1
|
Franco B, Martineli Rodrigues GA, Rocha VD, Damiani L, Manconi M, Torsoni AS, Esteves AM. Exercise protects impairments in memory recognition in the iron-deficient male rat model of Restless Legs Syndrome. Physiol Behav 2024; 287:114688. [PMID: 39233255 DOI: 10.1016/j.physbeh.2024.114688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Restless Legs Syndrome (RLS) is a neurological disorder characterized by an irresistible urge to move the legs and is associated with decreased quality of life and sleep, and may result in cognitive changes. Physical exercise generates cognitive improvements and improves RLS symptoms. Our objective is to analyze recognition memory in the iron-deficient rodent model of RLS, and the effect of exercise. The animals (male Wistar rats) were distributed at 21 days of age into a control group (CTRL) (standard diet) or an ID group (iron-deficient diet). After performance classification (at 77 days of age), the animals were redistributed into CTRL (no exercise), CTRL EX (exercise), ID (no exercise) and ID EX (exercise), totaling 9 animals per group. The exercise groups performed treadmill exercise for four weeks. In the 14th week of the diet, the sleep recording of CTRL and ID animals was carried out to validate the RLS model. The Novel Object Recognition Memory test (NOR) was performed before the start of exercise (8th week of diet) and after the end (14th week) in all groups. The ID group demonstrated worsening sleep parameters and increased paw movements compared to the control group. The ID group demonstrated impairment of recognition memory after 14 weeks of diet compared to the CTRL group, and, the CTRL improved recognition memory in the 14th week compared to the 8th week. No differences were found for the exercise groups. Our findings indicate that the RLS animal model exhibited cognitive alterations associated with recognition memory, and long-term aerobic exercise intervention demonstrated a protective influence against these effects.
Collapse
Affiliation(s)
- Beatriz Franco
- Faculdade de Educação Física, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | | | | | - Luiza Damiani
- Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Limeira, SP, Brazil
| | - Mauro Manconi
- Sleep and Epilepsy Center, Neurocenter of Southern Switzerland, Civic Hospital of Lugano (EOC), Lugano, Switzerland
| | - Adriana Souza Torsoni
- Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Limeira, SP, Brazil
| | | |
Collapse
|
2
|
Sadri I, Nikookheslat SD, Karimi P, Khani M, Nadimi S. Aerobic exercise training improves memory function through modulation of brain-derived neurotrophic factor and synaptic proteins in the hippocampus and prefrontal cortex of type 2 diabetic rats. J Diabetes Metab Disord 2024; 23:849-858. [PMID: 38932906 PMCID: PMC11196465 DOI: 10.1007/s40200-023-01360-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/23/2023] [Indexed: 06/28/2024]
Abstract
Aims/Introduction Defective insulin signaling in the brain may disrupt hippocampal neuroplasticity resulting in learning and memory impairments. Thus, this study investigated the effect of aerobic exercise training on cognitive function and synaptic protein markers in diabetic rats. Materials and methods Twenty male Wistar rats (200-250 g), were fed on high-fat diet and received a low dose of streptozotocin (35 mg/kg, i.p) to induce type 2 diabetes. Then diabetic animals were randomly divided into sedentary and training groups. The exercise training program was treadmill running at 27 m/min for 60 min/day for 8 weeks. One day after the last training session, Morris Water Maze (MWM) task was performed to evaluate spatial learning and memory. Then, the hippocamp and prefrontal cortex tissues were instantly dissected for immunoblotting assay of BDNF, GSK-3β, p-GSK-3β, P38, p-P38, ERK1/2, p-ERK1/2, heat shock protein-27 (HSP27), SNAP-25, synaptophysin, and PSD-95. Independent t-test analysis and two-way ANOVA was used to determine the differences under significance level of 0.05 using the 26th version of IBM SPSS statistical software. Results The results showed that aerobic exercise improved memory as assessed in the MWM task. Moreover, aerobic exercise up-regulated HSP27 and BDNF protein levels in the prefrontal cortex, and hippocampus coincided with robust elevations in SNAP25 and PSD-95 levels. Moreover, exercise reduced phosphorylated P38, while increased p-ERK1/2 and p-GSK-3β (p). Conclusion Our findings suggest that aerobic exercise may debilitate the harmful effects of diabetes on the cognitive function possibly through enhancing synaptic protein markers.
Collapse
Affiliation(s)
- Iraj Sadri
- Department of Physical Education and Sports Sciences, Islamic Azad University, Shabestar Branch, Shabestar, 5381637181 Iran
| | - Saeid Dabbagh Nikookheslat
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tabriz, 29 Bahman Blvd, Tabriz, 5166616471 Iran
| | - Pouran Karimi
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Khani
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tabriz, 29 Bahman Blvd, Tabriz, 5166616471 Iran
| | - Sanaz Nadimi
- Department of Chemistry and Biochemistry, Faculty of Science, University of Windsor, Windsor, ON Canada
| |
Collapse
|
3
|
Li C, Ke C, Su Y, Wan C. Exercise Intervention Promotes the Growth of Synapses and Regulates Neuroplasticity in Rats With Ischemic Stroke Through Exosomes. Front Neurol 2021; 12:752595. [PMID: 34777222 PMCID: PMC8581302 DOI: 10.3389/fneur.2021.752595] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Stroke is the leading cause of death and disability. Exercise produces neuroprotection by improving neuroplasticity. Exercise can induce exosome production. According to several studies, exosomes are involved in repairing brain function, but the relationship and mechanism of exercise, exosomes, and neuroprotection have not been elucidated. This study intends to explore the relationship and potential mechanism by observing the changes in the exosome level, infarct volume, neurological function and behavioral scores, synapses, and corticospinal tract (CST). Methods: Rats were randomly divided into four groups: a sham operation (SHAM) group, middle cerebral artery occlusion (MCAO) with sedentary intervention (SED-MCAO) group, MCAO with exercise intervention (EX-MCAO) group, and MCAO with exercise intervention and exosome injection (EX-MCAO-EXO) group. The exercise intervention was started 1 day after MCAO and lasted for 4 weeks. All rats were assessed using the modified neurological severity score (mNSS). The levels of exosomes in serum and brain, gait analysis, and magnetic resonance scan were performed 1 and 4 weeks after the intervention. After 4 weeks of intervention, the number of synapses, synaptophysin (Syn), and postsynaptic density protein 95(PSD-95) expression was detected. Results: After 4 weeks of intervention, (1) the EX-MCAO and EX-MCAO-EXO groups showed higher serum exosome (pEX−MCAO = 0.000, pEX−MCAO−EXO = 0.000) and brain exosome (pEX−MCAO = 0.001, pEX−MCAO−EXO = 0.000) levels than the SED-MCAO group, of which the EX-MCAO group had the highest serum exosome (p = 0.000) and the EX-MCAO-EXO group had the highest brain exosome (p = 0.03) levels. (2) The number of synapses in the EX-MCAO (p = 0.032) and EX-MCAO-EXO groups (p = 0.000) was significantly higher than that in the SED-MCAO group. The EX-MCAO-EXO group exhibited a greater number of synapses than the EX-MCAO (p = 0.000) group. (3) The synaptic plasticity-associated proteins were expressed significantly higher in the EX-MCAO (pSyn = 0.010, pPSD−95 = 0.044) and EX-MCAO-EXO (pSyn = 0.000, pPSD−95 = 0.000) groups than in the SED-MCAO group, and the EX-MCAO-EXO group (pSyn = 0.000, pPSD−95 = 0.046) had the highest expression. (4) Compared with the SED-MCAO group, the EX-MCAO group had significantly improved infarct volume ratio (p = 0.000), rFA value (p = 0.000), and rADC (p = 0.000). Compared with the EX-MCAO group, the EX-MCAO-EXO group had a significantly improved infarct volume ratio (p = 0.000), rFA value (p = 0.000), and rADC value (p = 0.001). (5) Compared with the SED-MCAO group, the EX-MCAO group (p = 0.001) and EX-MCAO-EXO group (p = 0.000) had significantly lower mNSS scores and improved gait. (6) The brain exosome levels were negatively correlated with the mNSS score, infarct volume ratio, and rADC value and positively correlated with the rFA value, Syn, and PSD-95 expression. The serum and brain exosome levels showed a positive correlation. Conclusions: Exercise intervention increases the serum exosome level in MCAO rats, which are recruited into the brain, leading to improved synaptic growth and CST integrity, a reduced infarct volume, and improved neurological function and gait.
Collapse
Affiliation(s)
- Chen Li
- Department of Physical Medicine and Rehabilitation, Tianjin Medical University General Hospital, Tianjin, China
| | - Changkai Ke
- Department of Physical Medicine and Rehabilitation, Tianjin Medical University General Hospital, Tianjin, China
| | - Yue Su
- Department of Physical Medicine and Rehabilitation, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunxiao Wan
- Department of Physical Medicine and Rehabilitation, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
4
|
Aerobic Exercise Induces Alternative Splicing of Neurexins in Frontal Cortex. J Funct Morphol Kinesiol 2021; 6:jfmk6020048. [PMID: 34072692 PMCID: PMC8261640 DOI: 10.3390/jfmk6020048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/02/2022] Open
Abstract
Aerobic exercise (AE) is known to produce beneficial effects on brain health by improving plasticity, connectivity, and cognitive functions, but the underlying molecular mechanisms are still limited. Neurexins (Nrxns) are a family of presynaptic cell adhesion molecules that are important in synapsis formation and maturation. In vertebrates, three-neurexin genes (NRXN1, NRXN2, and NRXN3) have been identified, each encoding for α and β neurexins, from two independent promoters. Moreover, each Nrxns gene (1-3) has several alternative exons and produces many splice variants that bind to a large variety of postsynaptic ligands, playing a role in trans-synaptic specification, strength, and plasticity. In this study, we investigated the impact of a continuous progressive (CP) AE program on alternative splicing (AS) of Nrxns on two brain regions: frontal cortex (FC) and hippocampus. We showed that exercise promoted Nrxns1-3 AS at splice site 4 (SS4) both in α and β isoforms, inducing a switch from exon-excluded isoforms (SS4-) to exon-included isoforms (SS4+) in FC but not in hippocampus. Additionally, we showed that the same AE program enhanced the expression level of other genes correlated with synaptic function and plasticity only in FC. Altogether, our findings demonstrated the positive effect of CP AE on FC in inducing molecular changes underlying synaptic plasticity and suggested that FC is possibly a more sensitive structure than hippocampus to show molecular changes.
Collapse
|
5
|
Havekes R, Aton SJ. Impacts of Sleep Loss versus Waking Experience on Brain Plasticity: Parallel or Orthogonal? Trends Neurosci 2020; 43:385-393. [PMID: 32459991 DOI: 10.1016/j.tins.2020.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/12/2020] [Accepted: 03/25/2020] [Indexed: 12/21/2022]
Abstract
Recent studies on the effects of sleep deprivation on synaptic plasticity have yielded discrepant results. Sleep deprivation studies using novelty exposure as a means to keep animals awake suggests that sleep (compared with wake) leads to widespread reductions in net synaptic strength. By contrast, sleep deprivation studies using approaches avoiding novelty-induced arousal (i.e., gentle handling) suggest that sleep can promote synaptic growth and strengthening. How can these discrepant findings be reconciled? Here, we discuss how varying methodologies for the experimental disruption of sleep (with differential introduction of novel experiences) could fundamentally alter the experimental outcome with regard to synaptic plasticity. Thus, data from experiments aimed at assessing the relative impact of sleep versus wake on the brain may instead reflect the quality of the waking experience itself. The highlighted work suggests that brain plasticity resulting from novel experiences versus wake per se has unique and distinct features.
Collapse
Affiliation(s)
- Robbert Havekes
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, Groningen, The Netherlands.
| | - Sara J Aton
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Sciences, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
6
|
Effects of Repetitive Transcranial Magnetic Stimulation (rTMS) Combined with Aerobic Exercise on the Recovery of Motor Function in Ischemic Stroke Rat Model. Brain Sci 2020; 10:brainsci10030186. [PMID: 32210177 PMCID: PMC7139945 DOI: 10.3390/brainsci10030186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 01/22/2023] Open
Abstract
The therapeutic benefits of repetitive transcranial magnetic stimulation (rTMS) combined with rehabilitation therapy on recovery after stroke have not been fully elucidated. This study aimed to explore the therapeutic effects of rTMS followed by aerobic exercise on neuroplasticity and recovery of motor function in a rat model of permanent middle cerebral artery occlusion (MCAO). Rats were randomized into sham operation (N = 10, sham op), MCAO (N = 10, control group), rTMS (N = 10, MCAO and rTMS therapy), and combination groups (N = 10, MCAO and combination therapy). High-frequency rTMS (10 Hz) was applied on the ipsilesional forepaw motor cortex, and aerobic exercise training on the rotarod was performed for two weeks. The rotarod and Garcia tests were conducted to evaluate changes in behavioral function. Motor evoked potentials (MEPs) were used to evaluate electrophysiological changes. Stroke severity was assessed using infarction volume measurement. Neuronal recovery was explored with western blot for brain-derived neurotrophic factor (BDNF) pathway proteins. Compared with control therapy, combination therapy was significantly more effective than rTMS therapy for improving function on the rotarod test (p = 0.08), Garcia test (p = 0.001), and MEP amplitude (p = 0.001) In conclusion, combination therapy may be a potential treatment to promote recovery of motor function and neuroplasticity in stroke patients.
Collapse
|
7
|
Boa Sorte Silva NC, Nagamatsu LS, Gill DP, Owen AM, Petrella RJ. Memory Function and Brain Functional Connectivity Adaptations Following Multiple-Modality Exercise and Mind-Motor Training in Older Adults at Risk of Dementia: An Exploratory Sub-Study. Front Aging Neurosci 2020; 12:22. [PMID: 32158386 PMCID: PMC7052336 DOI: 10.3389/fnagi.2020.00022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/21/2020] [Indexed: 01/07/2023] Open
Abstract
Background Multiple-modality exercise improves brain function. However, whether task-based brain functional connectivity (FC) following exercise suggests adaptations in preferential brain regions is unclear. The objective of this study was to explore memory function and task-related FC changes following multiple-modality exercise and mind-motor training in older adults with subjective cognitive complaints. Methods We performed secondary analysis of memory function data in older adults [n = 127, mean age 67.5 (7.3) years, 71% women] randomized to an exercise intervention comprised of 45 min of multiple-modality exercise with additional 15 min of mind-motor training (M4 group, n = 63) or an active control group (M2 group, n = 64). In total, both groups exercised for 60 min/day, 3 days/week, for 24 weeks. We then conducted exploratory analyses of functional magnetic resonance imaging (fMRI) data collected from a sample of participants from the M4 group [n = 9, mean age 67.8 (8.8) years, 8 women] who completed baseline and follow-up task-based fMRI assessment. Four computer-based memory tasks from the Cambridge Brain Sciences cognitive battery (i.e. Monkey Ladder, Spatial Span, Digit Span, Paired Associates) were employed, and participants underwent 5 min of continuous fMRI data collection while completing the tasks. Behavioral data were analyzed using linear mixed models for repeated measures and paired-samples t-test. All fMRI data were analyzed using group-level independent component analysis and dual regression procedures, correcting for voxel-wise comparisons. Results Our findings indicated that the M4 group showed greater improvements in the Paired Associates tasks compared to the M2 group at 24 weeks [mean difference: 0.47, 95% confidence interval (CI): 0.08 to 0.86, p = 0.019]. For our fMRI analysis, dual regression revealed significant decrease in FC co-activation in the right precentral/postcentral gyri after the exercise program during the Spatial Span task (corrected p = 0.008), although there was no change in the behavioral task performance. Only trends for changes in FC were found for the other tasks (all corrected p < 0.09). In addition, for the Paired Associates task, there was a trend for increased co-activation in the right temporal lobe (Brodmann Area = 38, corrected p = 0.07), and left middle frontal temporal gyrus (corrected p = 0.06). Post hoc analysis exploring voxel FC within each group spatial map confirmed FC activation trends observed from dual regression. Conclusion Our findings suggest that multiple modality exercise with mind-motor training resulted in greater improvements in memory compared to an active control group. There were divergent FC adaptations including significant decreased co-activation in the precentral/postcentral gyri during the Spatial Span task. Borderline significant changes during the Paired Associates tasks in FC provided insight into the potential of our intervention to promote improvements in visuospatial memory and impart FC adaptations in brain regions relevant to Alzheimer's disease risk. Clinical Trial Registration The trial was registered in ClinicalTrials.gov in April 2014, Identifier: NCT02136368.
Collapse
Affiliation(s)
- Narlon C Boa Sorte Silva
- School of Kinesiology, Faculty of Health Sciences, Western University, London, ON, Canada.,Centre for Studies in Family Medicine, Department of Family Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Lindsay S Nagamatsu
- School of Kinesiology, Faculty of Health Sciences, Western University, London, ON, Canada
| | - Dawn P Gill
- Centre for Studies in Family Medicine, Department of Family Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Graduate Program in Health and Rehabilitation Sciences, Faculty of Health Sciences, Western University, London, ON, Canada.,School of Health Studies, Faculty of Health Sciences, Western University, London, ON, Canada
| | - Adrian M Owen
- The Brain and Mind Institute, Department of Physiology and Pharmacology, and Psychology, Western University, London, ON, Canada
| | - Robert J Petrella
- School of Kinesiology, Faculty of Health Sciences, Western University, London, ON, Canada.,Centre for Studies in Family Medicine, Department of Family Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Graduate Program in Health and Rehabilitation Sciences, Faculty of Health Sciences, Western University, London, ON, Canada.,School of Health Studies, Faculty of Health Sciences, Western University, London, ON, Canada.,Canadian Centre for Activity and Aging, Western University, London, ON, Canada.,Department of Family Practice, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
What and How Can Physical Activity Prevention Function on Parkinson's Disease? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4293071. [PMID: 32215173 PMCID: PMC7042542 DOI: 10.1155/2020/4293071] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 12/15/2022]
Abstract
Aim This study was aimed at investigating the effects and molecular mechanisms of physical activity intervention on Parkinson's disease (PD) and providing theoretical guidance for the prevention and treatment of PD. Methods Four electronic databases up to December 2019 were searched (PubMed, Springer, Elsevier, and Wiley database), 176 articles were selected. Literature data were analyzed by the logic analysis method. Results (1) Risk factors of PD include dairy products, pesticides, traumatic brain injury, and obesity. Protective factors include alcohol, tobacco, coffee, black tea, and physical activity. (2) Physical activity can reduce the risk and improve symptoms of PD and the beneficial forms of physical activity, including running, dancing, traditional Chinese martial arts, yoga, and weight training. (3) Different forms of physical activity alleviate the symptoms of PD through different mechanisms, including reducing the accumulation of α-syn protein, inflammation, and oxidative stress, while enhancing BDNF activity, nerve regeneration, and mitochondrial function. Conclusion Physical activity has a positive impact on the prevention and treatment of PD. Illustrating the molecular mechanism of physical activity-induced protective effect on PD is an urgent need for improving the efficacy of PD therapy regimens in the future.
Collapse
|
9
|
Rauf S, Soesatyo MH, Agustiningsih D, Partadiredja G. Moderate intensity intermittent exercise upregulates neurotrophic and neuroprotective genes expression and inhibits Purkinje cell loss in the cerebellum of ovariectomized rats. Behav Brain Res 2020; 382:112481. [PMID: 31954098 DOI: 10.1016/j.bbr.2020.112481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/01/2020] [Accepted: 01/13/2020] [Indexed: 12/23/2022]
Abstract
Decreases in estrogen levels due to menopause or ovariectomy may disrupt cerebellar motor functions. This study aimed at investigating the effects of Moderate Intensity Intermittent Exercise (MIEx) on the cerebellum of ovariectomized rats by analyzing neurotrophic and neuroprotective markers, as well as cerebellar motor functions. Thirty-two female Sprague Dawley rats were divided into four groups, i.e. Sham and ovariectomy (Ovx) of non-MIEx (NMIEx) groups, and Sham and Ovx with MIEx groups. MIEx was performed 5 days a week on treadmill for 6 weeks. Motor functions were assessed using rotarod, footprint, open field, and wire hanging tests. Real-time polymerase chain reaction was performed to determine messenger RNA (mRNA) expressions of Pgc-1α, BDNF, synaptophysin, Bcl-2, and Bax. Unbiased stereology was used to estimate the total number of cerebellar Purkinje cells. The Ovx MIEx group had higher Pgc-1α and Bcl-2 mRNA expressions, and number of Purkinje cells, but lower Bax mRNA expression than the Ovx NMIEx group. All motor functions of MIEx groups were better than the Sham and Ovx groups without MIEx. Motor functions on rotarod task, OFT, and FPT correlated significantly with the mRNAs expression of Bcl-2, Bax, BDNF, synaptophysin, Pgc-1α, and the number of cerebellar Purkinje cells in ovariectomized rats. MIEx improves cerebellar neurotrophic and neuroprotective markers, as well as motor functions of ovariectomized rats.
Collapse
Affiliation(s)
- Saidah Rauf
- Doctoral Program, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia; Masohi Nursing Study Program, Maluku Health Polytechnic, Maluku, Indonesia.
| | - Marsetyawan Hne Soesatyo
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Denny Agustiningsih
- Department of Physiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ginus Partadiredja
- Department of Physiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
10
|
Tekupalli R, Dundaiah B, Kariyappa A, Ramachandregowda S, Anand S. Dietary supplementation of Hemidesmus indicus and swimming exercise attenuates oxidative stress in the rat brain. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_239_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
11
|
Codina‐Martínez H, Fernández‐García B, Díez‐Planelles C, Fernández ÁF, Higarza SG, Fernández‐Sanjurjo M, Díez‐Robles S, Iglesias‐Gutiérrez E, Tomás‐Zapico C. Autophagy is required for performance adaptive response to resistance training and exercise‐induced adult neurogenesis. Scand J Med Sci Sports 2019; 30:238-253. [DOI: 10.1111/sms.13586] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/27/2019] [Accepted: 10/16/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Helena Codina‐Martínez
- Departamento de Biología Funcional Área de Fisiología Facultad de Medicina y Ciencias de la Salud Universidad de Oviedo Oviedo Spain
- Instituto de Investigación Sanitaria del Principado de Asturias Oviedo Spain
| | - Benjamín Fernández‐García
- Instituto de Investigación Sanitaria del Principado de Asturias Oviedo Spain
- Departamento de Morfología y Biología Celular Facultad de Medicina y Ciencias de la Salud Universidad de Oviedo Oviedo Spain
| | - Carlos Díez‐Planelles
- Departamento de Biología Funcional Área de Fisiología Facultad de Medicina y Ciencias de la Salud Universidad de Oviedo Oviedo Spain
- Instituto de Investigación Sanitaria del Principado de Asturias Oviedo Spain
| | - Álvaro F. Fernández
- Departamento de Bioquímica y Biología Molecular Instituto Universitario de Oncología (IUOPA) Universidad de Oviedo Oviedo Spain
| | - Sara G. Higarza
- Departamento de Biología Funcional Área de Fisiología Facultad de Medicina y Ciencias de la Salud Universidad de Oviedo Oviedo Spain
| | - Manuel Fernández‐Sanjurjo
- Departamento de Biología Funcional Área de Fisiología Facultad de Medicina y Ciencias de la Salud Universidad de Oviedo Oviedo Spain
- Instituto de Investigación Sanitaria del Principado de Asturias Oviedo Spain
| | - Sergio Díez‐Robles
- Departamento de Biología Funcional Área de Fisiología Facultad de Medicina y Ciencias de la Salud Universidad de Oviedo Oviedo Spain
| | - Eduardo Iglesias‐Gutiérrez
- Departamento de Biología Funcional Área de Fisiología Facultad de Medicina y Ciencias de la Salud Universidad de Oviedo Oviedo Spain
- Instituto de Investigación Sanitaria del Principado de Asturias Oviedo Spain
| | - Cristina Tomás‐Zapico
- Departamento de Biología Funcional Área de Fisiología Facultad de Medicina y Ciencias de la Salud Universidad de Oviedo Oviedo Spain
- Instituto de Investigación Sanitaria del Principado de Asturias Oviedo Spain
| |
Collapse
|
12
|
Barnett BR, Anderson JM, Torres-Velázquez M, Yi SY, Rowley PA, Yu JPJ. Exercise ameliorates deficits in neural microstructure in a Disc1 model of psychiatric illness. Magn Reson Imaging 2019; 61:90-96. [PMID: 31103832 PMCID: PMC6663582 DOI: 10.1016/j.mri.2019.05.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 01/06/2023]
Abstract
Recent studies have investigated the effectiveness of aerobic exercise to improve physical and mental health outcomes in schizophrenia; however, few have explicitly explored the impact of aerobic exercise on neural microstructure, which is hypothesized to mediate the behavioral changes observed. Neural microstructure is influenced by numerous genetic factors including DISC1, which is a major molecular scaffold protein that interacts with partners like GSK3β, NDEL1, and PDE4. DISC1 has been shown to play a role in neurogenesis, neuronal migration, neuronal maturation, and synaptic signaling. As with other genetic variants that present an increased risk for disease, mutations of the DISC1 gene have been implicated in the molecular intersection of schizophrenia and numerous other major psychiatric illnesses. This study investigated whether short-term exercise recovers deficits in neural microstructure in a novel genetic Disc1 svΔ2 rat model. Disc1 svΔ2 animals and age- and sex-matched controls were subjected to a treadmill exercise protocol. Subsequent ex-vivo diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) compared neural microstructure in regions of interest (ROI) between sedentary and exercise wild-type animals and between sedentary and exercise Disc1 svΔ2 animals. Short-term exercise uncovered no significant differences in neural microstructure between sedentary and exercise control animals but did lead to significant differences between sedentary and exercise Disc1 svΔ2 animals in neocortex, basal ganglia, corpus callosum, and external capsule, suggesting a positive benefit derived from a short-term exercise regimen. Our findings suggest that Disc1 svΔ2 animals are more sensitive to the effects of short-term exercise and highlight the ameliorating potential of positive treatment interventions such as exercise on neural microstructure in genetic backgrounds of psychiatric disease susceptibility.
Collapse
Affiliation(s)
- Brian R Barnett
- Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jacqueline M Anderson
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Maribel Torres-Velázquez
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sue Y Yi
- Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Paul A Rowley
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - John-Paul J Yu
- Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
| |
Collapse
|
13
|
Thacker JS, Yeung D, Chambers PJ, Tupling AR, Staines WR, Mielke JG. Single session, high-intensity aerobic exercise fails to affect plasticity-related protein expression in the rat sensorimotor cortex. Behav Brain Res 2019; 359:853-860. [DOI: 10.1016/j.bbr.2018.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 11/25/2022]
|
14
|
Gutierrez RMS, Real CC, Scaranzi CR, Garcia PC, Oliveira DL, Britto LR, Pires RS. Motor improvement requires an increase in presynaptic protein expression and depends on exercise type and age. Exp Gerontol 2018; 113:18-28. [DOI: 10.1016/j.exger.2018.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 08/08/2018] [Accepted: 09/17/2018] [Indexed: 12/12/2022]
|
15
|
Dong J, Zhao J, Lin Y, Liang H, He X, Zheng X, Sui M, Zhuang Z, Yan T. Exercise improves recognition memory and synaptic plasticity in the prefrontal cortex for rats modelling vascular dementia. Neurol Res 2017; 40:68-77. [PMID: 29126372 DOI: 10.1080/01616412.2017.1398389] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Juntao Dong
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingpu Zhao
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yangyang Lin
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huiying Liang
- Department of Rehabilitation Medicine, People’s Hospital of Zhongshan City, Zhongshan, China
| | - Xiaokuo He
- Department of Rehabilitation Medicine, Taihe Hospital, Shiyan, China
| | - Xiuyuan Zheng
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minghong Sui
- Department of Rehabilitation Medicine, Nanshan Hospital, Shenzhen, China
| | - Zhiqiang Zhuang
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tiebin Yan
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
Abstract
More and more people are living into the 90s or becoming centenarians. But, the gift of increased ‘age span’ seldom equates with an improved ‘health-span’. Governments across the world are expressing concern about the epidemic of chronic disease, and have responded by initiating policies that make prevention, reduction and treatment of chronic disease, a public health priority. But understanding, how to age long and well, with the avoidance of chronic disease and later life complex disease morbidity is challenging. While inherited genes have an undoubted role to play in the chance of maintaining good health or conversely a predilection to developing disease and chronic ill health, there is increasing evidence that behavioural and environmental life-style choices may contribute up to 50% of the variability of human lifespan. Physical exercise is readily available to everyone, and is a simple cheap and effective form of life-style intervention. Exercise appears to help maintain good health and to reduce the risk of developing chronic disease and ill health. Evidence suggests that physical activity improves well-being across many health domains through out life, continues to offer important health benefits in older age groups and tracks with a ‘healthy ageing’ profile. Although many of the molecular pathways remain to be fully identified, here we discuss how physical activity and exercise is understood to produce changes in the human epigenome, which have the potential to enhance cognitive and psychological health, improve muscular fitness, and lead to better ageing with improved quality of life in older age.
Collapse
|
17
|
Acevedo-Triana CA, Rojas MJ, Cardenas FP. Running wheel training does not change neurogenesis levels or alter working memory tasks in adult rats. PeerJ 2017; 5:e2976. [PMID: 28503368 PMCID: PMC5426350 DOI: 10.7717/peerj.2976] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 01/10/2017] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Exercise can change cellular structure and connectivity (neurogenesis or synaptogenesis), causing alterations in both behavior and working memory. The aim of this study was to evaluate the effect of exercise on working memory and hippocampal neurogenesis in adult male Wistar rats using a T-maze test. METHODS An experimental design with two groups was developed: the experimental group (n = 12) was subject to a forced exercise program for five days, whereas the control group (n = 9) stayed in the home cage. Six to eight weeks after training, the rats' working memory was evaluated in a T-maze test and four choice days were analyzed, taking into account alternation as a working memory indicator. Hippocampal neurogenesis was evaluated by means of immunohistochemistry of BrdU positive cells. RESULTS No differences between groups were found in the behavioral variables (alternation, preference index, time of response, time of trial or feeding), or in the levels of BrdU positive cells. DISCUSSION Results suggest that although exercise may have effects on brain structure, a construct such as working memory may require more complex changes in networks or connections to demonstrate a change at behavioral level.
Collapse
Affiliation(s)
| | - Manuel J. Rojas
- Animal Health Department, Universidad Nacional de Colombia, Bogotá, Colombia
| | | |
Collapse
|
18
|
Elsner VR, Basso C, Bertoldi K, de Meireles LCF, Cechinel LR, Siqueira IR. Differential effect of treadmill exercise on histone deacetylase activity in rat striatum at different stages of development. J Physiol Sci 2017; 67:387-394. [PMID: 27412385 PMCID: PMC10716973 DOI: 10.1007/s12576-016-0471-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 07/04/2016] [Indexed: 10/21/2022]
Abstract
The study described herein aimed to evaluate the impact of exercise on histone acetylation markers in striatum from Wistar rats at different stages of development. Male Wistar rats were submitted to two different exercise protocols: a single session of treadmill (running 20 min) or a moderate daily exercise protocol (running 20 min for 2 weeks). Striata of rats aged 39 days postnatal (adolescents), 3 months (young adults), and 20 months (aged) were used. The single exercise session induced persistent effects on global HDAC activity only in the adolescent group, given that exercised rats showed decreased HDAC activity 1 and 18 h after training, without effect on histone H4 acetylation levels. However, the moderate daily exercise did not alter any histone acetylation marker in adolescent and mature groups in any time point evaluated after training. In sum, our data suggest that exercise impacts striatal HDAC activity in an age- and protocol-dependent manner. Specifically, this response seems to be more evident during the adolescent period and might suffer a molecular adaptation in response to chronic training.
Collapse
Affiliation(s)
- Viviane Rostirola Elsner
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul, Brasil
- Programa de Pós Graduação em Biociências e Reabilitação, Centro Universitário Metodista-IPA, Porto Alegre, Rio Grande do Sul, Brasil
| | - Carla Basso
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul, Brasil
| | - Karine Bertoldi
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul, Brasil
| | | | - Laura Reck Cechinel
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul, Brasil
| | - Ionara Rodrigues Siqueira
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul, Brasil.
- Laboratório de Neuropsicofarmacologia, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil.
| |
Collapse
|
19
|
Stoykov ME, Corcos DM, Madhavan S. Movement-Based Priming: Clinical Applications and Neural Mechanisms. J Mot Behav 2017; 49:88-97. [PMID: 28277966 DOI: 10.1080/00222895.2016.1250716] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Priming can be described as behavior change generated by preceding stimuli. Although various types of priming have been long studied in the field of psychology, priming that targets motor cortex is a relatively new topic of research in the fields of motor control and rehabilitation. In reference to a rehabilitation intervention, priming is categorized as a restorative approach. There are a myriad of possible priming approaches including noninvasive brain stimulation, motor imagery, and sensory-based priming, to name a few. The authors report on movement-based priming which, compared to other priming types, is less frequently examined and under reported. Movement-based priming includes, but is not limited to, bilateral motor priming, unilateral priming, and aerobic exercise. Clinical and neural mechanistic aspects of movement-based priming techniques are explored.
Collapse
Affiliation(s)
| | - Daniel Montie Corcos
- b Department of Physical Therapy & Human Movement Sciences , Northwestern University , Chicago , Illinois
| | - Sangeetha Madhavan
- c Department of Physical Therapy , University of Illinois at Chicago , Chicago , Illinois
| |
Collapse
|
20
|
Li Y, Zhao L, Gu B, Cai J, Lv Y, Yu L. Aerobic exercise regulates Rho/cofilin pathways to rescue synaptic loss in aged rats. PLoS One 2017; 12:e0171491. [PMID: 28152068 PMCID: PMC5289643 DOI: 10.1371/journal.pone.0171491] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/20/2017] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The role of exercise to prevent or reverse aging-induced cognitive decline has been widely reported. This neuroprotection is associated with changes in the synaptic structure plasticity. However, the mechanisms of exercise-induced synaptic plasticity in the aging brain are still unclear. Thus, the aim of the present study is to investigate the aging-related alterations of Rho-GTPase and the modulatory influences of exercise training. METHODS Young and old rats were used in this study. Old rats were subjected to different schedules of aerobic exercise (12 m/min, 60 min/d, 3d/w or 5d/w) or kept sedentary for 12 w. After 12 w of aerobic exercise, the synapse density in the cortex and hippocampus was detected with immunofluorescent staining using synaptophysin as a marker. The total protein levels of RhoA, Rac1, Cdc42 and cofilin in the cortex and hippocampus were detected with Western Blot. The activities of RhoA, Rac1 and Cdc42 were determined using a pull down assay. RESULTS We found that synapse loss occurred in aging rats. However, the change of expression and activity of RhoA, Rac1 and Cdc42 was different in the cortex and hippocampus. In the cortex, the expression and activity of Rac1 and Cdc42 was greatly increased with aging, whereas there were no changes in the expression and activity of RhoA. In the hippocampus, the expression and activity of Rac1 and Cdc42 was greatly decreased and there were no changes in the expression and activity of RhoA. As a major downstream substrate of the Rho GTPase family, the increased expression of cofilin was only observed in the cortex. High frequency exercise ameliorated all aging-related changes in the cortex and hippocampus. CONCLUSIONS These data suggest that aerobic exercise reverses synapse loss in the cortex and hippocampus in aging rats, which might be related to the regulation of Rho GTPases.
Collapse
Affiliation(s)
- Yan Li
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Li Zhao
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Boya Gu
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
| | - Jiajia Cai
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Yuanyuan Lv
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
| | - Laikang Yu
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| |
Collapse
|
21
|
Nie J, Yang X. Modulation of Synaptic Plasticity by Exercise Training as a Basis for Ischemic Stroke Rehabilitation. Cell Mol Neurobiol 2017; 37:5-16. [PMID: 26910247 PMCID: PMC11482112 DOI: 10.1007/s10571-016-0348-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/11/2016] [Indexed: 12/23/2022]
Abstract
In recent years, rehabilitation of ischemic stroke draws more and more attention in the world, and has been linked to changes of synaptic plasticity. Exercise training improves motor function of ischemia as well as cognition which is associated with formation of learning and memory. The molecular basis of learning and memory might be synaptic plasticity. Research has therefore been conducted in an attempt to relate effects of exercise training to neuroprotection and neurogenesis adjacent to the ischemic injury brain. The present paper reviews the current literature addressing this question and discusses the possible mechanisms involved in modulation of synaptic plasticity by exercise training. This review shows the pathological process of synaptic dysfunction in ischemic roughly and then discusses the effects of exercise training on scaffold proteins and regulatory protein expression. The expression of scaffold proteins generally increased after training, but the effects on regulatory proteins were mixed. Moreover, the compositions of postsynaptic receptors were changed and the strength of synaptic transmission was enhanced after training. Finally, the recovery of cognition is critically associated with synaptic remodeling in an injured brain, and the remodeling occurs through a number of local regulations including mRNA translation, remodeling of cytoskeleton, and receptor trafficking into and out of the synapse. We do provide a comprehensive knowledge of synaptic plasticity enhancement obtained by exercise training in this review.
Collapse
Affiliation(s)
- Jingjing Nie
- Department of Neurology, Xiang Ya Hospital, Central South University, Xiang Ya Road 87, Changsha, 410008, Hunan, China
| | - Xiaosu Yang
- Department of Neurology, Xiang Ya Hospital, Central South University, Xiang Ya Road 87, Changsha, 410008, Hunan, China.
| |
Collapse
|
22
|
Salame S, Garcia PC, Real CC, Borborema J, Mota-Ortiz SR, Britto LR, Pires RS. Distinct neuroplasticity processes are induced by different periods of acrobatic exercise training. Behav Brain Res 2016; 308:64-74. [DOI: 10.1016/j.bbr.2016.04.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/11/2016] [Accepted: 04/15/2016] [Indexed: 12/22/2022]
|
23
|
Shin MS, Jeong HY, An DI, Lee HY, Sung YH. Treadmill exercise facilitates synaptic plasticity on dopaminergic neurons and fibers in the mouse model with Parkinson's disease. Neurosci Lett 2016; 621:28-33. [PMID: 27080424 DOI: 10.1016/j.neulet.2016.04.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 04/04/2016] [Accepted: 04/08/2016] [Indexed: 10/22/2022]
Abstract
Exercise for patients with Parkinson's disease (PD) helps to alleviate clinical symptoms such as tremor, balance instability, gait dysfunction, and rigidity. However, molecular mechanism about effect of exercise is poorly unknown. In this study, we investigated effect of exercise in synapse and dendritic spine of nigrostriatal dopaminergic neurons on mice with PD. The C57BL/6J male mice (n=40) were divided by sham group, sham-exercise treated group, 1-Methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP) treated group, and MPTP-exercise treated group. For exercise treatment, the mice were put on the treadmill to run for 8m/min, 30min/day, and 5 times/week for 2 weeks. Coordination ability was checked by rota rod test. Expression of tyrosine hydroxylase (TH), synaptophysin, and post-synaptic density protein 95 (PSD-95) was confirmed at substantia nigra pars compacta (SNpc) or striatum using western blotting, or immunohistochemistry. To check dendritic spine in striatum, we used Golgi staining. The results revealed that MPTP treated group displayed poor coordination ability compared with sham group. However, MPTP-exercise treated group showed good coordination ability compared with MPTP treated group. As well as, we also found that MPTP-exercise group increases expression of synaptophysin, PSD-95, TH, and dendritic spine in nigrostriatal dopaminergic neurons and fibers than MPTP treated group (p<0.05). Our findings suggest that exercise may give beneficial effects to patients with PD by facilitating synaptic plasticity and increasing dendritic spines.
Collapse
Affiliation(s)
- Mal-Soon Shin
- School of Global Sport Studies, Korea University, Sejong-si, South Korea
| | - Ho-Young Jeong
- Department of Physical Therapy, College of Health Sciences, Kyungnam University, Changwon, South Korea
| | - Da-In An
- Department of Physical Therapy, College of Health Sciences, Kyungnam University, Changwon, South Korea
| | - Hye-Yun Lee
- Department of Physical Therapy, College of Health Sciences, Kyungnam University, Changwon, South Korea
| | - Yun-Hee Sung
- Department of Physical Therapy, College of Health Sciences, Kyungnam University, Changwon, South Korea.
| |
Collapse
|
24
|
Real CC, Garcia PC, Britto LR, Pires RS. Different protocols of treadmill exercise induce distinct neuroplastic effects in rat brain motor areas. Brain Res 2015; 1624:188-198. [DOI: 10.1016/j.brainres.2015.06.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/23/2015] [Accepted: 06/24/2015] [Indexed: 12/14/2022]
|
25
|
Wang Z, Guo Y, Myers KG, Heintz R, Holschneider DP. Recruitment of the prefrontal cortex and cerebellum in Parkinsonian rats following skilled aerobic exercise. Neurobiol Dis 2015; 77:71-87. [PMID: 25747184 DOI: 10.1016/j.nbd.2015.02.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 01/18/2015] [Accepted: 02/21/2015] [Indexed: 11/29/2022] Open
Abstract
Exercise modality and complexity play a key role in determining neurorehabilitative outcome in Parkinson's disease (PD). Exercise training (ET) that incorporates both motor skill training and aerobic exercise has been proposed to synergistically improve cognitive and automatic components of motor control in PD patients. Here we introduced such a skilled aerobic ET paradigm in a rat model of dopaminergic deafferentation. Rats with bilateral, intra-striatal 6-hydroxydopamine lesions were exposed to forced ET for 4weeks, either on a simple running wheel (non-skilled aerobic exercise, NSAE) or on a complex wheel with irregularly spaced rungs (skilled aerobic exercise, SAE). Cerebral perfusion was mapped during horizontal treadmill walking or at rest using [(14)C]-iodoantipyrine 1week after the completion of ET. Regional cerebral blood flow (rCBF) was quantified by autoradiography and analyzed in 3-dimensionally reconstructed brains by statistical parametric mapping. SAE compared to NSAE resulted in equal or greater recovery in motor deficits, as well as greater increases in rCBF during walking in the prelimbic area of the prefrontal cortex, broad areas of the somatosensory cortex, and the cerebellum. NSAE compared to SAE animals showed greater activation in the dorsal caudate-putamen and dorsal hippocampus. Seed correlation analysis revealed enhanced functional connectivity in SAE compared to NSAE animals between the prelimbic cortex and motor areas, as well as altered functional connectivity between midline cerebellum and sensorimotor regions. Our study provides the first evidence for functional brain reorganization following skilled aerobic exercise in Parkinsonian rats, and suggests that SAE compared to NSAE results in enhancement of prefrontal cortex- and cerebellum-mediated control of motor function.
Collapse
Affiliation(s)
- Zhuo Wang
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, USA
| | - Yumei Guo
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, USA
| | - Kalisa G Myers
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, USA
| | - Ryan Heintz
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, USA
| | - Daniel P Holschneider
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, USA; Departments of Biomedical Engineering, Neurology, Cell and Neurobiology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
26
|
Sumiyoshi A, Taki Y, Nonaka H, Takeuchi H, Kawashima R. Regional gray matter volume increases following 7days of voluntary wheel running exercise: a longitudinal VBM study in rats. Neuroimage 2014; 98:82-90. [PMID: 24816532 DOI: 10.1016/j.neuroimage.2014.04.075] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/22/2014] [Accepted: 04/28/2014] [Indexed: 02/08/2023] Open
Abstract
The effects of physical exercise on brain morphology in rodents have been well documented in histological studies. However, to further understand when and where morphological changes occur in the whole brain, a noninvasive neuroimaging method allowing an unbiased, comprehensive, and longitudinal investigation of brain morphology should be used. In this study, we investigated the effects of 7days of voluntary wheel running exercise on regional gray matter volume (rGMV) using longitudinal voxel-based morphometry (VBM) in rats. Eighteen pairs of adult male naïve Wistar rats were randomized to the exercise or control condition (one rat for each condition from each pair). Each rat was scanned in a 7.0-T MRI scanner at three time points: before exercise, after 7days of exercise, and after 7days of follow-up. The T2-weighted MRI images were segmented using the rat brain tissue priors that were recently published by our laboratory, and the intra- and inter-subject template creation steps were followed. Longitudinal VBM analysis revealed significant increases in rGMV in the motor, somatosensory, association, and visual cortices in the exercise group. Among these brain regions, rGMV changes in the motor cortex were positively correlated with the total distance that was run during the 7days of exercise. In addition, the effects of 7days of exercise on rGMV persisted after 7days of follow-up. These results support the utility of a longitudinal VBM study in rats and provide new insights into experience-dependent structural brain plasticity in naïve adult animals.
Collapse
Affiliation(s)
- Akira Sumiyoshi
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan.
| | - Yasuyuki Taki
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan; Department of Radiology and Nuclear Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan; Division of Medical Image Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8575, Japan
| | - Hiroi Nonaka
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Ryuta Kawashima
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan; Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan; Smart Ageing International Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
27
|
Lan X, Zhang M, Yang W, Zheng Z, Wu Y, Zeng Q, Liu S, Liu K, Li G. Effect of treadmill exercise on 5-HT, 5-HT1A receptor and brain derived neurophic factor in rats after permanent middle cerebral artery occlusion. Neurol Sci 2013; 35:761-6. [PMID: 24326625 DOI: 10.1007/s10072-013-1599-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 11/28/2013] [Indexed: 12/26/2022]
Abstract
It has been well documented that exercise promotes neurological rehabilitation in patients with cerebral ischemia. However, the exact mechanisms have not been fully elucidated. This study aimed to discuss the effect of treadmill exercise on expression levels of 5-HT, 5-HT1A receptor (5-HT1AR) and brain derived neurophic factor (BDNF) in rat brains after permanent middle cerebral artery occlusion (pMCAO). A total of 55 rats were randomly divided into 3 groups: pMCAO group, pMCAO and treadmill exercise (pMCAO + Ex) group, and sham-operated group. Rats in pMCAO + Ex group underwent treadmill exercise for 16 days. Neurological function was evaluated by modified Neurological Severity Scores (mNSS). High-performance liquid chromatography-electrochemical detection system was used to determine the content of 5-HT in cortex tissues. The protein levels of 5-HT1AR, BDNF and synaptophysin were measured by Western blot. The mNSS in pMCAO + Ex group was lower than that in pMCAO group on day 19 post-MCAO (p < 0.001). The content of 5-HT dropped to 3.81 ± 1.86 ng/ml in pMCAO group (43.84 ± 2.05 ng/ml in sham-operated group), but increased in pMCAO + Ex group (10.06 ± 1.80 ng/ml). The protein expressions levels of synaptophysin, 5-HT1AR and BDNF were downregulated after cerebral ischemia (p < 0.05), and upregulated after treadmill exercise (p < 0.05). These results indicate that treadmill exercise improves neurologic function, enhances neuronal plasticity and upregulates the levels of 5-HT, 5-HT1AR and BDNF in rats with pMCAO.
Collapse
Affiliation(s)
- Xiaofang Lan
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, 1st Youyi Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Aerobic exercise attenuates inhibitory avoidance memory deficit induced by paradoxical sleep deprivation in rats. Brain Res 2013; 1529:66-73. [DOI: 10.1016/j.brainres.2013.07.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 07/10/2013] [Accepted: 07/11/2013] [Indexed: 12/19/2022]
|
29
|
Cristante AF, Filho TEPB, Oliveira RP, Marcon RM, Ferreira R, Santos GB. Effects of antidepressant and treadmill gait training on recovery from spinal cord injury in rats. Spinal Cord 2013; 51:501-7. [PMID: 23567756 DOI: 10.1038/sc.2013.18] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
STUDY DESIGN Experimental, controlled, animal study. OBJECTIVES To evaluate the influences of antidepressant treatment, treadmill gait training and a combination of these therapies in rats with experimental, acute spinal cord injury (SCI). SETTING Brazil. METHODS 48 Wistar rats were given standardized SCI; rats were then randomly assigned to four treatment groups: (1) motor rehabilitation therapy for 1 hour daily (gait training); (2) daily treatment with the antidepressant, fluoxetine (0.3 ml per 100 g intraperitoneally), beginning 24 h after the trauma; (3) combined fluoxetine treatment and gait training, or (4) untreated (controls). Neurological recovery was tested with the Basso, Beattie and Bresnahan (BBB) scale at 2, 7, 14, 21, 28 ,35 and 42 days after injury. Moreover, on day 42, all rats underwent a motor-evoked potential test (MEP); then, after euthanasia, histopathological evaluation was conducted in the area of SCI. RESULTS Based on the BBB scale, the combined treatment group showed significantly greater improvement compared with the other three groups, from the 14th to the 42nd day of observation. The MEP revealed that all treated groups showed significant improvement compared with the control group (P<0.02 for latency and P<0.01 for amplitude). CONCLUSION Our results indicated that a combination of antidepressant and treadmill gait training was superior to either treatment alone for improving functional deficits in rats with experimental, acute SCI.
Collapse
Affiliation(s)
- A F Cristante
- Department of Orthopaedics and Traumatology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Pauloo, São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
30
|
Synapsin II gene expression in the dorsolateral prefrontal cortex of brain specimens from patients with schizophrenia and bipolar disorder: effect of lifetime intake of antipsychotic drugs. THE PHARMACOGENOMICS JOURNAL 2013; 14:63-9. [PMID: 23529008 PMCID: PMC3970980 DOI: 10.1038/tpj.2013.6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 01/04/2013] [Accepted: 02/04/2013] [Indexed: 01/31/2023]
Abstract
Synapsins are neuronal phosphoproteins crucial to regulating the processes required for normal neurotransmitter release. Synapsin II, in particular, has been implied as a candidate gene for schizophrenia. This study investigated synapsin II mRNA expression, using Real Time RT-PCR, in coded dorsolateral prefrontal cortical samples provided by the Stanley Foundation Neuropathology Consortium. Synapsin IIa was decreased in patients with schizophrenia when compared to both healthy subjects and patients with bipolar disorder, whereas the synapsin IIb was only significantly reduced in patients with schizophrenia when compared to healthy subjects, but not patients with bipolar disorder. Furthermore, lifetime antipsychotic drug use was positively associated with synapsin IIa expression in patients with schizophrenia. Results suggest that impairment of synaptic transmission by synapsin II reduction may contribute to dysregulated convergent molecular mechanisms which result in aberrant neural circuits that characterize schizophrenia, while implicating involvement of synapsin II in therapeutic mechanisms of currently prescribed antipsychotic drugs.
Collapse
|
31
|
Abel JL, Rissman EF. Running-induced epigenetic and gene expression changes in the adolescent brain. Int J Dev Neurosci 2012. [PMID: 23178748 DOI: 10.1016/j.ijdevneu.2012.11.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Physical exercise is associated with positive neural functioning. Here we examined the gene expression consequences of 1 week of voluntary wheel running in adolescent male mice. We assayed expression levels of genes associated with synaptic plasticity, signaling pathways, and epigenetic modifying enzymes. Two regions were examined: the hippocampus, which is typically examined in exercise studies, and the cerebellum, an area directly involved in motor control and learning. After 1 week of exercise, global acetylation of histone 3 was increased in both brain regions. Interestingly this was correlated with increased brain derived neural growth factor in the hippocampus, as noted in many other studies, but only a trend was found in cerebellum. Differences and similarities between the two areas were noted for genes encoding functional proteins. In contrast, the expression pattern of DNA methyltransferases (Dnmts) and histone deacetylases (Hdacs), genes that influence DNA methylation and histone modifications in general, decreased in both regions with exercise. We hypothesize that epigenetic mechanisms, involving many of the genes assessed here, are essential for the positive affects of exercise on behavior and suspect these data have relevance for adolescent boys.
Collapse
Affiliation(s)
- Jean LeBeau Abel
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| | | |
Collapse
|
32
|
Cristante AF, Barros Filho TEPD, Marcon RM, Letaif OB, Rocha IDD. Therapeutic approaches for spinal cord injury. Clinics (Sao Paulo) 2012; 67:1219-24. [PMID: 23070351 PMCID: PMC3460027 DOI: 10.6061/clinics/2012(10)16] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 01/02/2023] Open
Abstract
This study reviews the literature concerning possible therapeutic approaches for spinal cord injury. Spinal cord injury is a disabling and irreversible condition that has high economic and social costs. There are both primary and secondary mechanisms of damage to the spinal cord. The primary lesion is the mechanical injury itself. The secondary lesion results from one or more biochemical and cellular processes that are triggered by the primary lesion. The frustration of health professionals in treating a severe spinal cord injury was described in 1700 BC in an Egyptian surgical papyrus that was translated by Edwin Smith; the papyrus reported spinal fractures as a "disease that should not be treated." Over the last biological or pharmacological treatment method. Science is unraveling the mechanisms of cell protection and neuroregeneration, but clinically, we only provide supportive care for patients with spinal cord injuries. By combining these treatments, researchers attempt to enhance the functional recovery of patients with spinal cord injuries. Advances in the last decade have allowed us to encourage the development of experimental studies in the field of spinal cord regeneration. The combination of several therapeutic strategies should, at minimum, allow for partial functional recoveries for these patients, which could improve their quality of life.
Collapse
Affiliation(s)
- Alexandre Fogaça Cristante
- Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Instituto de Ortopedia e Traumatologia (IOT), Grupo de Coluna, São Paulo/SP, Brazil
| | | | | | | | | |
Collapse
|
33
|
Garcia PC, Real CC, Ferreira AF, Alouche SR, Britto LR, Pires RS. Different protocols of physical exercise produce different effects on synaptic and structural proteins in motor areas of the rat brain. Brain Res 2012; 1456:36-48. [DOI: 10.1016/j.brainres.2012.03.059] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/13/2012] [Accepted: 03/26/2012] [Indexed: 10/28/2022]
|
34
|
Hooghiemstra AM, Eggermont LHP, Scheltens P, van der Flier WM, Scherder EJA. Exercise and early-onset Alzheimer's disease: theoretical considerations. Dement Geriatr Cogn Dis Extra 2012; 2:132-45. [PMID: 22590474 PMCID: PMC3347875 DOI: 10.1159/000335493] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND/AIMS Although studies show a negative relationship between physical activity and the risk for cognitive impairment and late-onset Alzheimer's disease, studies concerning early-onset Alzheimer's disease (EOAD) are lacking. This review aims to justify the value of exercise interventions in EOAD by providing theoretical considerations that include neurobiological processes. METHODS A literature search on key words related to early-onset dementia, exercise, imaging, neurobiological mechanisms, and cognitive reserve was performed. RESULTS/CONCLUSION Brain regions and neurobiological processes contributing to the positive effects of exercise are affected in EOAD and, thus, provide theoretical support for exercise interventions in EOAD. Finally, we present the design of a randomized controlled trial currently being conducted in early-onset dementia patients.
Collapse
|
35
|
Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms. Neuroscience 2012; 202:309-17. [DOI: 10.1016/j.neuroscience.2011.11.029] [Citation(s) in RCA: 230] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 11/10/2011] [Accepted: 11/10/2011] [Indexed: 01/05/2023]
|
36
|
Ferreira AFB, Real CC, Rodrigues AC, Alves AS, Britto LRG. Short-term, moderate exercise is capable of inducing structural, BDNF-independent hippocampal plasticity. Brain Res 2011; 1425:111-22. [PMID: 22035567 DOI: 10.1016/j.brainres.2011.10.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 09/12/2011] [Accepted: 10/02/2011] [Indexed: 12/28/2022]
Abstract
Exercise is known to improve cognitive functions and to induce neuroprotection. In this study we used a short-term, moderate intensity treadmill exercise protocol to investigate the effects of exercise on usual markers of hippocampal synaptic and structural plasticity, such as synapsin I (SYN), synaptophysin (SYP), neurofilaments (NF), microtubule-associated protein 2 (MAP2), glutamate receptor subunits GluR1 and GluR2/3, brain-derived neurotrophic factor (BDNF) and glial fibrillary acidic protein (GFAP). Immunohistochemistry, Western blotting and real-time PCR were used. We also evaluated the number of cells positive for the proliferation marker 5-bromo-2-deoxyuridine (BrdU), the neurogenesis marker doublecortin (DCX) and the plasma corticosterone levels. Adult male Wistar rats were adapted to a treadmill and divided into 4 groups: sedentary (SED), 3-day exercise (EX3), 7-day exercise (EX7) and 15-day exercise (EX15). The protein changes detected were increased levels of NF68 and MAP2 at EX3, of SYN at EX7 and of GFAP at EX15, accompanied by a decreased level of GluR1 at EX3. Immunohistochemical findings revealed a similar pattern of changes. The real-time PCR analysis disclosed only an increase of MAP2 mRNA at EX7. We also observed an increased number of BrdU-positive cells and DCX-positive cells in the subgranular zone of the dentate gyrus at all time points and increased corticosterone levels at EX3 and EX7. These results reveal a positive effect of short-term, moderate treadmill exercise on hippocampal plasticity. This effect was in general independent of transcriptional processes and of BDNF upregulation, and occurred even in the presence of increased corticosterone levels.
Collapse
Affiliation(s)
- Ana F B Ferreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| | | | | | | | | |
Collapse
|