1
|
Skawratananond S, Xiong DX, Zhang C, Tonk S, Pinili A, Delacruz B, Pham P, Smith SC, Navab R, Reddy PH. Mitophagy in Alzheimer's disease and other metabolic disorders: A focus on mitochondrial-targeted therapeutics. Ageing Res Rev 2025; 108:102732. [PMID: 40122398 DOI: 10.1016/j.arr.2025.102732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/19/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Mitochondria, as central regulators of cellular processes such as energy production, apoptosis, and metabolic homeostasis, are essential to cellular function and health. The maintenance of mitochondrial integrity, especially through mitophagy-the selective removal of impaired mitochondria-is crucial for cellular homeostasis. Dysregulation of mitochondrial function, dynamics, and biogenesis is linked to neurodegenerative and metabolic diseases, notably Alzheimer's disease (AD), which is increasingly recognized as a metabolic disorder due to its shared pathophysiologic features: insulin resistance, oxidative stress, and chronic inflammation. In this review, we highlight recent advancements in pharmacological interventions, focusing on agents that modulate mitophagy, mitochondrial uncouplers that reduce oxidative phosphorylation, compounds that directly scavenge reactive oxygen species to alleviate oxidative stress, and molecules that ameliorate amyloid beta plaque accumulation and phosphorylated tau pathology. Additionally, we explore dietary and lifestyle interventions-MIND and ketogenic diets, caloric restriction, physical activity, hormone modulation, and stress management-that complement pharmacological approaches and support mitochondrial health. Our review underscores mitochondria's central role in the pathogenesis and potential treatment of neurodegenerative and metabolic diseases, particularly AD. By advocating for an integrated therapeutic model that combines pharmacological and lifestyle interventions, we propose a comprehensive approach aimed at mitigating mitochondrial dysfunction and improving clinical outcomes in these complex, interrelated diseases.
Collapse
Affiliation(s)
- Shadt Skawratananond
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States.
| | - Daniel X Xiong
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, United States.
| | - Charlie Zhang
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Honors College, Texas Tech University, Lubbock, TX 79401, United States; Department of Biology, Texas Tech University, Lubbock, TX 79401, USA, Texas Tech University, Lubbock, TX 79401, United States.
| | - Sahil Tonk
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States.
| | - Aljon Pinili
- Honors College, Texas Tech University, Lubbock, TX 79401, United States; Department of Biology, Texas Tech University, Lubbock, TX 79401, USA, Texas Tech University, Lubbock, TX 79401, United States.
| | - Brad Delacruz
- Honors College, Texas Tech University, Lubbock, TX 79401, United States; Department of Biology, Texas Tech University, Lubbock, TX 79401, USA, Texas Tech University, Lubbock, TX 79401, United States.
| | - Patrick Pham
- Honors College, Texas Tech University, Lubbock, TX 79401, United States; Department of Biology, Texas Tech University, Lubbock, TX 79401, USA, Texas Tech University, Lubbock, TX 79401, United States.
| | - Shane C Smith
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States.
| | - Rahul Navab
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Internal Medicine, PES Institute of Medical Sciences and Research, Kuppam, India.
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, United States; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
2
|
Ourry V, Fajardo-Valdez A, Soucy JP, Poirier J, Breitner JCS, Villeneuve S. Amyloid and Tau Pathology in Cognitively Unimpaired Individuals With a Parental History of Alzheimer Disease: Role of Sex and Parent's Sex. Neurology 2025; 104:e213507. [PMID: 40203224 DOI: 10.1212/wnl.0000000000213507] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 02/13/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Female sex and a parental history of Alzheimer disease (AD), especially maternal, confer increased risk of AD. Associations between sex, or affected AD parent's sex, and biomarkers of AD are less clear. We examined whether sex or affected AD parent's sex influences (1) β-amyloid (Aβ) and tau burden/accumulation, (2) the association between Aβ and tau burden, and (3) brain and cognitive resilience to Aβ and tau burden. METHODS The sample included 243 participants from the Presymptomatic Evaluation of Experimental or Novel Treatments for AD cohort in Canada. All participants with [18F]-NAV4694 and [18F]-AV1451 PET and MRI were included. We examined (1) sex or affected AD parent's sex differences on regional Aβ and tau burden/accumulation; (2) 2-way interactions between sex, or affected AD parent's sex, and Aβ on tau burden; and (3) 3-way interactions between time, sex or affected AD parent's sex, and Aβ or tau deposition on hippocampal volume (brain resilience) and cognition (cognitive resilience) over time. RESULTS Participants (69.4% female) were aged 68.3 ± 5.1 years at their first PET scans. All were cognitively unimpaired at baseline. Longitudinal cognitive data were available for 242 participants (follow-up, 6.72 ± 2.38 years), including 238 (6.53 ± 2.48 years of follow-up) with MRI follow-ups and 115 (4.4 ± 0.6 years of follow-up) with PET follow-ups, and 71 developed mild cognitive impairment. Women showed greater tau deposition (standardized β = 0.13 ± 0.3) and showed a stronger association between global Aβ and tau deposition than men (standardized β = 0.79 ± 0.1). Individuals with an affected AD father showed stronger association between global Aβ and tau deposition than those with an affected AD mother (standardized β = 0.65 ± 0.1). Women showed less Aβ-associated hippocampal atrophy over time (standardized β = 0.24 ± 0.1). DISCUSSION Women and, surprisingly, individuals with a paternal history of AD seemed more vulnerable to the Aβ-related spread of tau, whereas women showed greater brain resilience to Aβ. Understanding sex-specific risk and resilience could allow more clinical trial precision and personalization. A major limitation included the reduced sample for the affected AD parent's sex analyses.
Collapse
Affiliation(s)
- Valentin Ourry
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Alfonso Fajardo-Valdez
- Douglas Mental Health University Institute, Montreal, Quebec, Canada
- Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; and
| | - Jean-Paul Soucy
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Judes Poirier
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - John C S Breitner
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Sylvia Villeneuve
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Douglas Mental Health University Institute, Montreal, Quebec, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Yao M, Rosario ER, Soper JC, Pike CJ. Androgens Regulate Tau Phosphorylation Through Phosphatidylinositol 3-Kinase-Protein Kinase B-Glycogen Synthase Kinase 3β Signaling. Neuroscience 2025; 568:503-518. [PMID: 35777535 PMCID: PMC9797620 DOI: 10.1016/j.neuroscience.2022.06.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/11/2022] [Accepted: 06/23/2022] [Indexed: 12/31/2022]
Abstract
Age-related testosterone depletion in men is a risk factor for Alzheimer's disease (AD). How testosterone modulates AD risk remains to be fully elucidated, although regulation of tau phosphorylation has been suggested as a contributing protective action. To investigate the relationship between testosterone and tau phosphorylation, we first evaluated the effect of androgen status on tau phosphorylation in 3xTg-AD mice. Depletion of endogenous androgens via gonadectomy resulted in increased tau phosphorylation that was prevented by acute testosterone treatment. Parallel alterations in the phosphorylation of both glycogen synthase kinase 3β (GSK3β) and protein kinase B (Akt) suggest possible components of the underlying signaling pathway. To further explore mechanism, primary cultured neurons were treated with a physiological concentration of testosterone or its active metabolite dihydrotestosterone (DHT). Results showed that testosterone and DHT induced significant decreases in phosphorylated tau and significant increases in phosphorylation of Akt and GSK3β. Pharmacological inhibition of phosphatidylinositol 3-kinase (PI3K) effectively inhibited androgen-induced increases in Akt and GSK3β phosphorylation, and decreases in tau phosphorylation. In addition, androgen receptor (AR) knock-down by small interfering RNA prevented androgen-induced changes in the phosphorylation of Akt, GSK3β and tau, suggesting an AR-dependent mechanism. Additional experiments demonstrated androgen-induced changes in Akt, GSK3β and tau phosphorylation in AR-expressing PC12 cells but not in AR-negative PC12 cells. Together, these results suggest an AR-dependent pathway involving PI3K-Akt-GSK3β signaling through which androgens can reduce tau phosphorylation. These findings identify an additional protective mechanism of androgens that can improve neural health and inhibit development of AD.
Collapse
Affiliation(s)
- Mingzhong Yao
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Emily R Rosario
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Jenna Carroll Soper
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Christian J Pike
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
4
|
Schaffner SL, Tosefsky KN, Inskter AM, Appel-Cresswell S, Schulze-Hentrich JM. Sex and gender differences in the molecular etiology of Parkinson's disease: considerations for study design and data analysis. Biol Sex Differ 2025; 16:7. [PMID: 39901234 PMCID: PMC11789417 DOI: 10.1186/s13293-025-00692-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/25/2025] [Indexed: 02/05/2025] Open
Abstract
Parkinson's disease (PD) is more prevalent in men than women, and presents with different clinical features in each sex. Despite widespread recognition of these differences, females are under-represented in clinical and experimental studies of PD, and much remains to be elucidated regarding the biological underpinnings of sex differences in PD. In this review, we summarize known contributors to sex differences in PD etiology across the life course, with a focus on neurological development and gene regulation. Sex differences that are established at conception and heightened during adolescence and midlife may partially embed future PD risk, due to the complex interactions between gonadal hormones, gene regulation, lifestyle factors, and aging. While the neuroprotective properties of estrogen are strongly implicated in reduced prevalence of PD in women, interactions with genotype and gender-biased lifestyle factors are incompletely understood. Consideration of sex and gender-related factors in study design, data analysis, and interpretation have the power to expedite our knowledge of the etiology of PD in men and in women, and to inform prevention and therapeutic strategies tailored to each sex.
Collapse
Affiliation(s)
- Samantha L Schaffner
- Pacific Parkinson's Research Centre, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Edwin S. H. Leong Centre for Healthy Aging, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kira N Tosefsky
- Pacific Parkinson's Research Centre, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Edwin S. H. Leong Centre for Healthy Aging, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- MD Undergraduate Program, University of British Columbia, Vancouver, BC, Canada
| | - Amy M Inskter
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
| | - Silke Appel-Cresswell
- Pacific Parkinson's Research Centre, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Edwin S. H. Leong Centre for Healthy Aging, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Julia M Schulze-Hentrich
- Department of Genetics/Epigenetics, Faculty NT, Saarland University, Campus, Building A2.4, 66123, 66041, Saarbrücken, Germany.
| |
Collapse
|
5
|
Almutairi JA, Kidd EJ. Biological Sex Disparities in Alzheimer's Disease. Curr Top Behav Neurosci 2025; 69:79-104. [PMID: 39485650 DOI: 10.1007/7854_2024_545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Alzheimer's disease is a highly complex and multifactorial neurodegenerative disorder, with age being the most significant risk factor. The incidence of Alzheimer's disease doubles every 5 years after the age of 65. Consequently, one of the major challenges in Alzheimer's disease research is understanding how the brain changes with age. Gaining insights into these changes could help identify individuals who are more prone to developing Alzheimer's disease as they age. Over the past 25 years, studies on brain aging have examined thousands of human brains to explore the neuronal basis of age-related cognitive decline. However, most of these studies have focused on adults over 60, often neglecting the critical menopause transition period. During menopause, women experience a substantial decline in ovarian sex hormone production, with a decrease of about 90% in estrogen levels. Estrogen is known for its neuroprotective effects, and its significant loss during menopause affects various biological systems, including the brain. Importantly, despite known differences in dementia risk between sexes, the impact of biological sex and sex hormones on brain aging and the development of Alzheimer's disease remains underexplored.
Collapse
Affiliation(s)
- Jawza A Almutairi
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
- Department of Pharmaceutical Science, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Emma J Kidd
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
6
|
Barker RM, Chambers A, Kehoe PG, Rowe E, Perks CM. Untangling the role of tau in sex hormone responsive cancers: lessons learnt from Alzheimer's disease. Clin Sci (Lond) 2024; 138:1357-1369. [PMID: 39469929 PMCID: PMC11522895 DOI: 10.1042/cs20230317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/20/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024]
Abstract
Tubulin associated unit has been extensively studied in neurodegenerative diseases including Alzheimer's disease (AD), whereby its hyperphosphorylation and accumulation contributes to disease pathogenesis. Tau is abundantly expressed in the central nervous system but is also present in non-neuronal tissues and in tumours including sex hormone responsive cancers such as breast and prostate. Curiously, hormonal effects on tau also exist in an AD context from numerous studies on menopause, hormone replacement therapy, and androgen deprivation therapy. Despite sharing some risk factors, most importantly advancing age, there are numerous reports from population studies of, currently poorly explained inverse associations between cancer and Alzheimer's disease. We previously reviewed important components of the phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) signalling pathway and their differential modulation in relation to the two diseases. Similarly, receptor tyrosine kinases, estrogen receptor and androgen receptor have all been implicated in the pathogenesis of both cancer and AD. In this review, we focus on tau and its effects in hormone responsive cancer in terms of development, progression, and treatment and in relation to sex hormones and PI3K/Akt signalling molecules including IRS-1, PTEN, Pin1, and p53.
Collapse
Affiliation(s)
- Rachel M. Barker
- Cancer Endocrinology Group, Learning & Research Building, Southmead Hospital, Translational Health Sciences, Bristol Medical School, Bristol BS10 5NB, UK
| | - Alfie Chambers
- Cancer Endocrinology Group, Learning & Research Building, Southmead Hospital, Translational Health Sciences, Bristol Medical School, Bristol BS10 5NB, UK
| | - Patrick G. Kehoe
- Department of Urology, Bristol Urological Institute, Southmead Hospital, Bristol BS10 5NB, UK
| | - Edward Rowe
- Dementia Research Group, Learning & Research Building, Southmead Hospital, Translational Health Sciences, Bristol Medical School, Bristol BS10 5NB, UK
| | - Claire M. Perks
- Cancer Endocrinology Group, Learning & Research Building, Southmead Hospital, Translational Health Sciences, Bristol Medical School, Bristol BS10 5NB, UK
| |
Collapse
|
7
|
Fairley LH, Lai KO, Grimm A, Eckert A, Barron AM. The mitochondrial translocator protein (TSPO) in Alzheimer's disease: Therapeutic and immunomodulatory functions. Biochimie 2024; 224:120-131. [PMID: 38971458 DOI: 10.1016/j.biochi.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
The translocator protein (TSPO) has been widely investigated as a PET-imaging biomarker of neuroinflammation and, more recently, as a therapeutic target for the treatment of neurodegenerative disease. TSPO ligands have been shown to exert neuroprotective effects in vivo and in vitro models of Alzheimer's disease (AD), by reducing toxic beta amyloid peptides, and attenuating brain atrophy. Recent transcriptomic and proteomic analyses, and the generation of TSPO-KO mice, have enabled new insights into the mechanistic function of TSPO in AD. Using a multi-omics approach in both TSPO-KO- and TSPO ligand-treated mice, we have demonstrated a key role for TSPO in microglial respiratory metabolism and phagocytosis in AD. In this review, we discuss emerging evidence for therapeutic and immunomodulatory functions of TSPO in AD, and new tools for studying TSPO in the brain.
Collapse
Affiliation(s)
- Lauren H Fairley
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 308232, Singapore
| | - Kei Onn Lai
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 308232, Singapore
| | - Amandine Grimm
- Transfaculty Research Platform, Molecular & Cognitive Neuroscience, Neurobiology Laboratory for Brain Aging and Mental Health, University of Basel, Basel, Switzerland; Psychiatric University Clinics, Basel, Switzerland
| | - Anne Eckert
- Transfaculty Research Platform, Molecular & Cognitive Neuroscience, Neurobiology Laboratory for Brain Aging and Mental Health, University of Basel, Basel, Switzerland; Psychiatric University Clinics, Basel, Switzerland
| | - Anna M Barron
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 308232, Singapore.
| |
Collapse
|
8
|
Zhang C, Aida M, Saggu S, Yu H, Zhou L, Rehman H, Jiao K, Liu R, Wang L, Wang Q. Androgen deprivation therapy exacerbates Alzheimer's-associated cognitive decline via increased brain immune cell infiltration. SCIENCE ADVANCES 2024; 10:eadn8709. [PMID: 38905345 PMCID: PMC11192088 DOI: 10.1126/sciadv.adn8709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/16/2024] [Indexed: 06/23/2024]
Abstract
Androgen deprivation therapy (ADT) for prostate cancer is associated with an increased risk of dementia, including Alzheimer's disease (AD). The mechanistic connection between ADT and AD-related cognitive impairment in patients with prostate cancer remains elusive. We established a clinically relevant prostate cancer-bearing AD mouse model to explore this. Both tumor-bearing and ADT induce complex changes in immune and inflammatory responses in peripheral blood and in the brain. ADT disrupts the integrity of the blood-brain barrier (BBB) and promotes immune cell infiltration into the brain, enhancing neuroinflammation and gliosis without affecting the amyloid plaque load. Moreover, treatment with natalizumab, an FDA-approved drug targeting peripheral immune cell infiltration, reduces neuroinflammation and improves cognitive function in this model. Our study uncovers an inflammatory mechanism, extending beyond amyloid pathology, that underlies ADT-exacerbated cognitive deficits, and suggests natalizumab as a potentially effective treatment in alleviating the detrimental effects of ADT on cognition.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mae Aida
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Shalini Saggu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Haiyan Yu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lianna Zhou
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hasibur Rehman
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Kai Jiao
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Runhua Liu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Center for Clinical and Translational Science, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lizhong Wang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Center for Clinical and Translational Science, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Comprehensive Neuroscience Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Qin Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
9
|
Terstege DJ, Epp JR. Parvalbumin as a sex-specific target in Alzheimer's disease research - A mini-review. Neurosci Biobehav Rev 2023; 153:105370. [PMID: 37619647 DOI: 10.1016/j.neubiorev.2023.105370] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, and both the incidence of this disease and its associated cognitive decline disproportionally effect women. While the etiology of AD is unknown, recent work has demonstrated that the balance of excitatory and inhibitory activity across the brain may serve as a strong predictor of cognitive impairments in AD. Across the cortex, the most prominent source of inhibitory signalling is from a class of parvalbumin-expressing interneurons (PV+). In this mini-review, the impacts of sex- and age-related factors on the function of PV+ neurons are examined within the context of vulnerability to AD pathology. These primary factors of influence include changes in brain metabolism, circulating sex hormone levels, and inflammatory response. In addition to positing the increased vulnerability of PV+ neurons to dysfunction in AD, this mini-review highlights the critical importance of presenting sex stratified data in the study of AD.
Collapse
Affiliation(s)
- Dylan J Terstege
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Jonathan R Epp
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
10
|
Lutshumba J, Wilcock DM, Monson NL, Stowe AM. Sex-based differences in effector cells of the adaptive immune system during Alzheimer's disease and related dementias. Neurobiol Dis 2023; 184:106202. [PMID: 37330146 PMCID: PMC10481581 DOI: 10.1016/j.nbd.2023.106202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023] Open
Abstract
Neurological conditions such as Alzheimer's disease (AD) and related dementias (ADRD) present with many challenges due to the heterogeneity of the related disease(s), making it difficult to develop effective treatments. Additionally, the progression of ADRD-related pathologies presents differently between men and women. With two-thirds of the population affected with ADRD being women, ADRD has presented itself with a bias toward the female population. However, studies of ADRD generally do not incorporate sex-based differences in investigating the development and progression of the disease, which is detrimental to understanding and treating dementia. Additionally, recent implications for the adaptive immune system in the development of ADRD bring in new factors to be considered as part of the disease, including sex-based differences in immune response(s) during ADRD development. Here, we review the sex-based differences of pathological hallmarks of ADRD presentation and progression, sex-based differences in the adaptive immune system and how it changes with ADRD, and the importance of precision medicine in the development of a more targeted and personalized treatment for this devastating and prevalent neurodegenerative condition.
Collapse
Affiliation(s)
- Jenny Lutshumba
- Department of Neurology, College of Medicine, University of Kentucky, Lexington, KY, United States of America
| | - Donna M Wilcock
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States of America; Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States of America
| | - Nancy L Monson
- Department of Neurology and Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Ann M Stowe
- Department of Neurology, College of Medicine, University of Kentucky, Lexington, KY, United States of America; Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, United States of America.
| |
Collapse
|
11
|
Cui SS, Jiang QW, Chen SD. Sex difference in biological change and mechanism of Alzheimer’s disease: from macro- to micro-landscape. Ageing Res Rev 2023; 87:101918. [PMID: 36967089 DOI: 10.1016/j.arr.2023.101918] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 02/16/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and numerous studies reported a higher prevalence and incidence of AD among women. Although women have longer lifetime, longevity does not wholly explain the higher frequency and lifetime risk in women. It is important to understand sex differences in AD pathophysiology and pathogenesis, which could provide foundation for future clinical AD research. Here, we reviewed the most recent and relevant literature on sex differences in biological change of AD from macroscopical neuroimaging to microscopical pathologic change (neuronal degeneration, synaptic dysfunction, amyloid-beta and tau accumulation). We also discussed sex differences in cellular mechanisms related to AD (neuroinflammation, mitochondria dysfunction, oxygen stress, apoptosis, autophagy, blood-brain-barrier dysfunction, gut microbiome alteration, bulk and single cell/nucleus omics) and possible causes underlying these differences including sex-chromosome, sex hormone and hypothalamic-pituitary- adrenal (HPA) axis effects.
Collapse
Affiliation(s)
- Shi-Shuang Cui
- Department of Neurology & Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Geriatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qian-Wen Jiang
- Department of Neurology & Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Geriatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sheng-Di Chen
- Department of Neurology & Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
12
|
Santiago JA, Potashkin JA. Biological and Clinical Implications of Sex-Specific Differences in Alzheimer's Disease. Handb Exp Pharmacol 2023; 282:181-197. [PMID: 37460661 DOI: 10.1007/164_2023_672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Mounting evidence indicates that the female sex is a risk factor for Alzheimer's disease (AD), the most common cause of dementia worldwide. Decades of research suggest that sex-specific differences in genetics, environmental factors, hormones, comorbidities, and brain structure and function may contribute to AD development. However, although significant progress has been made in uncovering specific genetic factors and biological pathways, the precise mechanisms underlying sex-biased differences are not fully characterized. Here, we review several lines of evidence, including epidemiological, clinical, and molecular studies addressing sex differences in AD. In addition, we discuss the challenges and future directions in advancing personalized treatments for AD.
Collapse
Affiliation(s)
| | - Judith A Potashkin
- Cellular and Molecular Pharmacology Department, Center for Neurodegenerative Diseases and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| |
Collapse
|
13
|
Zhao B, Ou YN, Zhang XY, Fu Y, Tan L. Differential Associations of APOEɛ2 and APOEɛ4 Genotypes with Cerebrospinal Fluid Biomarkers of Alzheimer's Disease in Individuals Without Dementia. J Alzheimers Dis 2023; 96:1813-1825. [PMID: 38073392 DOI: 10.3233/jad-230761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
BACKGROUND The APOE genotype has emerged as the major genetic factor for AD but differs among different alleles. OBJECTIVE To investigate the discrepant effects of APOE genotype on AD cerebrospinal fluid (CSF) biomarkers. METHODS A total of 989 non-demented ADNI participants were included. The associations of APOEɛ2 and APOEɛ4 with CSF biomarkers were investigated using linear regression models. Interaction and subgroup analyses were used to investigate the effects of sex and age on these associations. Furthermore, we used mediation analyses to assess whether Aβ mediated the associations between APOE genotypes and tau. RESULTS APOEɛ2 carriers only showed higher Aβ levels (β [95% CI] = 0.07 [0.01, 0.13], p = 0.026). Conversely, APOEɛ4 carriers exhibited lower Aβ concentration (β [95% CI] = -0.27 [-0.31, -0.24], p < 0.001), higher t-Tau (β [95% CI] = 0.25 [0.08, 0.18], p < 0.001) and higher p-Tau (β [95% CI] = 0.31 [0.25, 0.37], p < 0.001). Subgroup analysis showed that APOE ɛ2 was significantly positively associated with Aβ only in females (β [95% CI] = 0.12 [0.04, 0.21], p = 0.005) and older people (β [95% CI] = 0.06 [0.001, 0.12], p = 0.048). But the effects of APOE ɛ4 were independent of gender and age. Besides, the associations of APOE ɛ4 with t-Tau and p-Tau were both mediated by baseline Aβ. CONCLUSIONS Our data suggested that APOEɛ2 could promote Aβ clearance, while the process could be modified by sex and age. However, APOEɛ4 might cause the accumulation of Aβ and tau pathology independent of sex and age.
Collapse
Affiliation(s)
- Bing Zhao
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xuan-Yue Zhang
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Dalian, China
| | - Yan Fu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
14
|
Ketchem JM, Bowman EJ, Isales CM. Male sex hormones, aging, and inflammation. Biogerontology 2023; 24:1-25. [PMID: 36596999 PMCID: PMC9810526 DOI: 10.1007/s10522-022-10002-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/15/2022] [Indexed: 01/05/2023]
Abstract
Adequate levels of androgens (eugonadism), and specifically testosterone, are vital compounds for male quality of life, longevity, and positive health outcomes. Testosterone exerts its effects by binding to the androgen receptor, which is expressed in numerous tissues throughout the body. Significant research has been conducted on the impact of this steroid hormone on skeletal, muscle and adipose tissues and on the cardiovascular, immune, and nervous systems. Testosterone levels have also been studied in relation to the impact of diseases, aging, nutrition and the environment on its circulating levels. Conversely, the impact of testosterone on health has also been evaluated with respect to its cardiac and vascular protective effects, body composition, autoimmunity and all-cause mortality. The male aging process results in decreasing testosterone levels over time. The exact mechanisms and impact of these changes in testosterone levels with age on health- and life-span are still not completely clear. Further research is needed to determine the optimal testosterone and androgen levels to protect from chronic age-related conditions such as frailty and osteoporosis.
Collapse
Affiliation(s)
- Justin M. Ketchem
- grid.410427.40000 0001 2284 9329Medical College of Georgia at Augusta University, Augusta, GA 30912 USA
| | | | - Carlos M. Isales
- grid.410427.40000 0001 2284 9329Departments of Medicine, Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA 30912 USA
| |
Collapse
|
15
|
Chen Z, Wang S, Meng Z, Ye Y, Shan G, Wang X, Zhao X, Jin Y. Tau protein plays a role in the mechanism of cognitive disorders induced by anesthetic drugs. Front Neurosci 2023; 17:1145318. [PMID: 36937655 PMCID: PMC10015606 DOI: 10.3389/fnins.2023.1145318] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Cognitive disorders are mental health disorders that can affect cognitive ability. Surgery and anesthesia have been proposed to increase the incidence of cognitive dysfunction, including declines in memory, learning, attention and executive function. Tau protein is a microtubule-associated protein located in the axons of neurons and is important for microtubule assembly and stability; its biological function is mainly regulated by phosphorylation. Phosphorylated tau protein has been associated with cognitive dysfunction mediated by disrupting the stability of the microtubule structure. There is an increasing consensus that anesthetic drugs can cause cognitive impairment. Herein, we reviewed the latest literature and compared the relationship between tau protein and cognitive impairment caused by different anesthetics. Our results substantiated that tau protein phosphorylation is essential in cognitive dysfunction caused by anesthetic drugs, and the possible mechanism can be summarized as "anesthetic drugs-kinase/phosphatase-p-Tau-cognitive impairment".
Collapse
|
16
|
Zalewska T, Pawelec P, Ziabska K, Ziemka-Nalecz M. Sexual Dimorphism in Neurodegenerative Diseases and in Brain Ischemia. Biomolecules 2022; 13:26. [PMID: 36671411 PMCID: PMC9855831 DOI: 10.3390/biom13010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
Epidemiological studies and clinical observations show evidence of sexual dimorphism in brain responses to several neurological conditions. It is suggested that sex-related differences between men and women may have profound effects on disease susceptibility, pathophysiology, and progression. Sexual differences of the brain are achieved through the complex interplay of several factors contributing to this phenomenon, such as sex hormones, as well as genetic and epigenetic differences. Despite recent advances, the precise link between these factors and brain disorders is incompletely understood. This review aims to briefly outline the most relevant aspects that differ between men and women in ischemia and neurodegenerative disorders (AD, PD, HD, ALS, and SM). Recognition of disparities between both sexes could aid the development of individual approaches to ameliorate or slow the progression of intractable disorders.
Collapse
Affiliation(s)
- Teresa Zalewska
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 A. Pawinskiego Str., 02-106 Warsaw, Poland
| | | | | | | |
Collapse
|
17
|
Abstract
As men grow older, circulating testosterone concentrations decline, while prevalence of cognitive impairment and dementia increase. Epidemiological studies of middle-aged and older men have demonstrated associations of lower testosterone concentrations with higher prevalence and incidence of cognitive decline and dementia, including Alzheimer's disease. In observational studies, men with prostate cancer treated by androgen deprivation therapy had a higher risk of dementia. Small intervention studies of testosterone using different measures of cognitive function have provided inconsistent results, with some suggesting improvement. A randomised placebo-controlled trial of one year's testosterone treatment conducted in 788 men aged ≥ 65 years, baseline testosterone < 9.54 nmol/L, showed an improvement in sexual function, but no improvement in cognitive function. There is a known association between diabetes and dementia risk. A randomised placebo-controlled trial of two year's testosterone treatment in 1,007 men aged 50-74 years, waist circumference ≥ 95 cm, baseline testosterone ≤ 14 nmol/L, showed an effect of testosterone in reducing type 2 diabetes risk. There were no cognitive endpoints in that trial. Additional research is warranted but at this stage lower testosterone concentrations in ageing men should be regarded as a biomarker rather than a proven therapeutic target for risk reduction of cognitive decline and dementia, including Alzheimer's disease.
Collapse
Affiliation(s)
- Bu B Yeap
- Medical School, University of Western Australia, Perth, Australia.
- Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Perth, Australia.
| | - Leon Flicker
- Medical School, University of Western Australia, Perth, Australia
- Western Australian Centre for Health and Ageing, University of Western Australia, Perth, Australia
- Department of Geriatric Medicine, Royal Perth Hospital, Perth, Australia
| |
Collapse
|
18
|
Marriott RJ, Murray K, Flicker L, Hankey GJ, Matsumoto AM, Dwivedi G, Antonio L, Almeida OP, Bhasin S, Dobs AS, Handelsman DJ, Haring R, O'Neill TW, Ohlsson C, Orwoll ES, Vanderschueren D, Wittert GA, Wu FCW, Yeap BB. Lower serum testosterone concentrations are associated with a higher incidence of dementia in men: The UK Biobank prospective cohort study. Alzheimers Dement 2022; 18:1907-1918. [PMID: 34978125 DOI: 10.1002/alz.12529] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 08/04/2021] [Accepted: 10/14/2021] [Indexed: 01/28/2023]
Abstract
INTRODUCTION The association of testosterone concentrations with dementia risk remains uncertain. We examined associations of serum testosterone and sex hormone-binding globulin (SHBG) with incidence of dementia and Alzheimer's disease. METHODS Serum total testosterone and SHBG were measured by immunoassay. The incidence of dementia and Alzheimer's disease (AD) was recorded. Cox proportional hazards regression was adjusted for age and other variables. RESULTS In 159,411 community-dwelling men (median age 61, followed for 7 years), 826 developed dementia, including 288 from AD. Lower total testosterone was associated with a higher incidence of dementia (overall trend: P = .001, lowest vs highest quintile: hazard ratio [HR] = 1.43, 95% confidence interval [CI] = 1.13-1.81), and AD (P = .017, HR = 1.80, CI = 1.21-2.66). Lower SHBG was associated with a lower incidence of dementia (P < .001, HR = 0.66, CI = 0.51-0.85) and AD (P = .012, HR = 0.53, CI = 0.34-0.84). DISCUSSION Lower total testosterone and higher SHBG are independently associated with incident dementia and AD in older men. Additional research is needed to determine causality.
Collapse
Affiliation(s)
- Ross J Marriott
- School of Population and Global Health, University of Western Australia, Perth, Australia
| | - Kevin Murray
- School of Population and Global Health, University of Western Australia, Perth, Australia
| | - Leon Flicker
- Medical School, University of Western Australia, Perth, Australia.,Western Australian Centre for Healthy Ageing, University of Western Australia, Perth, Australia
| | - Graeme J Hankey
- Medical School, University of Western Australia, Perth, Australia
| | - Alvin M Matsumoto
- Department of Medicine, University of Washington School of Medicine, Seattle, USA.,Geriatric Research, Education and Clinical Center, VA Puget Sound Health Care System, Seattle, USA
| | - Girish Dwivedi
- Medical School, University of Western Australia, Perth, Australia.,Harry Perkins Institute of Medical Research, Fiona Stanley Hospital, Perth, Australia
| | - Leen Antonio
- Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Osvaldo P Almeida
- Medical School, University of Western Australia, Perth, Australia.,Western Australian Centre for Healthy Ageing, University of Western Australia, Perth, Australia
| | - Shalender Bhasin
- Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Adrian S Dobs
- Division of Endocrinology, Johns Hopkins University School of Medicine, Baltimore, USA
| | | | - Robin Haring
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.,European University of Applied Sciences, Faculty of Applied Public Health, Rostock, Germany
| | - Terence W O'Neill
- Centre for Epidemiology Versus Arthritis, University of Manchester and NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Region Vastra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Dirk Vanderschueren
- Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Gary A Wittert
- Freemasons Centre for Men's Health and Wellbeing, School of Medicine, University of Adelaide, Adelaide, Australia
| | - Frederick C W Wu
- Division of Endocrinology, Diabetes & Gastroenterology, School of Medical Sciences, University of Manchester, Manchester, UK
| | - Bu B Yeap
- Medical School, University of Western Australia, Perth, Australia.,Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Perth, Australia
| |
Collapse
|
19
|
Saleki K, Banazadeh M, Saghazadeh A, Rezaei N. Aging, testosterone, and neuroplasticity: friend or foe? Rev Neurosci 2022; 34:247-273. [PMID: 36017670 DOI: 10.1515/revneuro-2022-0033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/03/2022] [Indexed: 11/15/2022]
Abstract
Neuroplasticity or neural plasticity implicates the adaptive potential of the brain in response to extrinsic and intrinsic stimuli. The concept has been utilized in different contexts such as injury and neurological disease. Neuroplasticity mechanisms have been classified into neuroregenerative and function-restoring processes. In the context of injury, neuroplasticity has been defined in three post-injury epochs. Testosterone plays a key yet double-edged role in the regulation of several neuroplasticity alterations. Research has shown that testosterone levels are affected by numerous factors such as age, stress, surgical procedures on gonads, and pharmacological treatments. There is an ongoing debate for testosterone replacement therapy (TRT) in aging men; however, TRT is more useful in young individuals with testosterone deficit and more specific subgroups with cognitive dysfunction. Therefore, it is important to pay early attention to testosterone profile and precisely uncover its harms and benefits. In the present review, we discuss the influence of environmental factors, aging, and gender on testosterone-associated alterations in neuroplasticity, as well as the two-sided actions of testosterone in the nervous system. Finally, we provide practical insights for further study of pharmacological treatments for hormonal disorders focusing on restoring neuroplasticity.
Collapse
Affiliation(s)
- Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, 47176 47745 Babol, Iran.,USERN Office, Babol University of Medical Sciences, 47176 47745 Babol, Iran.,Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), 14197 33151 Tehran, Iran
| | - Mohammad Banazadeh
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), 14197 33151 Tehran, Iran.,Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, 76169 13555 Kerman, Iran
| | - Amene Saghazadeh
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), 14197 33151 Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, 14197 33151 Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, 14197 33151 Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, 14176 13151 Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 14197 33151 Tehran, Iran
| |
Collapse
|
20
|
Fainanta T, Jaroenporn S, Wititsuwankul P, Malaivijitnond S. Comparison of neuroprotective effects of dihydrotestosterone, 17β-estradiol, and Pueraria mirifica herb extract on cognitive impairment in androgen deficient male rats. Horm Behav 2022; 143:105198. [PMID: 35609404 DOI: 10.1016/j.yhbeh.2022.105198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 01/30/2023]
Abstract
This study investigated the neuroprotective effects of dihydrotestosterone (DHT), 17β-estradiol (E2), and Pueraria mirifica herb extract (PME; an alternative source of natural estrogens) on the (i) learning and memory in androgen-deficient male rats, and on the hippocampus expression levels of (ii) mRNA of genes associated with synaptic transmission and structure, neurofibrillary tangles, and amyloid plaques, and (iii) total and phosphorylated tau proteins. The four-month-old male rats were sham-operated or orchidectomized (ODX). The ODX rats were divided into four groups, and orally treated for 2 months with either 1 mL/d of distilled water or 100 mg/kg/d of PME; or subcutaneously injected with 1 mg/kg/d of DHT or 80 μg/kg/d of E2. The impairment of spatial learning behavior and memory capacity in the ODX rats was prevented by DHT, E2, and PME. Recovery of the orchidectomy-induced deterioration of the synaptic plasticity in the hippocampus of rats was ranked as E2 ≥ PME > DHT. Both DHT and PME mitigated the increased Tau3 and Tau4 mRNA levels, and Tau-5 and P-Tau Ser396 protein levels more than E2 (DHT ≥ PME > E2). Only DHT tended to decrease App mRNA expression level. In conclusion, DHT showed a stronger efficacy for mitigation of the impaired spatial learning behavior and memory capacity in androgen-deficient male rats compared to E2 and PME, and their mechanisms of action are slightly different.
Collapse
Affiliation(s)
- Taratorn Fainanta
- Biological Sciences Program, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sukanya Jaroenporn
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Patteera Wititsuwankul
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suchinda Malaivijitnond
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
21
|
Marazuela P, Paez-Montserrat B, Bonaterra-Pastra A, Solé M, Hernández-Guillamon M. Impact of Cerebral Amyloid Angiopathy in Two Transgenic Mouse Models of Cerebral β-Amyloidosis: A Neuropathological Study. Int J Mol Sci 2022; 23:ijms23094972. [PMID: 35563362 PMCID: PMC9103818 DOI: 10.3390/ijms23094972] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
The pathological accumulation of parenchymal and vascular amyloid-beta (Aβ) are the main hallmarks of Alzheimer’s disease (AD) and Cerebral Amyloid Angiopathy (CAA), respectively. Emerging evidence raises an important contribution of vascular dysfunction in AD pathology that could partially explain the failure of anti-Aβ therapies in this field. Transgenic mice models of cerebral β-amyloidosis are essential to a better understanding of the mechanisms underlying amyloid accumulation in the cerebrovasculature and its interactions with neuritic plaque deposition. Here, our main objective was to evaluate the progression of both parenchymal and vascular deposition in APP23 and 5xFAD transgenic mice in relation to age and sex. We first showed a significant age-dependent accumulation of extracellular Aβ deposits in both transgenic models, with a greater increase in APP23 females. We confirmed that CAA pathology was more prominent in the APP23 mice, demonstrating a higher progression of Aβ-positive vessels with age, but not linked to sex, and detecting a pronounced burden of cerebral microbleeds (cMBs) by magnetic resonance imaging (MRI). In contrast, 5xFAD mice did not present CAA, as shown by the negligible Aβ presence in cerebral vessels and the occurrence of occasional cMBs comparable to WT mice. In conclusion, the APP23 mouse model is an interesting tool to study the overlap between vascular and parenchymal Aβ deposition and to evaluate future disease-modifying therapy before its translation to the clinic.
Collapse
|
22
|
Achard V, Ceyzériat K, Tournier BB, Frisoni GB, Garibotto V, Zilli T. Biomarkers to Evaluate Androgen Deprivation Therapy for Prostate Cancer and Risk of Alzheimer's Disease and Neurodegeneration: Old Drugs, New Concerns. Front Oncol 2022; 11:734881. [PMID: 34970480 PMCID: PMC8712866 DOI: 10.3389/fonc.2021.734881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/15/2021] [Indexed: 11/29/2022] Open
Abstract
Androgen deprivation therapy (ADT) is a standard treatment for prostate cancer patients, routinely used in the palliative or in the curative setting in association with radiotherapy. Among the systemic long-term side effects of ADT, growing data suggest a potentially increased risk of dementia/Alzheimer’s disease in prostate cancer patients treated with hormonal manipulation. While pre-clinical data suggest that androgen ablation may have neurotoxic effects due to Aβ accumulation and increased tau phosphorylation in small animal brains, clinical studies have measured the impact of ADT on long-term cognitive function, with conflicting results, and studies on biological changes after ADT are still lacking. The aim of this review is to report on the current evidence on the association between the ADT use and the risk of cognitive impairment in prostate cancer patients. We will focus on the contribution of Alzheimer’s disease biomarkers, namely through imaging, to investigate potential ADT-induced brain modifications. The evidence from these preliminary studies shows brain changes in gray matter volume, cortical activation and metabolism associated with ADT, however with a large variability in biomarker selection, ADT duration and cognitive outcome. Importantly, no study investigated yet biomarkers of Alzheimer’s disease pathology, namely amyloid and tau. These preliminary data emphasize the need for larger targeted investigations.
Collapse
Affiliation(s)
- Vérane Achard
- Division of Radiation Oncology, Department of Oncology, Geneva University Hospitals and Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Kelly Ceyzériat
- Division of Radiation Oncology, Department of Oncology, Geneva University Hospitals and Faculty of Medicine, Geneva University, Geneva, Switzerland.,Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospitals, and NimtLab, Faculty of Medicine, Geneva University, Geneva, Switzerland.,Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals and Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Benjamin B Tournier
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals and Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Giovanni B Frisoni
- Memory Clinic, Department of Rehabilitation and Geriatrics, Geneva University and University Hospitals, Geneva, Switzerland
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospitals, and NimtLab, Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Thomas Zilli
- Division of Radiation Oncology, Department of Oncology, Geneva University Hospitals and Faculty of Medicine, Geneva University, Geneva, Switzerland
| |
Collapse
|
23
|
Dennison JL, Ricciardi NR, Lohse I, Volmar CH, Wahlestedt C. Sexual Dimorphism in the 3xTg-AD Mouse Model and Its Impact on Pre-Clinical Research. J Alzheimers Dis 2021; 80:41-52. [PMID: 33459720 PMCID: PMC8075398 DOI: 10.3233/jad-201014] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Female sex is a leading risk factor for developing Alzheimer’s disease (AD). Sexual dimorphism in AD is gaining attention as clinical data show that women are not only more likely to develop AD but also to experience worse pathology and faster cognitive decline. Pre-clinical AD research in animal models often neglects to address sexual dimorphism in evaluation of behavioral or molecular characteristics and outcomes. This can compromise its translation to a clinical setting. The triple-transgenic AD mouse model (3xTg-AD) is a commonly used but unique AD model because it exhibits both amyloid and tau pathology, essential features of the human AD phenotype. Mounting evidence has revealed important sexually dimorphic characteristics of this animal model that have yet to be reviewed and thus, are often overlooked in studies using the 3xTg-AD model. In this review we conduct a thorough analysis of reports of sexual dimorphism in the 3xTg-AD model including findings of molecular, behavioral, and longevity-related sex differences in original research articles through August 2020. Importantly, we find results to be inconsistent, and that strain source and differing methodologies are major contributors to lack of consensus regarding traits of each sex. We first touch on the nature of sexual dimorphism in clinical AD, followed by a brief summary of sexual dimorphism in other major AD murine models before discussing the 3xTg-AD model in depth. We conclude by offering four suggestions to help unify pre-clinical mouse model AD research inspired by the NIH expectations for considering sex as a biological variable.
Collapse
Affiliation(s)
- Jessica L Dennison
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.,Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Natalie R Ricciardi
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.,Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ines Lohse
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.,Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Claude-Henry Volmar
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.,Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Claes Wahlestedt
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.,Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
24
|
Shim M, Bang WJ, Oh CY, Lee YS, Cho JS. Androgen deprivation therapy and risk of cognitive dysfunction in men with prostate cancer: is there a possible link? Prostate Int 2021; 10:68-74. [PMID: 35510099 PMCID: PMC9042678 DOI: 10.1016/j.prnil.2021.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 02/02/2023] Open
Abstract
The expansion of the indication to use androgen deprivation therapy (ADT) to treat patients with advanced or metastatic prostate cancer has dramatically increased over the recent decades, resulting in the progress of patients’ survival. However, chronic health implications can become more apparent as the number of long-term cancer survivors is expected to be increased along with the adverse effect of ADT. In particular, interest in investigating ADT, especially luteinizing hormone-releasing hormone (LHRH) agonist association with cognitive dysfunction has been growing. Previous studies in animals and humans suggest that the level of androgen decreases with age and that cognitive decline occurs with decreases in androgen. Correspondingly, some of the extensive studies using common neurocognitive tests have shown that LHRH agonists may affect specific domains of cognitive function (e.g., visuospatial abilities and executive function). However, the results from these studies have not consistently demonstrated the association because of its intrinsic limitations. Large-scale studies based on electronic databases have also failed to show consistent results to make decisive conclusions because of its heterogeneity, complexity of covariates, and possible risk of biases. Thus, this review article summarizes key findings and discusses the results of several studies investigating the ADT association with cognitive dysfunction and risk of dementia from various perspectives.
Collapse
|
25
|
Rodrigues Dos Santos M, Bhasin S. Benefits and Risks of Testosterone Treatment in Men with Age-Related Decline in Testosterone. Annu Rev Med 2020; 72:75-91. [PMID: 33217248 DOI: 10.1146/annurev-med-050219-034711] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The substantial increase in life expectancy of men has focused growing attention on quality-of-life issues associated with reproductive aging. Serum total and free testosterone levels in men, after reaching a peak in the second and third decade of life, decline gradually with advancing age. The trajectory of age-related decline is affected by comorbid conditions, adiposity, medications, and genetic factors. Testosterone treatment of older men with low testosterone levels improves overall sexual activity, sexual desire, and erectile function; improves areal and volumetric bone density, as well as estimated bone strength in the spine and the hip; corrects unexplained anemia of aging; increases skeletal muscle mass, strength and power, self-reported mobility, and some measures of physical function; and modestly improves depressive symptoms. The long-term effects of testosterone on major cardiovascular events and prostate cancer risk remain unclear. The Endocrine Society recommends against testosterone therapy of all older men with low testosterone levels but suggests consideration of treatment on an individualized basis in men who have consistently low testosterone levels and symptoms or conditions suggestive of testosterone deficiency.
Collapse
Affiliation(s)
- Marcelo Rodrigues Dos Santos
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA; .,Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo 05508-220, Brazil;
| | - Shalender Bhasin
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA;
| |
Collapse
|
26
|
Surguchov A. Caveolin: A New Link Between Diabetes and AD. Cell Mol Neurobiol 2020; 40:1059-1066. [PMID: 31974905 PMCID: PMC11448860 DOI: 10.1007/s10571-020-00796-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/18/2020] [Indexed: 01/15/2023]
Abstract
Alzheimer's disease (AD) and type 2 diabetes mellitus (T2D) are highly prevalent aging-related diseases associated with significant morbidity and mortality. Patients with T2D have an increased risk to develop AD, while glucose metabolism abnormalities are frequent among AD patients. Epidemiological studies and the results of basic science point to possible shared pathophysiology between T2D and AD. Co-occurrence of diabetes mellitus and AD was noticed long time ago. However, more recent data reveal that comorbidity of AD and T2D occurs significantly more frequently than is expected by chance alone. In spite of the high importance of this association, the inter-relational mechanisms are unclear. The results of recent investigations indicate that caveolin-1 (CAV-1)-a small membrane protein involved in signaling pathways-may play an important role in this association. Preliminary results pointing to this role of CAV-1 were collected after examination of patients with AD. Subsequent investigation in an animal model confirmed these initial observations. The involvement of CAV-1 in T2D and AD may be mediated by cellular organelles, including mitochondria and endoplasmic reticulum.
Collapse
Affiliation(s)
- Andrei Surguchov
- Department of Neurology, Kansas University Medical Center, Kansas City, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.
| |
Collapse
|
27
|
Bianchi VE, Rizzi L, Bresciani E, Omeljaniuk RJ, Torsello A. Androgen Therapy in Neurodegenerative Diseases. J Endocr Soc 2020; 4:bvaa120. [PMID: 33094209 PMCID: PMC7568521 DOI: 10.1210/jendso/bvaa120] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative diseases, including Alzheimer disease (AD), Parkinson disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and Huntington disease, are characterized by the loss of neurons as well as neuronal function in multiple regions of the central and peripheral nervous systems. Several studies in animal models have shown that androgens have neuroprotective effects in the brain and stimulate axonal regeneration. The presence of neuronal androgen receptors in the peripheral and central nervous system suggests that androgen therapy might be useful in the treatment of neurodegenerative diseases. To illustrate, androgen therapy reduced inflammation, amyloid-β deposition, and cognitive impairment in patients with AD. As well, improvements in remyelination in MS have been reported; by comparison, only variable results are observed in androgen treatment of PD. In ALS, androgen administration stimulated motoneuron recovery from progressive damage and regenerated both axons and dendrites. Only a few clinical studies are available in human individuals despite the safety and low cost of androgen therapy. Clinical evaluations of the effects of androgen therapy on these devastating diseases using large populations of patients are strongly needed.
Collapse
Affiliation(s)
- Vittorio Emanuele Bianchi
- Department of Endocrinology and Metabolism, Clinical Center Stella Maris, Strada Rovereta, Falciano, San Marino
| | - Laura Rizzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Elena Bresciani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | - Antonio Torsello
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
28
|
Riban V, Meunier J, Buttigieg D, Villard V, Verleye M. In Vitro and In Vivo Neuroprotective Effects of Etifoxine in β-Amyloidinduced Toxicity Models. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:227-240. [DOI: 10.2174/1871527319666200601151007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 11/22/2022]
Abstract
Aim:
The aim of this study is to examine the effect of etifoxine on β-amyloid-induced toxicity
models.
Background:
Etifoxine is an anxiolytic compound with a dual mechanism of action; it is a positive allosteric
modulator of GABAergic receptors as well as a ligand for the 18 kDa mitochondrial Translocator
Protein (TSPO). TSPO has recently raised interest in Alzheimer’s Disease (AD), and experimental studies
have shown that some TSPO ligands could induce neuroprotective effects in animal models.
Objective:
In this study, we examined the potential protective effect of etifoxine in an in vitro and an
in vivo model of amyloid beta (Aβ)-induced toxicity in its oligomeric form, which is a crucial factor in
AD pathologic mechanisms.
Method:
Neuronal cultures were intoxicated with Aβ1-42, and the effects of etifoxine on oxidative
stress, Tau-hyperphosphorylation and synaptic loss were quantified. In a mice model, behavioral deficits
induced by intracerebroventricular administration of Aβ25-35 were measured in a spatial memory
test, the spontaneous alternation and in a contextual memory test, the passive avoidance test.
Results:
In neuronal cultures intoxicated with Aβ1-42, etifoxine dose-dependently decreased oxidative
stress (methionine sulfoxide positive neurons), tau-hyperphosphorylation and synaptic loss (ratio
PSD95/synaptophysin). In a mice model, memory impairments were fully alleviated by etifoxine administered
at anxiolytic doses (12.5-50mg/kg). In addition, markers of oxidative stress and apoptosis
were decreased in the hippocampus of these animals.
Conclusion:
Our results have shown that in these two models, etifoxine could fully prevent neurotoxicity
and pathological changes induced by Aβ. These results confirm that TSPO ligands could offer an
interesting therapeutic approach to Alzheimer’s disease.
Collapse
Affiliation(s)
- Veronique Riban
- Pharmacology Department, Biocodex, 3 Chemin d’Armancourt, 60200 Compiegne, France
| | - Johann Meunier
- Amylgen, 2196 Boulevard de la Lironde, 34980 Montferrier sur Lez, France
| | | | - Vanessa Villard
- Amylgen, 2196 Boulevard de la Lironde, 34980 Montferrier sur Lez, France
| | - Marc Verleye
- Pharmacology Department, Biocodex, 3 Chemin d’Armancourt, 60200 Compiegne, France
| |
Collapse
|
29
|
Tobore TO. On the Etiopathogenesis and Pathophysiology of Alzheimer's Disease: A Comprehensive Theoretical Review. J Alzheimers Dis 2020; 68:417-437. [PMID: 30775973 DOI: 10.3233/jad-181052] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alzheimers' disease (AD) is the most common cause of dementia, with an estimated 5 million new cases occurring annually. Among the elderly, AD shortens life expectancy, results in disability, decreases quality of life, and ultimately, leads to institutionalization. Despite extensive research in the last few decades, its heterogeneous pathophysiology and etiopathogenesis have made it difficult to develop an effective treatment and prevention strategy. Aging is the biggest risk factor for AD and evidence suggest that the total number of older people in the population is going to increase astronomically in the next decades. Also, there is evidence that air pollution and increasing income inequality may result in higher incidence and prevalence of AD. This makes the need for a comprehensive understanding of the etiopathogenesis and pathophysiology of the disease extremely critical. In this paper, a quintuple framework of thyroid dysfunction, vitamin D deficiency, sex hormones, and mitochondria dysfunction and oxidative stress are used to provide a comprehensive description of AD etiopathogenesis and pathophysiology. The individual role of each factor, their synergistic and genetic interactions, as well as the limitations of the framework are discussed.
Collapse
|
30
|
Steroids and Alzheimer's Disease: Changes Associated with Pathology and Therapeutic Potential. Int J Mol Sci 2020; 21:ijms21134812. [PMID: 32646017 PMCID: PMC7370115 DOI: 10.3390/ijms21134812] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a multifactorial age-related neurodegenerative disease that today has no effective treatment to prevent or slow its progression. Neuroactive steroids, including neurosteroids and sex steroids, have attracted attention as potential suitable candidates to alleviate AD pathology. Accumulating evidence shows that they exhibit pleiotropic neuroprotective properties that are relevant for AD. This review focuses on the relationship between selected neuroactive steroids and the main aspects of AD disease, pointing out contributions and gaps with reference to sex differences. We take into account the regulation of brain steroid concentrations associated with human AD pathology. Consideration is given to preclinical studies in AD models providing current knowledge on the neuroprotection offered by neuroactive (neuro)steroids on major AD pathogenic factors, such as amyloid-β (Aβ) and tau pathology, mitochondrial impairment, neuroinflammation, neurogenesis and memory loss. Stimulating endogenous steroid production opens a new steroid-based strategy to potentially overcome AD pathology. This article is part of a Special Issue entitled Steroids and the Nervous System.
Collapse
|
31
|
Sundermann EE, Panizzon MS, Chen X, Andrews M, Galasko D, Banks SJ, for the Alzheimer’s Disease Neuroimaging Initiative. Sex differences in Alzheimer's-related Tau biomarkers and a mediating effect of testosterone. Biol Sex Differ 2020; 11:33. [PMID: 32560743 PMCID: PMC7304096 DOI: 10.1186/s13293-020-00310-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Women show greater pathological Tau biomarkers than men along the Alzheimer's disease (AD) continuum, particularly among apolipoprotein ε-E4 (APOE4) carriers; however, the reason for this sex difference in unknown. Sex differences often indicate an underlying role of sex hormones. We examined whether testosterone levels might influence this sex difference and the modifying role of APOE4 status. Analyses included 172 participants (25 cognitively normal, 97 mild cognitive impairment, 50 AD participants) from the Alzheimer's Disease Neuroimaging Initiative (34% female, 54% APOE4 carriers, aged 55-90). We examined the separate and interactive effects of plasma testosterone levels and APOE4 on cerebrospinal fluid phosphorylated-tau181 (p-Tau) levels in the overall sample and the sex difference in p-Tau levels before and after adjusting for testosterone. A significant APOE4-by-testosterone interaction revealed that lower testosterone levels related to higher p-Tau levels among APOE4 carriers regardless of sex. As expected, women had higher p-Tau levels than men among APOE4 carriers only, yet this difference was eliminated upon adjustment for testosterone. Results suggest that testosterone is protective against p-Tau particularly among APOE4 carriers. The lower testosterone levels that typically characterize women may predispose them to pathological Tau, particularly among female APOE4 carriers.
Collapse
Affiliation(s)
- Erin E. Sundermann
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 USA
| | - Matthew S. Panizzon
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 USA
| | - Xu Chen
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 USA
| | - Murray Andrews
- Department of Neuroscience, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093 USA
| | - Douglas Galasko
- Department of Neuroscience, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093 USA
| | - Sarah J. Banks
- Department of Neuroscience, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093 USA
| | - for the Alzheimer’s Disease Neuroimaging Initiative
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 USA
- Department of Neuroscience, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093 USA
| |
Collapse
|
32
|
Vegeto E, Villa A, Della Torre S, Crippa V, Rusmini P, Cristofani R, Galbiati M, Maggi A, Poletti A. The Role of Sex and Sex Hormones in Neurodegenerative Diseases. Endocr Rev 2020; 41:5572525. [PMID: 31544208 PMCID: PMC7156855 DOI: 10.1210/endrev/bnz005] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases (NDs) are a wide class of disorders of the central nervous system (CNS) with unknown etiology. Several factors were hypothesized to be involved in the pathogenesis of these diseases, including genetic and environmental factors. Many of these diseases show a sex prevalence and sex steroids were shown to have a role in the progression of specific forms of neurodegeneration. Estrogens were reported to be neuroprotective through their action on cognate nuclear and membrane receptors, while adverse effects of male hormones have been described on neuronal cells, although some data also suggest neuroprotective activities. The response of the CNS to sex steroids is a complex and integrated process that depends on (i) the type and amount of the cognate steroid receptor and (ii) the target cell type-either neurons, glia, or microglia. Moreover, the levels of sex steroids in the CNS fluctuate due to gonadal activities and to local metabolism and synthesis. Importantly, biochemical processes involved in the pathogenesis of NDs are increasingly being recognized as different between the two sexes and as influenced by sex steroids. The aim of this review is to present current state-of-the-art understanding on the potential role of sex steroids and their receptors on the onset and progression of major neurodegenerative disorders, namely, Alzheimer's disease, Parkinson's diseases, amyotrophic lateral sclerosis, and the peculiar motoneuron disease spinal and bulbar muscular atrophy, in which hormonal therapy is potentially useful as disease modifier.
Collapse
Affiliation(s)
- Elisabetta Vegeto
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Scienze Farmaceutiche (DiSFarm), Università degli Studi di Milano, Italy
| | - Alessandro Villa
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Scienze della Salute (DiSS), Università degli Studi di Milano, Italy
| | - Sara Della Torre
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Scienze Farmaceutiche (DiSFarm), Università degli Studi di Milano, Italy
| | - Valeria Crippa
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Paola Rusmini
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Riccardo Cristofani
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Mariarita Galbiati
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Adriana Maggi
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Scienze Farmaceutiche (DiSFarm), Università degli Studi di Milano, Italy
| | - Angelo Poletti
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| |
Collapse
|
33
|
Sexual hormones regulate the redox status and mitochondrial function in the brain. Pathological implications. Redox Biol 2020; 31:101505. [PMID: 32201220 PMCID: PMC7212485 DOI: 10.1016/j.redox.2020.101505] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 02/11/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
Compared to other organs, the brain is especially exposed to oxidative stress. In general, brains from young females tend to present lower oxidative damage in comparison to their male counterparts. This has been attributed to higher antioxidant defenses and a better mitochondrial function in females, which has been linked to neuroprotection in this group. However, these differences usually disappear with aging, and the incidence of brain pathologies increases in aged females. Sexual hormones, which suffer a decrease with normal aging, have been proposed as the key factors involved in these gender differences. Here, we provide an overview of redox status and mitochondrial function regulation by sexual hormones and their influence in normal brain aging. Furthermore, we discuss how sexual hormones, as well as phytoestrogens, may play an important role in the development and progression of several brain pathologies, including neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, stroke or brain cancer. Sex hormones are reduced with aging, especially in females, affecting redox balance. Normal aging is associated to a worse redox homeostasis in the brain. Young females show better mitochondrial function and higher antioxidant defenses. Development of brain pathologies is influenced by sex hormones and phytoestrogens.
Collapse
|
34
|
Mendell AL, Creighton SD, Wilson HA, Jardine KH, Isaacs L, Winters BD, MacLusky NJ. Inhibition of 5α Reductase Impairs Cognitive Performance, Alters Dendritic Morphology and Increases Tau Phosphorylation in the Hippocampus of Male 3xTg-AD Mice. Neuroscience 2020; 429:185-202. [PMID: 31954826 DOI: 10.1016/j.neuroscience.2020.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/09/2019] [Accepted: 01/07/2020] [Indexed: 10/25/2022]
Abstract
Recent work has suggested that 5α-reduced metabolites of testosterone may contribute to the neuroprotection conferred by their parent androgen, as well as to sex differences in the incidence and progression of Alzheimer's disease (AD). This study investigated the effects of inhibiting 5α-reductase on object recognition memory (ORM), hippocampal dendritic morphology and proteins involved in AD pathology, in male 3xTg-AD mice. Male 6-month old wild-type or 3xTg-AD mice received daily injections of finasteride (50 mg/kg i.p.) or vehicle (18% β-cyclodextrin, 1% v/b.w.) for 20 days. Female wild-type and 3xTg-AD mice received only the vehicle. Finasteride treatment differentially impaired ORM in males after short-term (3xTg-AD only) or long-term (3xTg-AD and wild-type) retention delays. Dendritic spine density and dendritic branching of pyramidal neurons in the CA3 hippocampal subfield were significantly lower in 3xTg-AD females than in males. Finasteride reduced CA3 dendritic branching and spine density in 3xTg-AD males, to within the range observed in vehicle-treated females. In the CA1 hippocampal subfield, dendritic branching and spine density were reduced in both male and female 3xTg-AD mice, compared to wild type controls. Hippocampal amyloid β levels were substantially higher in 3xTg-AD females compared to both vehicle and finasteride-treated 3xTg-AD males. Site-specific Tau phosphorylation was higher in 3xTg-AD mice compared to sex-matched wild-type controls, increasing slightly after finasteride treatment. These results suggest that 5α-reduced neurosteroids may play a role in testosterone-mediated neuroprotection and may contribute to sex differences in the development and severity of AD.
Collapse
Affiliation(s)
| | | | | | | | | | - Boyer D Winters
- Psychology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | |
Collapse
|
35
|
Giatti S, Diviccaro S, Serafini MM, Caruso D, Garcia-Segura LM, Viviani B, Melcangi RC. Sex differences in steroid levels and steroidogenesis in the nervous system: Physiopathological role. Front Neuroendocrinol 2020; 56:100804. [PMID: 31689419 DOI: 10.1016/j.yfrne.2019.100804] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/10/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022]
Abstract
The nervous system, in addition to be a target for steroid hormones, is the source of a variety of neuroactive steroids, which are synthesized and metabolized by neurons and glial cells. Recent evidence indicates that the expression of neurosteroidogenic proteins and enzymes and the levels of neuroactive steroids are different in the nervous system of males and females. We here summarized the state of the art of neuroactive steroids, particularly taking in consideration sex differences occurring in the synthesis and levels of these molecules. In addition, we discuss the consequences of sex differences in neurosteroidogenesis for the function of the nervous system under healthy and pathological conditions and the implications of neuroactive steroids and neurosteroidogenesis for the development of sex-specific therapeutic interventions.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Melania Maria Serafini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Donatella Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Barbara Viviani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Roberto C Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
36
|
Balit T, Abdel-Wahhab MA, Radenahmad N. Young Coconut Juice Reduces Some Histopathological Changes Associated with Alzheimer's Disease through the Modulation of Estrogen Receptors in Orchidectomized Rat Brains. J Aging Res 2019; 2019:7416419. [PMID: 31885921 PMCID: PMC6914913 DOI: 10.1155/2019/7416419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/06/2019] [Accepted: 09/16/2019] [Indexed: 11/23/2022] Open
Abstract
Propose. This study aimed to evaluate the protective role of young coconut juice (YCJ) against the pathological changes in Alzheimer's disease (AD) in orchidectomized (orx) rats. Methods and Results. Animals were divided into 7 groups including: baseline normal control group, sham control, orx rat group, orx rat group injected with 2.5 μg/kg b.w. estradiol benzoate (EB) 3 days a week for 10 weeks, and the orx rat groups treated orally with 10, 20, and 40 ml/kg b.w. of YCJ for 10 weeks. At the end of treatment period, animals were sacrificed and the brain of each rat was removed, fixed in 10% neutral formalin, and stained by specific antibodies against NF200, parvalbumin (PV), β-amyloid (Aβ), and estrogen receptors (ERα and ERβ). The results showed that the number of NF200- and PV-reactive neurons in the hippocampus and cerebral cortex was significantly reduced in orx rats. However, it restored to normal in orx rats injected with EB or those administrated with YCJ in a dose-related manner. Neurons containing β-amyloid (Aβ), a hallmark of Alzheimer's disease (AD), were found to be increased in the orx rats; however; they were reduced by EB injection or YCJ administration. These results suggested the binding of the YCJ active ingredient(s) with estrogen receptors (ERs) in the brain as indicated by the detection of ERα and ERβ in neurons since a significant correlation was detected between NF200-/PV-reactive neurons vs ERα-/ERβ-reactive neurons.Conclusion. It could be concluded that YCJ is effective as EB in reducing AD pathology, probably by being selective estrogen receptor modulators.
Collapse
Affiliation(s)
- Tatcha Balit
- Department of Anatomy, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Mosaad A. Abdel-Wahhab
- Department of Food Toxicology and Contaminants, National Research Center, Dokki, Cairo, Egypt
| | - Nisaudah Radenahmad
- Department of Anatomy, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
37
|
Chronological Molecular Changes in Neuronal Communication in Androgen-Deficient Rats. J Mol Neurosci 2019; 69:83-93. [DOI: 10.1007/s12031-019-01335-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/07/2019] [Indexed: 12/21/2022]
|
38
|
Kaufman MJ, Kanayama G, Hudson JI, Pope HG. Supraphysiologic-dose anabolic-androgenic steroid use: A risk factor for dementia? Neurosci Biobehav Rev 2019; 100:180-207. [PMID: 30817935 PMCID: PMC6451684 DOI: 10.1016/j.neubiorev.2019.02.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/13/2019] [Accepted: 02/17/2019] [Indexed: 02/06/2023]
Abstract
Supraphysiologic-dose anabolic-androgenic steroid (AAS) use is associated with physiologic, cognitive, and brain abnormalities similar to those found in people at risk for developing Alzheimer's Disease and its related dementias (AD/ADRD), which are associated with high brain β-amyloid (Aβ) and hyperphosphorylated tau (tau-P) protein levels. Supraphysiologic-dose AAS induces androgen abnormalities and excess oxidative stress, which have been linked to increased and decreased expression or activity of proteins that synthesize and eliminate, respectively, Aβ and tau-P. Aβ and tau-P accumulation may begin soon after initiating supraphysiologic-dose AAS use, which typically occurs in the early 20s, and their accumulation may be accelerated by other psychoactive substance use, which is common among non-medical AAS users. Accordingly, the widespread use of supraphysiologic-dose AAS may increase the numbers of people who develop dementia. Early diagnosis and correction of sex-steroid level abnormalities and excess oxidative stress could attenuate risk for developing AD/ADRD in supraphysiologic-dose AAS users, in people with other substance use disorders, and in people with low sex-steroid levels or excess oxidative stress associated with aging.
Collapse
Affiliation(s)
- Marc J Kaufman
- McLean Imaging Center, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA.
| | - Gen Kanayama
- Biological Psychiatry Laboratory, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - James I Hudson
- Biological Psychiatry Laboratory, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Harrison G Pope
- Biological Psychiatry Laboratory, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
39
|
Creighton SD, Mendell AL, Palmer D, Kalisch BE, MacLusky NJ, Prado VF, Prado MAM, Winters BD. Dissociable cognitive impairments in two strains of transgenic Alzheimer's disease mice revealed by a battery of object-based tests. Sci Rep 2019; 9:57. [PMID: 30635592 PMCID: PMC6329782 DOI: 10.1038/s41598-018-37312-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 12/04/2018] [Indexed: 12/20/2022] Open
Abstract
Object recognition tasks detect cognitive deficits in transgenic Alzheimer's disease (AD) mouse models. Object recognition, however, is not a unitary process, and there are many uncharacterized facets of object processing with relevance to AD. We therefore systematically evaluated object processing in 5xFAD and 3xTG AD mice to clarify the nature of object recognition-related deficits. Twelve-month-old male and female 5xFAD and 3xTG mice were assessed on tasks for object identity recognition, spatial recognition, and multisensory object perception. Memory and multisensory perceptual impairments were observed, with interesting dissociations between transgenic AD strains and sex that paralleled neuropathological changes. Overreliance on the widespread "object recognition" task threatens to slow discovery of potentially significant and clinically relevant behavioural effects related to this multifaceted cognitive function. The current results support the use of carefully designed object-based test batteries to clarify the relationship between "object recognition" impairments and specific aspects of AD pathology in rodent models.
Collapse
Affiliation(s)
- Samantha D Creighton
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Ari L Mendell
- Department of Biomedical Sciences and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Daniel Palmer
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Bettina E Kalisch
- Department of Biomedical Sciences and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Neil J MacLusky
- Department of Biomedical Sciences and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Vania F Prado
- Molecular Medicine Research Group, Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Marco A M Prado
- Molecular Medicine Research Group, Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Boyer D Winters
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
40
|
Mendell AL, MacLusky NJ. The testosterone metabolite 3α-androstanediol inhibits oxidative stress-induced ERK phosphorylation and neurotoxicity in SH-SY5Y cells through an MKP3/DUSP6-dependent mechanism. Neurosci Lett 2018; 696:60-66. [PMID: 30552945 DOI: 10.1016/j.neulet.2018.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 01/08/2023]
Abstract
Testosterone exerts neuroprotective effects on the brain, but the mechanisms by which these effects are exerted appear to be different in males and females. While in females they involve local conversion to estradiol, in males they may be androgen receptor-dependent, or mediated through metabolism to neurosteroids such as 5α-androstane-3α,17β-diol (3α-diol), which acts through different mechanisms than testosterone itself. Recently, we demonstrated that 3α-diol can protect neurons and neuronal-like cells against oxidative stress-induced neurotoxicity associated with prolonged phosphorylation of the extracellular signal-regulated kinase (ERK). The mechanism(s) responsible for these effects remain unknown. In the present study, we sought to determine whether the ERK-specific phosphatase, mitogen-activated protein kinase phosphatase 3/dual specificity phosphatase 6 (MKP3/DUSP6), is involved in the cytoprotective effects of 3α-diol in SH-SY5Y human female neuroblastoma cells. 3α-diol inhibited ERK phosphorylation and ameliorated cell death induced by the oxidative stressor hydrogen peroxide (H2O2). These protective effects were significantly reduced by pre-treatment with the MKP3/DUSP6 inhibitor BCI. In addition, H2O2 decreased expression of MKP3/DUSP6, and this was prevented by co-treatment with 3α-diol. These findings suggest that the protective effects of 3α-diol are mediated through regulation of ERK phosphorylation in neurotoxic conditions and indicate that these effects may be exerted through modulation of MKP3/DUSP6. Targeting the regulation of MKP3/DUSP6 may be beneficial in reducing toxicity under conditions of oxidative stress.
Collapse
Affiliation(s)
- Ari Loren Mendell
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| | - Neil James MacLusky
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
41
|
Lei Y, Renyuan Z. Effects of Androgens on the Amyloid-β Protein in Alzheimer's Disease. Endocrinology 2018; 159:3885-3894. [PMID: 30215697 DOI: 10.1210/en.2018-00660] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 09/06/2018] [Indexed: 12/24/2022]
Abstract
Age-related androgen depletion has been implicated in compromised neuroprotection and is involved in the pathogenesis of neurodegenerative disease, including Alzheimer's disease (AD), the leading cause of dementia. Emerging data revealed that reduction of both serum and brain androgen levels in males is associated with increased amyloid-β (Aβ) accumulation, a putative cause of AD. It has been demonstrated that androgens can function as the endogenous negative regulators of Aβ. However, the mechanisms by which androgens regulate Aβ production, degradation, and clearance, as well as the Aβ-induced pathological process in AD, are still elusive. This review emphasizes the contributions of androgen to Aβ metabolism and toxicity in AD and thus may provide novel strategies for prevention and therapeutics.
Collapse
Affiliation(s)
- Yang Lei
- Department of Urology, Jing'an District Central Hospital, Fudan University, Shanghai, China
| | - Zhou Renyuan
- Department of Urology, Jing'an District Central Hospital, Fudan University, Shanghai, China
| |
Collapse
|
42
|
Khan MM, Xiao J, Patel D, LeDoux MS. DNA damage and neurodegenerative phenotypes in aged Ciz1 null mice. Neurobiol Aging 2018; 62:180-190. [PMID: 29154038 DOI: 10.1016/j.neurobiolaging.2017.10.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/17/2017] [Accepted: 10/16/2017] [Indexed: 12/28/2022]
Abstract
Cell-cycle dysfunction and faulty DNA repair are closely intertwined pathobiological processes that may contribute to several neurodegenerative disorders. CDKN1A interacting zinc finger protein 1 (CIZ1) plays a critical role in DNA replication and cell-cycle progression at the G1/S checkpoint. Germline or somatic variants in CIZ1 have been linked to several neural and extra-neural diseases. Recently, we showed that germline knockout of Ciz1 is associated with motor and hematological abnormalities in young adult mice. However, the effects of CIZ1 deficiency in much older mice may be more relevant to understanding age-related declines in cognitive and motor functioning and age-related neurologic disorders such as isolated dystonia and Alzheimer disease. Mouse embryonic fibroblasts from Ciz1-/- mice showed abnormal sensitivity to the effects of γ-irradiation with persistent DNA breaks, aberrant cell-cycle progression, and apoptosis. Aged (18-month-old) Ciz1-/- mice exhibited marked deficits in motor and cognitive functioning, and, in brain tissues, overt DNA damage, NF-κB upregulation, oxidative stress, vascular dysfunction, inflammation, and cell death. These findings indicate that the deleterious effects of CIZ1 deficiency become more pronounced with aging and suggest that defects of cell-cycle control and associated DNA repair pathways in postmitotic neurons could contribute to global neurologic decline in elderly human populations. Accordingly, the G1/S cell-cycle checkpoint and associated DNA repair pathways may be targets for the prevention and treatment of age-related neurodegenerative processes.
Collapse
Affiliation(s)
- Mohammad Moshahid Khan
- Departments of Neurology, and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jianfeng Xiao
- Departments of Neurology, and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Damini Patel
- Departments of Neurology, and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Mark S LeDoux
- Departments of Neurology, and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
43
|
Fisher DW, Bennett DA, Dong H. Sexual dimorphism in predisposition to Alzheimer's disease. Neurobiol Aging 2018; 70:308-324. [PMID: 29754747 DOI: 10.1016/j.neurobiolaging.2018.04.004] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 12/20/2022]
Abstract
Clinical studies indicate that Alzheimer's disease (AD) disproportionately affects women in both disease prevalence and rate of symptom progression, but the mechanisms underlying this sexual divergence are unknown. Although some have suggested this difference in risk is a reflection of the known differences in longevity between men and women, mounting clinical and preclinical evidence supports women also having intrinsic susceptibilities toward the disease. Although a number of potential risk factors have been hypothesized to mediate these differences, none have been definitively verified. In this review, we first summarize the epidemiologic studies of prevalence and incidence of AD among the sexes. Next, we discuss the most likely risk factors to date that interact with biological sex, including (1) genetic factors, (2) sex hormones (3) deviations in brain structure, (4) inflammation and microglia, and (5) and psychosocial stress responses. Overall, though differences in life span are likely to account for part of the divide between the sexes in AD prevalence, the abundance of preclinical and clinical evidence presented here suggests an increase in intrinsic AD risk for women. Therefore, future studies focusing on the underlying biological mechanisms for this phenomenon are needed to better understand AD pathogenesis in both sexes, with the eventual goal of sex-specific prevention and treatment strategies.
Collapse
Affiliation(s)
- Daniel W Fisher
- Departments of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - David A Bennett
- Department of Neurological Sciences, Rush Alzheimer's Disease Center, Rush Medical College, Chicago, IL, USA
| | - Hongxin Dong
- Departments of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
44
|
Tschiffely AE, Schuh RA, Prokai-Tatrai K, Ottinger MA, Prokai L. An exploratory investigation of brain-selective estrogen treatment in males using a mouse model of Alzheimer's disease. Horm Behav 2018; 98:16-21. [PMID: 29183688 PMCID: PMC5999339 DOI: 10.1016/j.yhbeh.2017.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/24/2017] [Accepted: 11/21/2017] [Indexed: 11/19/2022]
Abstract
Estrogens are neuroprotective, and studies suggest that they may mitigate the pathology and symptoms of Alzheimer's disease (AD) in female models. However, central estrogen effects have not been examined in males in the context of AD. The purpose of this follow-up study was to assess the benefits of a brain-selective 17β-estradiol estrogen prodrug, 10β,17β-hydroxyestra-1,4-dien-3-one (DHED), also in the male APPswe/PS1dE9 double-transgenic mouse model of the disease. After continuously exposing 6-month old animals to DHED for two months, their brains showed decreased amyloid precursor and amyloid-β protein levels. The DHED-treated APPswe/PS1dE9 double transgenic subjects also exhibited enhanced performance in a cognitive task, while 17β-estradiol treatment did not reach statistical significance. Taken together, data presented here suggest that DHED may also have therapeutic benefit in males and warrant further investigations to fully elucidate the potential of targeted estrogen therapy for a gender-independent treatment of early-stage AD.
Collapse
Affiliation(s)
- Anna E Tschiffely
- Neuroscience and Cognitive Science Graduate Program, University of Maryland College Park, MD 20742, USA; Department of Animal and Avian Sciences, University of Maryland College Park, MD 20742, USA
| | - Rosemary A Schuh
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Research Service, VAMHCS, Baltimore, MD 21201, USA
| | - Katalin Prokai-Tatrai
- Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Mary Ann Ottinger
- Department of Animal and Avian Sciences, University of Maryland College Park, MD 20742, USA.
| | - Laszlo Prokai
- Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| |
Collapse
|
45
|
Morello M, Landel V, Lacassagne E, Baranger K, Annweiler C, Féron F, Millet P. Vitamin D Improves Neurogenesis and Cognition in a Mouse Model of Alzheimer's Disease. Mol Neurobiol 2018; 55:6463-6479. [PMID: 29318446 PMCID: PMC6061182 DOI: 10.1007/s12035-017-0839-1] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/12/2017] [Indexed: 12/11/2022]
Abstract
The impairment of hippocampal neurogenesis at the early stages of Alzheimer’s disease (AD) is believed to support early cognitive decline. Converging studies sustain the idea that vitamin D might be linked to the pathophysiology of AD and to hippocampal neurogenesis. Nothing being known about the effects of vitamin D on hippocampal neurogenesis in AD, we assessed them in a mouse model of AD. In a previous study, we observed that dietary vitamin D supplementation in female AD-like mice reduced cognitive decline only when delivered during the symptomatic phase. With these data in hand, we wondered whether the consequences of vitamin D administration on hippocampal neurogenesis are stage-dependent. Male wild-type and transgenic AD-like mice (5XFAD model) were fed with a diet containing either no vitamin D (0VD) or a normal dose of vitamin D (NVD) or a high dose of vitamin D (HVD), from month 1 to month 6 (preventive arm) or from month 4 to month 9 (curative arm). Working memory was assessed using the Y-maze, while amyloid burden, astrocytosis, and neurogenesis were quantified using immunohistochemistry. In parallel, the effects of vitamin D on proliferation and differentiation were assayed on primary cultures of murine neural progenitor cells. Improved working memory and neurogenesis were observed when high vitamin D supplementation was administered during the early phases of the disease, while a normal dose of vitamin D increased neurogenesis during the late phases. Conversely, an early hypovitaminosis D increased the number of amyloid plaques in AD mice while a late hypovitaminosis D impaired neurogenesis in AD and WT mice. The observed in vivo vitamin D-associated increased neurogenesis was partially substantiated by an augmented in vitro proliferation but not an increased differentiation of neural progenitors into neurons. Finally, a sexual dimorphism was observed. Vitamin D supplementation improved the working memory of males and females, when delivered during the pre-symptomatic and symptomatic phases, respectively. Our study establishes that (i) neurogenesis is improved by vitamin D in a male mouse model of AD, in a time-dependent manner, and (ii) cognition is enhanced in a gender-associated way. Additional pre-clinical studies are required to further understand the gender- and time-specific mechanisms of action of vitamin D in AD. This may lead to an adaptation of vitamin D supplementation in relation to patient’s gender and age as well as to the stage of the disease.
Collapse
Affiliation(s)
- Maria Morello
- Aix Marseille Univ, CNRS, NICN, Marseille, France.,Clinical Biochemistry, Department of Experimental Medicine and Surgery, Faculty of Medicine, University Hospital of Tor Vergata, Rome, Italy.,Division of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention Faculty of Medicine, University of Tor Vergata, Rome, Italy
| | | | | | | | - Cedric Annweiler
- Department of Neurosciences and Aging, Division of Geriatric Medicine, Angers University Hospital, Angers University Memory Clinic, Research Center on Autonomy and Longevity, UPRES EA 4638, University of Angers, UNAM, Angers, France.,Robarts Research Institute, Department of Medical Biophysics, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | | | | |
Collapse
|
46
|
Gaignard P, Liere P, Thérond P, Schumacher M, Slama A, Guennoun R. Role of Sex Hormones on Brain Mitochondrial Function, with Special Reference to Aging and Neurodegenerative Diseases. Front Aging Neurosci 2017; 9:406. [PMID: 29270123 PMCID: PMC5725410 DOI: 10.3389/fnagi.2017.00406] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/24/2017] [Indexed: 01/18/2023] Open
Abstract
The mitochondria have a fundamental role in both cellular energy supply and oxidative stress regulation and are target of the effects of sex steroids, particularly the neuroprotective ones. Aging is associated with a decline in the levels of different steroid hormones, and this decrease may underline some neural dysfunctions. Besides, modifications in mitochondrial functions associated with aging processes are also well documented. In this review, we will discuss studies that describe the modifications of brain mitochondrial function and of steroid levels associated with physiological aging and with neurodegenerative diseases. A special emphasis will be placed on describing and discussing our recent findings concerning the concomitant study of mitochondrial function (oxidative phosphorylation, oxidative stress) and brain steroid levels in both young (3-month-old) and aged (20-month-old) male and female mice.
Collapse
Affiliation(s)
- Pauline Gaignard
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, Le Kremlin-Bicêtre, France
- Biochemistry Laboratory, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Philippe Liere
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Patrice Thérond
- Biochemistry Laboratory, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Michael Schumacher
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Abdelhamid Slama
- Biochemistry Laboratory, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Rachida Guennoun
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, Le Kremlin-Bicêtre, France
| |
Collapse
|
47
|
Armeni E, Apostolakis M, Christidi F, Rizos D, Kaparos G, Panoulis K, Augoulea A, Alexandrou A, Karopoulou E, Zalonis I, Triantafyllou N, Lambrinoudaki I. Endogenous sex hormones and memory performance in middle-aged Greek women with subjective memory complaints. Neurol Sci 2017; 39:259-266. [DOI: 10.1007/s10072-017-3165-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/20/2017] [Indexed: 12/30/2022]
|
48
|
Golden LC, Voskuhl R. The importance of studying sex differences in disease: The example of multiple sclerosis. J Neurosci Res 2017; 95:633-643. [PMID: 27870415 DOI: 10.1002/jnr.23955] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 08/19/2016] [Accepted: 09/06/2016] [Indexed: 12/20/2022]
Abstract
To date, scientific research has often focused on one sex, with assumptions that study of the other sex would yield similar results. However, many diseases affect males and females differently. The sex of a patient can affect the risk for both disease susceptibility and progression. Such differences can be brought to the laboratory bench to be investigated, potentially bringing new treatments back to the clinic. This method of research, known as a "bedside to bench to bedside" approach, has been applied to studying sex differences in multiple sclerosis (MS). Females have greater susceptibly to MS, while males have worse disease progression. These two characteristics of the disease are influenced by the immune system and the nervous system, respectively. Thus, sex differences in each system must be studied. Personalized medicine has been at the forefront of research recently, and studying sex differences in disease fits with this initiative. This review will discuss the known sex differences in MS and highlight how investigating them can lead to new insights and potential treatments for both men and women. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lisa C Golden
- Department of Neurology, University of California Los Angeles, Los Angeles, California.,Molecular Biology IDP, University of California Los Angeles, Los Angeles, California
| | - Rhonda Voskuhl
- Department of Neurology, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
49
|
Pike CJ. Sex and the development of Alzheimer's disease. J Neurosci Res 2017; 95:671-680. [PMID: 27870425 DOI: 10.1002/jnr.23827] [Citation(s) in RCA: 285] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/17/2016] [Accepted: 06/20/2016] [Indexed: 12/20/2022]
Abstract
Men and women exhibit differences in the development and progression of Alzheimer's disease (AD). The factors underlying the sex differences in AD are not well understood. This Review emphasizes the contributions of sex steroid hormones to the relationship between sex and AD. In women, events that decrease lifetime exposure to estrogens are generally associated with increased AD risk, whereas estrogen-based hormone therapy administered near the time of menopause may reduce AD risk. In men, estrogens do not exhibit age-related reduction and are not significantly associated with AD risk. Rather, normal age-related depletions of testosterone in plasma and brain predict enhanced vulnerability to AD. Both estrogens and androgens exert numerous protective actions in the adult brain that increase neural functioning and resilience as well as specifically attenuating multiple aspects of AD-related neuropathology. Aging diminishes the activational effects of sex hormones in sex-specific manners, which is hypothesized to contribute to the relationship between aging and AD. Sex steroid hormones may also drive sex differences in AD through their organizational effects during developmental sexual differentiation of the brain. Specifically, sex hormone actions during early development may confer inherent vulnerability of the female brain to development of AD in advanced age. The combined effects of organizational and activational effects of sex steroids yield distinct sex differences in AD pathogenesis, a significant variable that must be more rigorously considered in future research. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Christian J Pike
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California
| |
Collapse
|
50
|
Mihelčić M, Šimić G, Babić Leko M, Lavrač N, Džeroski S, Šmuc T, for the Alzheimer’s Disease Neuroimaging Initiative. Using redescription mining to relate clinical and biological characteristics of cognitively impaired and Alzheimer's disease patients. PLoS One 2017; 12:e0187364. [PMID: 29088293 PMCID: PMC5663625 DOI: 10.1371/journal.pone.0187364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/18/2017] [Indexed: 11/18/2022] Open
Abstract
Based on a set of subjects and a collection of attributes obtained from the Alzheimer's Disease Neuroimaging Initiative database, we used redescription mining to find interpretable rules revealing associations between those determinants that provide insights about the Alzheimer's disease (AD). We extended the CLUS-RM redescription mining algorithm to a constraint-based redescription mining (CBRM) setting, which enables several modes of targeted exploration of specific, user-constrained associations. Redescription mining enabled finding specific constructs of clinical and biological attributes that describe many groups of subjects of different size, homogeneity and levels of cognitive impairment. We confirmed some previously known findings. However, in some instances, as with the attributes: testosterone, ciliary neurotrophic factor, brain natriuretic peptide, Fas ligand, the imaging attribute Spatial Pattern of Abnormalities for Recognition of Early AD, as well as the levels of leptin and angiopoietin-2 in plasma, we corroborated previously debatable findings or provided additional information about these variables and their association with AD pathogenesis. Moreover, applying redescription mining on ADNI data resulted with the discovery of one largely unknown attribute: the Pregnancy-Associated Protein-A (PAPP-A), which we found highly associated with cognitive impairment in AD. Statistically significant correlations (p ≤ 0.01) were found between PAPP-A and clinical tests: Alzheimer's Disease Assessment Scale, Clinical Dementia Rating Sum of Boxes, Mini Mental State Examination, etc. The high importance of this finding lies in the fact that PAPP-A is a metalloproteinase, known to cleave insulin-like growth factor binding proteins. Since it also shares similar substrates with A Disintegrin and the Metalloproteinase family of enzymes that act as α-secretase to physiologically cleave amyloid precursor protein (APP) in the non-amyloidogenic pathway, it could be directly involved in the metabolism of APP very early during the disease course. Therefore, further studies should investigate the role of PAPP-A in the development of AD more thoroughly.
Collapse
Affiliation(s)
- Matej Mihelčić
- Division of Electronics, Ruđer Bošković Institute, Zagreb, Croatia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Goran Šimić
- Department for Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | - Mirjana Babić Leko
- Department for Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | - Nada Lavrač
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
- Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Sašo Džeroski
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
- Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Tomislav Šmuc
- Division of Electronics, Ruđer Bošković Institute, Zagreb, Croatia
| | | |
Collapse
|