subjected to hypoxia and serum deprivation (H/SD) injury with or without administration of inositol phosphates 6 kinase (IP6Ks) inhibitor TNP (10 μM). MSC apoptosis induced by H/SD was determined by flow cytometry and TUNEL assays. Protein expressions were evaluated by Western blot assay. Furthermore, the paracrine effects of MSCs were measured by reverse transcriptase–polymerized chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) analyses. Results Aged BM-MSCs exhibited more Inositol pyrophosphate 7 (IP7) production, compared with young BM-MSCs. Meanwhile, the expression of phospho-Akt (Thr308) was significantly decreased in the aged MSCs, resulting in enhanced Bad activation and decreased Bax/Bcl-2 ratio. Moreover, the apoptosis in aged BM-MSCs was increased, compared with young BM-MSCs. Furthermore, TNP administration significantly inhibited IP7 production and increased the phosphorylation of Akt under both normoxic and hypoxic conditions. Meanwhile, IP6Ks inhibition reduced apoptotic index of aged MSCs, associated with decreased expressions of pro-apoptotic proteins Bax and Bad and increased anti-apoptotic protein Bcl-2. The expressions of angiogenic factors, including VEGF, bFGF, IGF-1 and HGF, were decreased in MSCs from aged mice. In addition, TNP administration enhanced the paracrine efficiency of aged BM-MSCs under normoxic and hypoxic conditions. Conclusions This study demonstrates for the first time that IP6Ks and IP7 play critical role in the aging related vulnerability to hypoxic injury and impaired paracrine efficiency of BM-MSCs, which is associated with impaired Akt activation.
Collapse
|
13
|
Wang J, Song S, Shi L, Zhu Q, Ma C, Tan X, Ding Y, Niu Z. Temporal expression of Pelp1 during proliferation and osteogenic differentiation of rat bone marrow mesenchymal stem cells. PLoS One 2013; 8:e75477. [PMID: 24146754 PMCID: PMC3797710 DOI: 10.1371/journal.pone.0075477] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 08/19/2013] [Indexed: 12/22/2022] Open
Abstract
Background Osteogenic induction and bone formation are heavily affected by environmental factors, including estrogen, estrogen receptors, and coregulatory proteins, such as the recently reported proline-, glutamic acid-, and leucine-rich protein 1(Pelp1). Objective To investigate Pelp1 expression in rat bone mesenchymal stem cells (rBMSCs) during cell proliferation and osteogenic differentiation. Methods rBMSCs were cultured in routine and osteogenic differentiation media. Cell proliferation was assessed at days 1, 3, 5, 7, 9, 11, 14, and 21. Pelp1 protein expression in the nucleus and cytoplasm were detected by immunocytochemical analysis. Real-time RT-PCR and western blot were used to detect mRNA and protein expressions of Pelp1, osteocalcin (OCN), and alkaline phosphatase (ALP). Results Over 21 days, rBMSCs in routine culture exhibited a 1-2 day lag phase and exponential growth from day 3 to 9, plateauing at day 9, and correlated with temporal mRNA expression of Pelp1, which almost reached baseline levels at day 21. In osteogenic induction cultures, Pelp1 mRNA levels rose at day 9 and steadily increased until day 21, reaching 6.8-fold greater value compared with day 1. Interestingly, Pelp1 mRNA expression in osteogenic cultures exhibited a trend similar to that of OCN expression. Pelp1 knockdown by siRNA transfection inhibited undifferentiated rBMSC proliferation, and bone markers OCN and ALP expressions in rBMSCs cultured in routine and osteogenic differentiation media. Conclusions Pelp1 may be a key player in BMSCs proliferation and osteogenic differentiation, meriting further consideration as a target for development of therapies for pathological bone loss conditions, such as menopausal bone loss.
Collapse
Affiliation(s)
- Jing Wang
- Department of Orthodontics, College of Stomatology, Forth Military Medical University, Xin Cheng District, Xi’an, China
| | - Shujun Song
- Department of Pathology and Experimental Medicine, 306 Hospital of PLA, Chao Yang District, Beijing, China
| | - Liang Shi
- Department of Stomatology, 306 Hospital of PLA, Chao Yang District, Beijing, China
| | - Qiang Zhu
- Department of Urological, General Hospital of People’s Liberation Army, Hai Dian District, Beijing, China
| | - Chuanchuan Ma
- Department of Stomatology, 306 Hospital of PLA, Chao Yang District, Beijing, China
| | - Xiaoqing Tan
- Department of Pathology and Experimental Medicine, 306 Hospital of PLA, Chao Yang District, Beijing, China
| | - Yin Ding
- Department of Orthodontics, College of Stomatology, Forth Military Medical University, Xin Cheng District, Xi’an, China
- * E-mail: (YD); (ZYN)
| | - Zhongying Niu
- Department of Stomatology, 306 Hospital of PLA, Chao Yang District, Beijing, China
- * E-mail: (YD); (ZYN)
| |
Collapse
|
14
|
Oestrogen receptor α agonist improved long-term ovariectomy-induced spatial cognition deficit in young rats. Int J Neuropsychopharmacol 2013; 16:1071-82. [PMID: 22999489 DOI: 10.1017/s1461145712000958] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Ovariectomy is known as 'surgical menopause' with decreased levels of oestrogen in female rodents and its reported risks and adverse effects include cognitive impairment. In the brain, oestrogen exerts effects through its receptors, oestrogen receptor α (ERα) and β (ERβ). However, the role of ERα or ERβ in ovariectomy-induced cognitive impairment needs further investigation. Here, we observed that bilaterally ovariectomized 3-month-old rats showed obvious spatial learning and memory deficits in the Morris water maze with significant loss of neurons and synapses in the hippocampus. In addition to the rapid decline in serum oestradiol levels, the expression of ERα, but not ERβ, was decreased in the hippocampus starting 1 wk after ovariectomy. Prompt 4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol (PPT) treatment (1 mg/kg.d), an agonist of ERα, improved the spatial learning and memory ability of ovariectomized rats and rescued ovariectomy-induced neuron loss by up-regulating the level of BCLxl, an important anti-apoptosis protein. Furthermore, PPT treatment also improved ovariectomy-induced hippocampal synapse loss and up-regulated the levels of synaptic proteins (synapsin I, NR2A and GluR1) and the activates of CaMK Πα, ERK and Akt. Thus, these results demonstrated that ERα plays an important role in neuroprotection and that prompt ERα rescue is effective to improve hippocampal-dependent cognition deficit after long-term ovariectomy.
Collapse
|
15
|
Are the neuroprotective effects of estradiol and physical exercise comparable during ageing in female rats? Biogerontology 2012; 13:413-27. [DOI: 10.1007/s10522-012-9386-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/07/2012] [Indexed: 12/19/2022]
|
16
|
Inagaki T, Kaneko N, Zukin RS, Castillo PE, Etgen AM. Estradiol attenuates ischemia-induced death of hippocampal neurons and enhances synaptic transmission in aged, long-term hormone-deprived female rats. PLoS One 2012; 7:e38018. [PMID: 22675505 PMCID: PMC3366987 DOI: 10.1371/journal.pone.0038018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Accepted: 05/02/2012] [Indexed: 11/18/2022] Open
Abstract
Background Transient global forebrain ischemia causes selective, delayed death of hippocampal CA1 pyramidal neurons, and the ovarian hormone 17β-estradiol (E2) reduces neuronal loss in young and middle-aged females. The neuroprotective efficacy of E2 after a prolonged period of hormone deprivation is controversial, and few studies examine this issue in aged animals given E2 treatment after induction of ischemia. Methodology/Principal Findings The present study investigated the neuroprotective effects of E2 administered immediately after global ischemia in aged female rats (15–18 months) after 6 months of hormone deprivation. We also used electrophysiological methods to assess whether CA1 synapses in the aging hippocampus remain responsive to E2 after prolonged hormone withdrawal. Animals were ovariohysterectomized and underwent 10 min global ischemia 6 months later. A single dose of E2 (2.25 µg) infused intraventricularly after reperfusion significantly increased cell survival, with 45% of CA1 neurons surviving vs 15% in controls. Ischemia also induced moderate loss of CA3/CA4 pyramidal cells. Bath application of 1 nM E2 onto brain slices derived from non-ischemic aged females after 6 months of hormone withdrawal significantly enhanced excitatory transmission at CA1 synapses evoked by Schaffer collateral stimulation, and normal long-term potentiation (LTP) was induced. The magnitude of LTP and of E2 enhancement of field excitatory postsynaptic potentials was indistinguishable from that recorded in slices from young rats. Conclusions/Significance The data demonstrate that 1) acute post-ischemic infusion of E2 into the brain ventricles is neuroprotective in aged rats after 6 months of hormone deprivation; and 2) E2 enhances synaptic transmission in CA1 pyramidal neurons of aged long-term hormone deprived females. These findings provide evidence that the aging hippocampus remains responsive to E2 administered either in vivo or in vitro even after prolonged periods of hormone withdrawal.
Collapse
Affiliation(s)
- Tomoko Inagaki
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Naoki Kaneko
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - R. Suzanne Zukin
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Pablo E. Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Anne M. Etgen
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
17
|
Hara Y, Punsoni M, Yuk F, Park CS, Janssen WGM, Rapp PR, Morrison JH. Synaptic distributions of GluA2 and PKMζ in the monkey dentate gyrus and their relationships with aging and memory. J Neurosci 2012; 32:7336-44. [PMID: 22623679 PMCID: PMC3391702 DOI: 10.1523/jneurosci.0605-12.2012] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/30/2012] [Accepted: 04/03/2012] [Indexed: 12/18/2022] Open
Abstract
Rhesus monkeys provide a valuable model for studying the neurobiological basis of cognitive aging, because they are vulnerable to age-related memory decline in a manner similar to humans. In this study, young and aged monkeys were first tested on a well characterized recognition memory test (delayed nonmatching-to-sample; DNMS). Then, electron microscopic immunocytochemistry was performed to determine the subcellular localization of two proteins in the hippocampal dentate gyrus (DG): the GluA2 subunit of the glutamate AMPA receptor and the atypical protein kinase C ζ isoform (PKMζ). PKMζ promotes memory storage by regulating GluA2-containing AMPA receptor trafficking. Thus, we examined whether the distribution of GluA2 and PKMζ is altered with aging in DG axospinous synapses and whether it is coupled with memory deficits. Monkeys with faster DNMS task acquisition and more accurate recognition memory exhibited higher proportions of dendritic spines coexpressing GluA2 and PKMζ. These double-labeled spines had larger synapses, as measured by postsynaptic density area, than single-labeled and unlabeled spines. Within this population of double-labeled spines, aged monkeys compared with young expressed a lower density of synaptic GluA2 immunogold labeling, which correlated with lower recognition accuracy. Additionally, higher density of synaptic PKMζ labeling in double-labeled spines correlated with both faster task acquisition and better retention. Together, these findings suggest that age-related impairment in maintenance of GluA2 at the synapse in the primate hippocampus is coupled with memory deficits.
Collapse
Affiliation(s)
- Yuko Hara
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories
- Friedman Brain Institute
| | - Michael Punsoni
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories
- Friedman Brain Institute
| | - Frank Yuk
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories
- Friedman Brain Institute
| | - C. Sehwan Park
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories
- Friedman Brain Institute
| | - William G. M. Janssen
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories
- Friedman Brain Institute
| | - Peter R. Rapp
- National Institute on Aging, Laboratory of Experimental Gerontology, Baltimore, Maryland 21224
| | - John H. Morrison
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories
- Friedman Brain Institute
- Department of Geriatrics and Palliative Medicine, and
- Computational Neurobiology and Imaging Center, Mount Sinai School of Medicine, New York, New York 10029, and
| |
Collapse
|
18
|
Gerrits PO, Kortekaas R, Veening JG, de Weerd H, van der Want JJL. Reduced aging defects in estrogen receptive brainstem nuclei in the female hamster. Neurobiol Aging 2012; 33:2920-34. [PMID: 22445324 DOI: 10.1016/j.neurobiolaging.2012.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 02/15/2012] [Accepted: 02/15/2012] [Indexed: 10/28/2022]
Abstract
UNLABELLED The nucleus pararetroambiguus (NPRA) and the commissural nucleus of the solitary tract (NTScom) show estrogen nuclear receptor-α immunoreactivity (nuclear ER-α-IR). Both cell groups are involved in estrous cycle related adaptations. We examined in normally cycling aged hamsters the occurrence/amount/frequency of age-related degenerative changes in NPRA and NTScom during estrus and diestrus. In 2640 electron microscopy photomicrographs plasticity reflected in the ratio of axon terminal surface/dendrite surface (t/d) was morphometrically analyzed. Medial tegmental field (mtf, nuclear ER-α-IR poor), served as control. In aged animals, irrespective of nuclear ER-α-IR+ or nuclear ER-α-IR- related cell groups, extensive diffuse degenerative structural aberrations were observed. The hormonal state had a strong influence on t/d ratios in NPRA and NTScom, but not in mtf. In NPRA and NTScom, diestrous hamsters had significantly smaller t/d ratios (NPRA, 0.750 ± 0.050; NTScom, 0.900 ± 0.039) than the estrous hamsters (NPRA, 1.083 ± 0.075; NTScom, 1.204 ± 0.076). Aging affected axodendritic ratios only in mtf (p < 0.001). IN CONCLUSION in the female hamster brain, estrous cycle-induced structural plasticity is preserved in NPRA and NTScom during aging despite the presence of diffuse age-related neurodegenerative changes.
Collapse
Affiliation(s)
- Peter O Gerrits
- Department of Neuroscience, Section of Anatomy, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
19
|
Waters EM, Yildirim M, Janssen WGM, Lou WYW, McEwen BS, Morrison JH, Milner TA. Estrogen and aging affect the synaptic distribution of estrogen receptor β-immunoreactivity in the CA1 region of female rat hippocampus. Brain Res 2011; 1379:86-97. [PMID: 20875808 PMCID: PMC3046233 DOI: 10.1016/j.brainres.2010.09.069] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 09/17/2010] [Accepted: 09/17/2010] [Indexed: 11/29/2022]
Abstract
Estradiol (E) mediates increased synaptogenesis in the hippocampal CA1 stratum radiatum (sr) and enhances memory in young and some aged female rats, depending on dose and age. Young female rats express more estrogen receptor α (ERα) immunolabeling in CA1sr spine synapse complexes than aged rats and ERα regulation is E sensitive in young but not aged rats. The current study examined whether estrogen receptor β (ERβ) expression in spine synapse complexes may be altered by age or E treatment. Young (3-4 months) and aged (22-23 months) female rats were ovariectomized 7 days prior to implantation of silastic capsules containing either vehicle (cholesterol) or E (10% in cholesterol) for 2 days. ERβ immunoreactivity (ir) in CA1sr was quantitatively analyzed using post-embedding electron microscopy. ERβ-ir was more prominent post-synaptically than pre-synaptically and both age and E treatment affected its synaptic distribution. While age decreased the spine synaptic complex localization of ERβ-ir (i.e., within 60 nm of the pre- and post-synaptic membranes), E treatment increased synaptic ERβ in both young and aged rats. In addition, the E treatment, but not age, increased dendritic shaft labeling. This data demonstrates that like ERα the levels of ERβ-ir decrease in CA1 axospinous synapses with age, however, unlike ERα the levels of ERβ-ir increase in these synapses in both young and aged rats in response to E. This suggests that synaptic ERβ may be a more responsive target to E, particularly in aged females.
Collapse
Affiliation(s)
- Elizabeth M Waters
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Williams TJ, Mitterling KL, Thompson LI, Torres-Reveron A, Waters EM, McEwen BS, Gore AC, Milner TA. Age- and hormone-regulation of opioid peptides and synaptic proteins in the rat dorsal hippocampal formation. Brain Res 2010; 1379:71-85. [PMID: 20828542 DOI: 10.1016/j.brainres.2010.08.103] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 08/13/2010] [Accepted: 08/31/2010] [Indexed: 02/05/2023]
Abstract
Circulating estrogen levels and hippocampal-dependent cognitive functions decline with aging. Moreover, the responses of hippocampal synaptic structure to estrogens differ between aged and young rats. We recently reported that estrogens increase levels of post-synaptic proteins, including PSD-95, and opioid peptides leu-enkephalin and dynorphin in the hippocampus of young animals. However, the influence of ovarian hormones on synaptic protein and opioid peptide levels in the aging hippocampus is understudied. Here, young (3- to 5-month-old), middle-aged (9- to 12-month-old), and aged (about 22-month-old) female rats were ovariectomized and then, 4 weeks later, subcutaneously implanted with a silastic capsule containing vehicle or 17β-estradiol. After 48 h, rats were subcutaneously injected with progesterone or vehicle and sacrificed 1 day later. Coronal sections through the dorsal hippocampus were processed for quantitative peroxidase immunohistochemistry of leu-enkephalin, dynorphin, synaptophysin, and PSD-95. With age, females showed opposing changes in leu-enkephalin and dynorphin levels in the mossy fiber pathway, particularly within the hilus, and regionally specific changes in synaptic protein levels. 17β-estradiol, with or without progesterone, altered leu-enkephalin levels in the dentate gyrus and synaptophysin levels in the CA1 of young but not middle-aged or aged females. Additionally, 17β-estradiol decreased synaptophysin levels in the CA3 of middle-aged females. Our results support and extend previous findings indicating 17β-estradiol modulation of hippocampal opioid peptides and synaptic proteins while demonstrating regional and age-specific effects. Moreover, they lend credence to the "window of opportunity" hypothesis during which hormone replacement can modulate hippocampal structure and circuitry to improve cognitive outcomes.
Collapse
Affiliation(s)
- Tanya J Williams
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Yuen GS, McEwen BS, Akama KT. LIM kinase mediates estrogen action on the actin depolymerization factor Cofilin. Brain Res 2010; 1379:44-52. [PMID: 20696146 DOI: 10.1016/j.brainres.2010.07.067] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Revised: 07/15/2010] [Accepted: 07/18/2010] [Indexed: 12/24/2022]
Abstract
The ovarian hormone estrogen increases the axospinous synapse density in the hippocampal CA1 region of young female rats but fails to do so in aged rats. This estrogen-mediated alteration of spine synapse structures suggests the coincident requirement for the structural reorganization of the underlying actin cytoskeleton network. Actin reorganization is known to require the deactivation of Cofilin, an actin depolymerization factor. Cofilin is deactivated by LIM kinase (LIMK), and LIMK activity is modulated by the phosphorylation of specific residues. We have previously demonstrated that estrogen is able to increase phosphorylated LIMK (pLIMK) immunoreactivity (IR) in the hippocampus in vivo and that this estrogen-stimulated pLIMK-IR is decreased in the aged brain. Because Cofilin phosphorylation allows for actin filament elongation and spine synapse growth, we sought to determine if estrogen acts through Cofilin and if such estrogen action requires the observed LIMK activity. Using both hippocampal neurons and the NG108-15 neuroblastoma cell line, we demonstrate here that estrogen stimulates the phosphorylation of Cofilin in vitro. Furthermore, this estrogen action on Cofilin requires LIMK. Lastly, while initiating the phosphorylation of LIMK and Cofilin, estrogen can also stimulate the formation of filopodial extensions, an early step in the formation of nascent spines, demonstrating that estrogen can alter the actin-dependent neuronal morphology. This linkage of estrogen communication to Cofilin via LIMK provides the functionality to the age-sensitive pLIMK-IR that we have observed in vivo.
Collapse
Affiliation(s)
- Genevieve S Yuen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065-6399, USA
| | | | | |
Collapse
|