1
|
Deak T, Burzynski HE, Nunes PT, Day SM, Savage LM. Adolescent Alcohol and the Spectrum of Cognitive Dysfunction in Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1473:257-298. [PMID: 40128483 DOI: 10.1007/978-3-031-81908-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Among the many changes associated with aging, inflammation in the central nervous system (CNS) and throughout the body likely contributes to the constellation of health-related maladies associated with aging. Genetics, lifestyle factors, and environmental experiences shape the trajectory of aging-associated inflammation, including the developmental timing, frequency, and intensity of alcohol consumption. This chapter posits that neuroinflammatory processes form a critical link between alcohol exposure and the trajectory of healthy aging, at least in part through direct or indirect interactions with cholinergic circuits that are crucial to cognitive integrity. In this chapter, we begin with a discussion of how inflammation changes from early development through late aging; discuss the role of inflammation and alcohol in the emergence of mild cognitive impairment (MCI); elaborate on critical findings on the contribution of alcohol-related thiamine deficiency to the loss of cholinergic function and subsequent development of Wernicke-Korsakoff syndrome (WKS); and present emerging findings at the intersection of alcohol and Alzheimer's disease and related dementias (ADRD). In doing so, our analysis points toward inflammation-mediated compromise of basal forebrain cholinergic function as a key culprit in cognitive dysfunction associated with chronic alcohol exposure, effects that may be rescuable through either pharmacological or behavioral approaches. Furthermore, our chapter reveals an interesting dichotomy in the effects of alcohol on neuropathological markers of ADRD that depend upon both biological sex and genetic vulnerability.
Collapse
Affiliation(s)
- Terrence Deak
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, Binghamton, NY, USA.
| | - Hannah E Burzynski
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, Binghamton, NY, USA
| | - Polliana T Nunes
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, Binghamton, NY, USA
| | - Stephen M Day
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, Binghamton, NY, USA
| | - Lisa M Savage
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, Binghamton, NY, USA
| |
Collapse
|
2
|
Xia Y, Qian T, Fei G, Cheng X, Zhao L, Sang S, Zhong C. Low expression of thiamine pyrophosphokinase-1 contributes to brain susceptibility to thiamine deficiency. Neuroreport 2024:00001756-990000000-00284. [PMID: 39190417 PMCID: PMC11389888 DOI: 10.1097/wnr.0000000000002094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Thiamine deficiency is a well-known risk factor for the development of severe encephalopathy, such as Wernicke encephalopathy and Korsakoff syndrome, but the underlying mechanism is still mysterious. This study aims to investigate the expression levels of thiamine metabolism genes in different tissues and their impact on brain susceptibility to thiamine deficiency. The mRNA and protein levels of four genes known to be associated with thiamine metabolism: thiamine pyrophosphokinase-1 (Tpk), Solute carrier family 19 member 2 (Slc19a2), Slc19a3, and Slc25a19, in the brain, kidney, and liver of mice were examined. Thiamine diphosphate (TDP) levels were measured in these tissues. Mice were subjected to dietary thiamine deprivation plus pyrithiamine (PTD), a specific TPK inhibitor, or pyrithiamine alone to observe the reduction in TDP and associated pathological changes. TPK mRNA and protein expression levels were lowest in the brain compared to the kidney and liver. Correspondingly, TDP levels were also lowest in the brain. Mice treated with PTD or pyrithiamine alone showed an initial reduction in brain TDP levels, followed by reductions in the liver and kidney. PTD treatment caused significant neuron loss, neuroinflammation, and blood-brain barrier disruption, whereas dietary thiamine deprivation alone did not. TPK expression level is the best indicator of thiamine metabolism status. Low TPK expression in the brain appears likely to contribute to brain susceptibility to thiamine deficiency, underscoring a critical role of TPK in maintaining cerebral thiamine metabolism and preventing thiamine deficiency-related brain lesions.
Collapse
Affiliation(s)
- Yingfeng Xia
- Department of Neurology, Zhongshan Hospital; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science; Institutes of Brain Science; National Clinical Research Center for Aging and Medicine, Huashan Hospital; Fudan University
| | - Ting Qian
- Department of Neurology, Zhongshan Hospital; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science; Institutes of Brain Science; National Clinical Research Center for Aging and Medicine, Huashan Hospital; Fudan University
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| | - Guoqiang Fei
- Department of Neurology, Zhongshan Hospital; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science; Institutes of Brain Science; National Clinical Research Center for Aging and Medicine, Huashan Hospital; Fudan University
| | - Xiaoqin Cheng
- Department of Neurology, Zhongshan Hospital; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science; Institutes of Brain Science; National Clinical Research Center for Aging and Medicine, Huashan Hospital; Fudan University
| | - Lei Zhao
- Department of Neurology, Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shaoming Sang
- Department of Neurology, Zhongshan Hospital; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science; Institutes of Brain Science; National Clinical Research Center for Aging and Medicine, Huashan Hospital; Fudan University
| | - Chunjiu Zhong
- Department of Neurology, Zhongshan Hospital; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science; Institutes of Brain Science; National Clinical Research Center for Aging and Medicine, Huashan Hospital; Fudan University
| |
Collapse
|
3
|
Singh N, Nandy SK, Jyoti A, Saxena J, Sharma A, Siddiqui AJ, Sharma L. Protein Kinase C (PKC) in Neurological Health: Implications for Alzheimer's Disease and Chronic Alcohol Consumption. Brain Sci 2024; 14:554. [PMID: 38928554 PMCID: PMC11201589 DOI: 10.3390/brainsci14060554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Protein kinase C (PKC) is a diverse enzyme family crucial for cell signalling in various organs. Its dysregulation is linked to numerous diseases, including cancer, cardiovascular disorders, and neurological problems. In the brain, PKC plays pivotal roles in synaptic plasticity, learning, memory, and neuronal survival. Specifically, PKC's involvement in Alzheimer's Disease (AD) pathogenesis is of significant interest. The dysregulation of PKC signalling has been linked to neurological disorders, including AD. This review elucidates PKC's pivotal role in neurological health, particularly its implications in AD pathogenesis and chronic alcohol addiction. AD, characterised by neurodegeneration, implicates PKC dysregulation in synaptic dysfunction and cognitive decline. Conversely, chronic alcohol consumption elicits neural adaptations intertwined with PKC signalling, exacerbating addictive behaviours. By unravelling PKC's involvement in these afflictions, potential therapeutic avenues emerge, offering promise for ameliorating their debilitating effects. This review navigates the complex interplay between PKC, AD pathology, and alcohol addiction, illuminating pathways for future neurotherapeutic interventions.
Collapse
Affiliation(s)
- Nishtha Singh
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University of Biotechnology, and Management Sciences, Solan 173229, Himachal Pradesh, India; (N.S.); (A.S.)
| | - Shouvik Kumar Nandy
- School of Pharmacy, Techno India University, Sector-V, Kolkata 700091, West Bengal, India;
| | - Anupam Jyoti
- Department of Life Science, Parul Institute of Applied Science, Parul University, Vadodara 391760, Gujarat, India;
| | - Juhi Saxena
- Department of Biotechnology, Parul Institute of Technology, Parul University, Vadodara 391760, Gujarat, India;
| | - Aditi Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University of Biotechnology, and Management Sciences, Solan 173229, Himachal Pradesh, India; (N.S.); (A.S.)
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail 55476, Saudi Arabia
| | - Lalit Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University of Biotechnology, and Management Sciences, Solan 173229, Himachal Pradesh, India; (N.S.); (A.S.)
| |
Collapse
|
4
|
da Silva MP, Lima FW, Moura AG, Nunes JP, de Cordova CA, de Cordova FM. ERK1/2 modulation in the central nervous system of male and female thiamine-deficient mice with amprolium. Lab Anim 2024; 58:22-33. [PMID: 37684026 DOI: 10.1177/00236772231191586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Thiamine deficiency experimental models focus on using the pyrithiamine analog in male rodents, making the thiamine deficiency effects in females and the use of other thiamine antagonists, such as amprolium, unknown. We investigated the impact of thiamine deficiency with amprolium in the cerebral cortex and thalamus of male and female mice by evaluating the modulation of ERK1/2 phosphorylation. The animals were exposed for 20 days to thiamine-deficient chow with different doses of amprolium (20, 40, 60 and 80 mg/kg) and at different treatment periods (five, 10, 15 or 20 days) at a dose of 60 mg/kg. After treatments, ERK1/2 phosphorylation was analyzed by western blot. In male mice, we observed a progressive increase in ERK1/2 phosphorylation in both the cerebral cortex and thalamus in response to the dose of amprolium. In females, ERK1/2 phosphorylation did not progressively increase in response to the amprolium dosage. However, an increase in phosphorylation at the higher doses of 60 and 80 mg/kg was observed. We observed a more intense increase in ERK1/2 phosphorylation in males' cerebral cortex and thalamus from 10 days onwards. In females, the ERK1/2 modulation profiles were similar. The results show that thiamine deficiency induction with amprolium is efficient, compatible with other recognized models that use pyrithiamine, showing changes in cell signaling in the nervous system. The study showed differences in response to thiamine deficiency with amprolium between male and female mice in relation to ERK1/2 phosphorylation and demonstrated that females respond positively to the method and can also be used as model animals.
Collapse
Affiliation(s)
- Mirian P da Silva
- Programa de Pós-Graduação em Sanidade Animal e Saúde Pública nos Trópicos, Universidade Federal do Norte do Tocantins, Araguaína, Brazil
| | - Francisco Wb Lima
- Curso de Medicina Veterinária, Universidade Federal do Norte do Tocantins, Araguaína, Brazil
| | - Adha Gs Moura
- Curso de Medicina Veterinária, Universidade Federal do Norte do Tocantins, Araguaína, Brazil
| | - Julia P Nunes
- Curso de Medicina Veterinária, Universidade Federal do Norte do Tocantins, Araguaína, Brazil
| | | | - Fabiano M de Cordova
- Programa de Pós-Graduação em Sanidade Animal e Saúde Pública nos Trópicos, Universidade Federal do Norte do Tocantins, Araguaína, Brazil
| |
Collapse
|
5
|
Arts NJM, van Dorst MEG, Vos SH, Kessels RPC. Coordination and Cognition in Pure Nutritional Wernicke's Encephalopathy with Cerebellar Degeneration after COVID-19 Infection: A Unique Case Report. J Clin Med 2023; 12:2511. [PMID: 37048595 PMCID: PMC10094782 DOI: 10.3390/jcm12072511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Alcoholic cerebellar degeneration is a restricted form of cerebellar degeneration, clinically leading to an ataxia of stance and gait and occurring in the context of alcohol misuse in combination with malnutrition and thiamine depletion. However, a similar degeneration may also develop after non-alcoholic malnutrition, but evidence for a lasting ataxia of stance and gait and lasting abnormalities in the cerebellum is lacking in the few patients described with purely nutritional cerebellar degeneration (NCD). METHODS We present a case of a 46-year-old woman who developed NCD and Wernicke's encephalopathy (WE) due to COVID-19 and protracted vomiting, resulting in thiamine depletion. We present her clinical course over the first 6 months after the diagnosis of NCD and WE, with thorough neuropsychological and neurological examinations, standardized clinical observations, laboratory investigations, and repeated MRIs. RESULTS We found a persistent ataxia of stance and gait and evidence for an irreversible restricted cerebellar degeneration. However, the initial cognitive impairments resolved. CONCLUSIONS Our study shows that NCD without involvement of alcohol neurotoxicity and with a characteristic ataxia of stance and gait exists and may be irreversible. We did not find any evidence for lasting cognitive abnormalities or a cerebellar cognitive-affective syndrome (CCAS) in this patient.
Collapse
Affiliation(s)
- Nicolaas J. M. Arts
- Centre of Excellence for Korsakoff and Alcohol-Related Cognitive Disorders, Vincent van Gogh Institute for Psychiatry, 5803 DN Venray, The Netherlands
- Winkler Neuropsychiatry Clinic and Korsakoff Centre, Pro Persona Institute for Psychiatry, 6874 BE Wolfheze, The Netherlands
| | - Maud E. G. van Dorst
- Centre of Excellence for Korsakoff and Alcohol-Related Cognitive Disorders, Vincent van Gogh Institute for Psychiatry, 5803 DN Venray, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 GD Nijmegen, The Netherlands
| | - Sandra H. Vos
- Centre of Excellence for Korsakoff and Alcohol-Related Cognitive Disorders, Vincent van Gogh Institute for Psychiatry, 5803 DN Venray, The Netherlands
| | - Roy P. C. Kessels
- Centre of Excellence for Korsakoff and Alcohol-Related Cognitive Disorders, Vincent van Gogh Institute for Psychiatry, 5803 DN Venray, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 GD Nijmegen, The Netherlands
- Tactus Addiction Care, 7400 AD Deventer, The Netherlands
| |
Collapse
|
6
|
Aomura D, Kurasawa Y, Harada M, Hashimoto K, Kamijo Y. Early detection of thiamine deficiency by non-thyroidal illness syndrome in a hemodialysis patient. CEN Case Rep 2023; 12:110-115. [PMID: 36018508 PMCID: PMC9892385 DOI: 10.1007/s13730-022-00729-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/18/2022] [Indexed: 02/05/2023] Open
Abstract
An 88-year-old male patient on maintenance hemodialysis (HD) therapy experienced gradual losses in appetite and liveliness during the course of 1 month. Physical examinations revealed no abnormalities. However, blood testing indicated non-thyroidal illness syndrome (NTIS) typically observed in patients with severe illness, with serum levels of thyroid stimulating hormone, free triiodothyronine, and free thyroxine of 0.17 μIU/mL, < 1.0 pg/mL, and 0.23 ng/dL, respectively. Brain magnetic resonance imaging to exclude the possibility of central hypothyroidism unexpectedly displayed slight abnormalities inside of the thalami that were characteristic of Wernicke's encephalopathy. Additional examination disclosed low serum thiamine of 20 ng/mL. Thiamine injections of 100 mg at every HD treatment rapidly restored his appetite, liveliness, and NTIS findings. HD patients are at a particularly high risk of thiamine deficiency (TD) and associated severe symptoms due to losses of thiamine during HD sessions. However, its non-specific initial symptoms, including decreases in appetite and liveliness, as well as undetectability in routine blood tests complicate early detection, resulting in underdiagnosis and more severe outcomes. In the present case, TD manifested only as non-specific symptoms and was ultimately revealed by the presence of NTIS, which was resolved with thiamine supplementation. Thus, NTIS might assist in the early detection of TD as an initial sign in HD patients.
Collapse
Affiliation(s)
- Daiki Aomura
- Department of Nephrology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan.
- Department of Health Promotion Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan.
| | - Yukifumi Kurasawa
- Department of Nephrology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
- Department of Internal Medicine, Yodakubo Hospital, 2857 Furumachi, Nagawa, Nagano, 386-0603, Japan
| | - Makoto Harada
- Department of Nephrology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Koji Hashimoto
- Department of Nephrology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Yuji Kamijo
- Department of Nephrology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| |
Collapse
|
7
|
Krzysztoforska K, Piechal A, Wojnar E, Blecharz-Klin K, Pyrzanowska J, Joniec-Maciejak I, Krzysztoforski J, Widy-Tyszkiewicz E. Protocatechuic Acid Prevents Some of the Memory-Related Behavioural and Neurotransmitter Changes in a Pyrithiamine-Induced Thiamine Deficiency Model of Wernicke-Korsakoff Syndrome in Rats. Nutrients 2023; 15:nu15030625. [PMID: 36771332 PMCID: PMC9921060 DOI: 10.3390/nu15030625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
The purpose of this research was to investigate the effects of protocatechuic acid (PCA) at doses of 50 and 100 mg/kg on the development of unfavourable changes in cognitive processes in a pyrithiamine-induced thiamine deficiency (PTD) model of the Wernicke-Korsakoff syndrome (WKS) in rats. The effects of PCA were assessed at the behavioural and biochemical levels. Behavioural analysis was conducted using the Foot Fault test (FF), Bar test, Open Field test, Novel Object Recognition test (NOR), Hole-Board test and Morris Water Maze test (MWM). Biochemical analysis consisting of determination of concentration and turnover of neurotransmitters in selected structures of the rat CNS was carried out using high-performance liquid chromatography. PTD caused catalepsy (Bar test) and significantly impaired motor functions, leading to increased ladder crossing time and multiplied errors due to foot misplacement (FF). Rats with experimentally induced WKS showed impaired consolidation and recall of spatial reference memory in the MWM test, while episodic memory related to object recognition in the NOR was unimpaired. Compared to the control group, rats with WKS showed reduced serotonin levels in the prefrontal cortex and changes in dopamine and/or norepinephrine metabolites in the prefrontal cortex, medulla oblongata and spinal cord. PTD was also found to affect alanine, serine, glutamate, and threonine levels in certain areas of the rat brain. PCA alleviated PTD-induced cataleptic symptoms in rats, also improving their performance in the Foot Fault test. In the MWM, PCA at 50 and 100 mg/kg b.w. improved memory consolidation and the ability to retrieve acquired information in rats, thereby preventing unfavourable changes caused by PTD. PCA at both tested doses was also shown to have a beneficial effect on normalising PTD-disrupted alanine and glutamate concentrations in the medulla oblongata. These findings demonstrate that certain cognitive deficits in spatial memory and abnormalities in neurotransmitter levels persist in rats that have experienced an acute episode of PTD, despite restoration of thiamine supply and long-term recovery. PCA supplementation largely had a preventive effect on the development of these deficits, to some extent also normalising neurotransmitter concentrations in the brain.
Collapse
Affiliation(s)
- Kinga Krzysztoforska
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland
- Correspondence:
| | - Agnieszka Piechal
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland
| | - Ewa Wojnar
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland
| | - Kamilla Blecharz-Klin
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland
| | - Justyna Pyrzanowska
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland
| | - Ilona Joniec-Maciejak
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland
| | - Jan Krzysztoforski
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Ewa Widy-Tyszkiewicz
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland
| |
Collapse
|
8
|
Clergue-Duval V, Coulbault L, Questel F, Cabé N, Laniepce A, Delage C, Boudehent C, Bloch V, Segobin S, Naassila M, Pitel AL, Vorspan F. Alcohol Withdrawal Is an Oxidative Stress Challenge for the Brain: Does It Pave the Way toward Severe Alcohol-Related Cognitive Impairment? Antioxidants (Basel) 2022; 11:2078. [PMID: 36290801 PMCID: PMC9598168 DOI: 10.3390/antiox11102078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/22/2022] [Accepted: 10/19/2022] [Indexed: 11/21/2022] Open
Abstract
Alcohol use is a leading cause of mortality, brain morbidity, neurological complications and minor to major neurocognitive disorders. Alcohol-related neurocognitive disorders are consecutive to the direct effect of chronic and excessive alcohol use, but not only. Indeed, patients with severe alcohol use disorders (AUD) associated with pharmacological dependence suffer from repetitive events of alcohol withdrawal (AW). If those AW are not managed by adequate medical and pharmacological treatment, they may evolve into severe AW, or be complicated by epileptic seizure or delirium tremens (DT). In addition, we suggest that AW favors the occurrence of Wernicke's encephalopathy (WE) in patients with known or unknown thiamine depletion. We reviewed the literature on oxidative stress as a core mechanism in brain suffering linked with those conditions: AW, epileptic seizure, DT and WE. Thus, we propose perspectives to further develop research projects aiming at better identifying oxidative stress brain damage related to AW, assessing the effect of repetitive episodes of AW, and their long-term cognitive consequences. This research field should develop neuroprotective strategies during AW itself or during the periwithdrawal period. This could contribute to the prevention of severe alcohol-related brain damage and cognitive impairments.
Collapse
Affiliation(s)
- Virgile Clergue-Duval
- Département de Psychiatrie et de Médecine Addictologique, Site Lariboisière Fernand-Widal, GHU APHP Nord–Université Paris Cité, APHP, F-75010 Paris, France
- Inserm UMRS-1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, F-75006 Paris, France
- FHU Network of Research in Substance Use Disorders (NOR-SUD), F-75006 Paris, France
- Resalcog (Réseau Pour la Prise en Charge Des Troubles Cognitifs Liés à L’alcool), F-75017 Paris, France
| | - Laurent Coulbault
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND “Physiopathology and Imaging of Neurological Disorders”, Institut Blood and Brain @ Caen-Normandie, Cyceron, F-14074 Caen, France
- FHU Améliorer le Pronostic Des Troubles Addictifs et Mentaux Par Une Médecine Personnalisée (A2M2P), F-14074 Caen, France
| | - Frank Questel
- Département de Psychiatrie et de Médecine Addictologique, Site Lariboisière Fernand-Widal, GHU APHP Nord–Université Paris Cité, APHP, F-75010 Paris, France
- Inserm UMRS-1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, F-75006 Paris, France
- FHU Network of Research in Substance Use Disorders (NOR-SUD), F-75006 Paris, France
- Resalcog (Réseau Pour la Prise en Charge Des Troubles Cognitifs Liés à L’alcool), F-75017 Paris, France
| | - Nicolas Cabé
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND “Physiopathology and Imaging of Neurological Disorders”, Institut Blood and Brain @ Caen-Normandie, Cyceron, F-14074 Caen, France
- FHU Améliorer le Pronostic Des Troubles Addictifs et Mentaux Par Une Médecine Personnalisée (A2M2P), F-14074 Caen, France
- Service d’Addictologie, Centre Hospitalier Universitaire de Caen, F-14000 Caen, France
| | - Alice Laniepce
- Normandie Univ, UNIROUEN, CRFDP (EA 7475), Rouen F-76000, France
| | - Clément Delage
- Inserm UMRS-1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, F-75006 Paris, France
- Service de Pharmacie, Site Lariboisière Fernand-Widal, GHU APHP Nord–Université Paris Cité, APHP, F-75010 Paris, France
- UFR de Pharmacie, Université Paris Cité, F-75006 Paris, France
| | - Céline Boudehent
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND “Physiopathology and Imaging of Neurological Disorders”, Institut Blood and Brain @ Caen-Normandie, Cyceron, F-14074 Caen, France
| | - Vanessa Bloch
- Inserm UMRS-1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, F-75006 Paris, France
- FHU Network of Research in Substance Use Disorders (NOR-SUD), F-75006 Paris, France
- Service de Pharmacie, Site Lariboisière Fernand-Widal, GHU APHP Nord–Université Paris Cité, APHP, F-75010 Paris, France
- UFR de Pharmacie, Université Paris Cité, F-75006 Paris, France
| | - Shailendra Segobin
- FHU Améliorer le Pronostic Des Troubles Addictifs et Mentaux Par Une Médecine Personnalisée (A2M2P), F-14074 Caen, France
- Normandie Univ, UNICAEN, PSL Université Paris Cité, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, F-14074 Caen, France
| | - Mickael Naassila
- FHU Améliorer le Pronostic Des Troubles Addictifs et Mentaux Par Une Médecine Personnalisée (A2M2P), F-14074 Caen, France
- Inserm UMRS-1247 Groupe de Recherche Sur L’alcool et Les Pharmacodépendances, Université de Picardie Jules Verne, F-80000 Amiens, France
- UFR de Pharmacie, Université de Picardie Jules Verne, F-80000 Amiens, France
| | - Anne-Lise Pitel
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND “Physiopathology and Imaging of Neurological Disorders”, Institut Blood and Brain @ Caen-Normandie, Cyceron, F-14074 Caen, France
- FHU Améliorer le Pronostic Des Troubles Addictifs et Mentaux Par Une Médecine Personnalisée (A2M2P), F-14074 Caen, France
- Normandie Univ, UNICAEN, PSL Université Paris Cité, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, F-14074 Caen, France
| | - Florence Vorspan
- Département de Psychiatrie et de Médecine Addictologique, Site Lariboisière Fernand-Widal, GHU APHP Nord–Université Paris Cité, APHP, F-75010 Paris, France
- Inserm UMRS-1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, F-75006 Paris, France
- FHU Network of Research in Substance Use Disorders (NOR-SUD), F-75006 Paris, France
- UFR de Médecine, Université Paris Cité, F-75006 Paris, France
| |
Collapse
|
9
|
Moya M, López-Valencia L, García-Bueno B, Orio L. Disinhibition-Like Behavior Correlates with Frontal Cortex Damage in an Animal Model of Chronic Alcohol Consumption and Thiamine Deficiency. Biomedicines 2022; 10:biomedicines10020260. [PMID: 35203470 PMCID: PMC8869694 DOI: 10.3390/biomedicines10020260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/08/2022] [Accepted: 01/18/2022] [Indexed: 12/23/2022] Open
Abstract
Wernicke-Korsakoff syndrome (WKS) is induced by thiamine deficiency (TD) and mainly related to alcohol consumption. Frontal cortex dysfunction has been associated with impulsivity and disinhibition in WKS patients. The pathophysiology involves oxidative stress, excitotoxicity and inflammatory responses leading to neuronal death, but the relative contributions of each factor (alcohol and TD, either isolated or in interaction) to these phenomena are still poorly understood. A rat model was used by forced consumption of 20% (w/v) alcohol for 9 months (CA), TD hit (TD diet + pyrithiamine 0.25 mg/kg, i.p. daily injections the last 12 days of experimentation (TDD)), and both combined treatments (CA+TDD). Motor and cognitive performance and cortical damage were examined. CA caused hyperlocomotion as a possible sensitization of ethanol-induced excitatory effects and recognition memory deficits. In addition, CA+TDD animals showed a disinhibited-like behavior which appeared to be dependent on TDD. Additionally, combined treatment led to more pronounced alterations in nitrosative stress, lipid peroxidation, apoptosis and cell damage markers. Correlations between injury signals and disinhibition suggest that CA+TDD disrupts behaviors dependent on the frontal cortex. Our study sheds light on the potential disease-specific mechanisms, reinforcing the need for neuroprotective therapeutic approaches along with preventive treatments for the nutritional deficiency in WKS.
Collapse
Affiliation(s)
- Marta Moya
- Department of Psychobiology and Methods in Behavioral Sciences, Faculty of Psychology, Complutense University of Madrid (UCM), 28223 Madrid, Spain; (M.M.); (L.L.-V.)
- Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Leticia López-Valencia
- Department of Psychobiology and Methods in Behavioral Sciences, Faculty of Psychology, Complutense University of Madrid (UCM), 28223 Madrid, Spain; (M.M.); (L.L.-V.)
| | - Borja García-Bueno
- Departament of Pharmacology and Toxicology, Faculty of Medicine, Complutense University of Madrid (UCM), 28040 Madrid, Spain;
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto Universitario de Investigación en Neuroquímica IUIN-UCM, Avda. Complutense s/n, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Laura Orio
- Department of Psychobiology and Methods in Behavioral Sciences, Faculty of Psychology, Complutense University of Madrid (UCM), 28223 Madrid, Spain; (M.M.); (L.L.-V.)
- Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
10
|
Gomes KC, Lima FWB, da Silva Aguiar HQ, de Araújo SS, de Cordova CAS, de Cordova FM. Thiamine deficiency and recovery: impact of recurrent episodes and beneficial effect of treatment with Trolox and dimethyl sulfoxide. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:2289-2307. [PMID: 34468817 DOI: 10.1007/s00210-021-02148-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
At present, thiamine deficiency (TD) is managed with administration of high doses of thiamine. Even so, severe and permanent neurological disorders can occur in recurrent episodes of TD. In this study, we used a murine model to assess the efficacy of TD recovery treatments using thiamine with or without additional administration of the antioxidant Trolox or the anti-inflammatory dimethyl sulfoxide (DMSO) after a single or recurrent episode of TD. TD was induced for 9 days with deficient chow and pyrithiamine, and the recovery period was 7 days with standard amounts of chow and thiamine, Trolox, and/or DMSO. After these periods, we evaluated behavior, histopathology, and ERK1/2 modulation in the brain. Deficient animals showed reductions in locomotor activity, motor coordination, and spatial memory. Morphologically, after a single episode of TD and recovery, deficient mice showed neuronal vacuolization in the dorsal thalamus and, after two episodes, a reduction in neuronal cell number. These effects were attenuated or reversed by the recovery treatments, mainly in the treatments with thiamine associated with Trolox or DMSO. Deficient animals showed a strong increase in ERK1/2 phosphorylation in the thalamus, hippocampus, and cerebral cortex after one deficiency episode and recovery. Interestingly, after recurrent TD and recovery, ERK1/2 phosphorylation remained high only in the deficient mice treated with thiamine and/or Trolox or thiamine with DMSO. Our data suggest that a protocol for TD treatment with thiamine in conjunction with Trolox or DMSO enhances the recovery of animals and possibly minimizes the late neurological sequelae.
Collapse
Affiliation(s)
- Ketren Carvalho Gomes
- Programa de Pós-Graduação em Sanidade Animal e Saúde Pública nos Trópicos , Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil
| | | | - Helen Quézia da Silva Aguiar
- Curso de Medicina Veterinária, Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil
| | - Suiane Silva de Araújo
- Curso de Medicina Veterinária, Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil
| | | | - Fabiano Mendes de Cordova
- Programa de Pós-Graduação em Sanidade Animal e Saúde Pública nos Trópicos , Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil.
| |
Collapse
|
11
|
Moya M, San Felipe D, Ballesta A, Alén F, Rodríguez de Fonseca F, García-Bueno B, Marco EM, Orio L. Cerebellar and cortical TLR4 activation and behavioral impairments in Wernicke-Korsakoff Syndrome: Pharmacological effects of oleoylethanolamide. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110190. [PMID: 33271211 DOI: 10.1016/j.pnpbp.2020.110190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 01/19/2023]
Abstract
Wernicke-Korsakoff Syndrome (WKS) is a neuropsychiatric disorder whose etiology is a thiamine deficiency (TD), with alcoholism being the main underlying cause. Previous evidence suggests the presence of initial neuroinflammation and oxidative/nitrosative stress in the physiopathology, although the specific molecular mechanisms underlying TD-induced brain damage and behavioral disabilities are unknown. We explored the specific role of the innate immune receptor TLR4 in three murine models of WKS, based on the combination of a thiamine-deficient diet and pyrithiamine injections (0.25 mg/kg, i.p.) over time. The Symptomatic Model (SM) allowed us to describe the complete neurological/neurobehavioral symptomatology over 16 days of TD. Animals showed an upregulation of the TLR4 signaling pathway both in the frontal cortex (FC) and cerebellum and clear motor impairments related with cerebellar dysfunction. However, in the Pre-Symptomatic Model (PSM), 12 days of TD induced the TLR4 pathway upregulation in the FC, which correlated with disinhibited-like behavior, but not in the cerebellum, and no motor impairments. In addition, we tested the effects of the biolipid oleoylethanolamide (OEA, 10 mg/kg, i.p., once daily, starting before any symptom of the pathology is manifested) through the Glucose-Precipitated Model (GPM), which was generated by glucose loading (5 g/kg, i.v., last day) in thiamine-deficient animals to accelerate damage. Pretreatment with OEA prevented the TLR4-induced signature in the FC, as well as an underlying incipient memory disability and disinhibited-like behavior. This study suggests a key role for TLR4 in TD-induced neuroinflammation in the FC and cerebellum, and it reveals different vulnerability of these brain regions in WKS over time. Pre-treatment with OEA counteracts TD-induced TLR4-associated neuroinflammation and may serve as co-adjuvant therapy to prevent WKS-induced neurobehavioral alterations.
Collapse
Affiliation(s)
- Marta Moya
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Universidad Complutense de Madrid (UCM), Madrid, Spain; Red de Trastornos Adictivos (RTA) del Instituto de Salud Carlos III (ISCIII), Spain
| | - Diego San Felipe
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, UCM, Spain
| | - Antonio Ballesta
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Francisco Alén
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Fernando Rodríguez de Fonseca
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Universidad Complutense de Madrid (UCM), Madrid, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental, Hospital Regional de Málaga, Spain; Red de Trastornos Adictivos (RTA) del Instituto de Salud Carlos III (ISCIII), Spain
| | - Borja García-Bueno
- Department of Pharmacology and Toxicology, Faculty of Medicine, UCM, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Instituto Universitario de Investigación en Neuroquímica UCM, Spain
| | - Eva M Marco
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, UCM, Spain; Red de Trastornos Adictivos (RTA) del Instituto de Salud Carlos III (ISCIII), Spain
| | - Laura Orio
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Universidad Complutense de Madrid (UCM), Madrid, Spain; Red de Trastornos Adictivos (RTA) del Instituto de Salud Carlos III (ISCIII), Spain.
| |
Collapse
|
12
|
The contribution of mamillary body damage to Wernicke's encephalopathy and Korsakoff's syndrome. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:455-475. [PMID: 34225949 DOI: 10.1016/b978-0-12-820107-7.00029-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Histopathological alterations of the mamillary bodies are the most conspicuous and the most consistent neuropathological features of several disorders that occur after severe thiamine deficiency, such as Wernicke's encephalopathy and Korsakoff's syndrome. Moreover, they are among the few abnormalities that are visible to the naked eye in these disorders. With a lifetime prevalence of approximately 1.3%, Wernicke's encephalopathy is by far the most frequent cause of damage to the mamillary bodies in humans. Still, there is a persisting uncertainty with regard to the development and the clinical consequences of this damage, because it is virtually impossible to study in isolation. As a rule, it always occurs alongside neuropathology in other subcortical gray matter structures, notably the medial thalamus. Converging evidence from other pathologies and animal experiments is needed to assess the clinical impact of mamillary body damage and to determine which functions can be attributed to these structures in healthy subjects. In this chapter, we describe the history and the current state of knowledge with regard to thiamine deficiency disorders and the contribution of mamillary body damage to their clinical presentations.
Collapse
|
13
|
Bolaños-Burgos IC, Bernal-Correa AM, Mahecha GAB, Ribeiro ÂM, Kushmerick C. Thiamine Deficiency Increases Intrinsic Excitability of Mouse Cerebellar Purkinje Cells. THE CEREBELLUM 2020; 20:186-202. [PMID: 33098550 DOI: 10.1007/s12311-020-01202-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 10/23/2022]
Abstract
Thiamine deficiency is associated with cerebellar dysfunction; however, the consequences of thiamine deficiency on the electrophysiological properties of cerebellar Purkinje cells are poorly understood. Here, we evaluated these parameters in brain slices containing cerebellar vermis. Adult mice were maintained for 12-13 days on a thiamine-free diet coupled with daily injections of pyrithiamine, an inhibitor of thiamine phosphorylation. Morphological analysis revealed a 20% reduction in Purkinje cell and nuclear volume in thiamine-deficient animals compared to feeding-matched controls, with no reduction in cell count. Under whole-cell current clamp, thiamine-deficient Purkinje cells required significantly less current injection to fire an action potential. This reduction in rheobase was not due to a change in voltage threshold. Rather, thiamine-deficient neurons presented significantly higher input resistance specifically in the voltage range just below threshold, which increases their sensitivity to current at these critical membrane potentials. In addition, thiamine deficiency caused a significant decrease in the amplitude of the action potential afterhyperpolarization, broadened the action potential, and decreased the current threshold for depolarization block. When thiamine-deficient animals were allowed to recover for 1 week on a normal diet, rheobase, threshold, action potential half-width, and depolarization block threshold were no longer different from controls. We conclude that thiamine deficiency causes significant but reversible changes to the electrophysiology properties of Purkinje cells prior to pathological morphological alterations or cell loss. Thus, the data obtained in the present study indicate that increased excitability of Purkinje cells may represent a leading indicator of cerebellar dysfunction caused by lack of thiamine.
Collapse
Affiliation(s)
| | - Ana María Bernal-Correa
- Graduate Program in Physiology and Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Ângela Maria Ribeiro
- Graduate Program in Neuroscience, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Christopher Kushmerick
- Graduate Program in Neuroscience, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil. .,Graduate Program in Physiology and Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil. .,Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
14
|
Medeiros RDCN, Moraes JO, Rodrigues SDC, Pereira LM, Aguiar HQDS, de Cordova CAS, Yim Júnior A, de Cordova FM. Thiamine Deficiency Modulates p38 MAPK and Heme Oxygenase-1 in Mouse Brain: Association with Early Tissue and Behavioral Changes. Neurochem Res 2020; 45:940-955. [PMID: 31989470 DOI: 10.1007/s11064-020-02975-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/11/2020] [Accepted: 01/22/2020] [Indexed: 12/18/2022]
Abstract
Thiamine deficiency (TD) produces severe neurodegenerative lesions. Studies have suggested that primary neurodegenerative events are associated with both oxidative stress and inflammation. Very little is known about the downstream effects on intracellular signaling pathways involved in neuronal death. The primary aim of this work was to evaluate the modulation of p38MAPK and the expression of heme oxygenase 1 (HO-1) in the central nervous system (CNS). Behavioral, metabolic, and morphological parameters were assessed. Mice were separated into six groups: control (Cont), TD with pyrithiamine (Ptd), TD with pyrithiamine and Trolox (Ptd + Tr), TD with pyrithiamine and dimethyl sulfoxide (Ptd + Dmso), Trolox (Tr) and DMSO (Dmso) control groups and treated for 9 days. Control groups received standard feed (AIN-93M), while TD groups received thiamine deficient feed (AIN-93DT). All the groups were subjected to behavioral tests, and CNS samples were collected for cell viability, histopathology and western blot analyses. The Ptd group showed a reduction in weight gain and feed intake, as well as a reduction in locomotor, grooming, and motor coordination activities. Also, Ptd group showed a robust increase in p38MAPK phosphorylation and mild HO-1 expression in the cerebral cortex and thalamus. The Ptd group showed a decreased cell viability, hemorrhage, spongiosis, and astrocytic swelling in the thalamus. Groups treated with Trolox and DMSO displayed diminished p38MAPK phosphorylation in both the structures, as well as attenuated thalamic lesions and behavioral activities. These data suggest that p38MAPK and HO-1 are involved in the TD-induced neurodegeneration in vivo, possibly modulated by oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Rita de Cássia Noronha Medeiros
- Programa de Pós-Graduação em Sanidade Animal e Saúde Pública nos Trópicos, Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil
| | - Juliana Oliveira Moraes
- Programa de Pós-Graduação em Sanidade Animal e Saúde Pública nos Trópicos, Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil
| | | | - Leidiano Martins Pereira
- Curso de Medicina Veterinária, Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil
| | - Helen Quézia da Silva Aguiar
- Curso de Medicina Veterinária, Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil
| | | | - Alberto Yim Júnior
- Curso de Medicina Veterinária, Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil
| | - Fabiano Mendes de Cordova
- Programa de Pós-Graduação em Sanidade Animal e Saúde Pública nos Trópicos, Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil.
| |
Collapse
|
15
|
Kaur S, DasGupta G, Singh S. Altered Neurochemistry in Alzheimer’s Disease: Targeting Neurotransmitter Receptor Mechanisms and Therapeutic Strategy. NEUROPHYSIOLOGY+ 2019. [DOI: 10.1007/s11062-019-09823-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Nunes PT, Kipp BT, Reitz NL, Savage LM. Aging with alcohol-related brain damage: Critical brain circuits associated with cognitive dysfunction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 148:101-168. [PMID: 31733663 PMCID: PMC7372724 DOI: 10.1016/bs.irn.2019.09.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alcoholism is associated with brain damage and impaired cognitive functioning. The relative contributions of different etiological factors, such as alcohol, thiamine deficiency and age vulnerability, to the development of alcohol-related neuropathology and cognitive impairment are still poorly understood. One reason for this quandary is that both alcohol toxicity and thiamine deficiency produce brain damage and cognitive problems that can be modulated by age at exposure, aging following alcohol toxicity or thiamine deficiency, and aging during chronic alcohol exposure. Pre-clinical models of alcohol-related brain damage (ARBD) have elucidated some of the contributions of ethanol toxicity and thiamine deficiency to neuroinflammation, neuronal loss and functional deficits. However, the critical variable of age at the time of exposure or long-term aging with ARBD has been relatively ignored. Acute thiamine deficiency created a massive increase in neuroimmune genes and proteins within the thalamus and significant increases within the hippocampus and frontal cortex. Chronic ethanol treatment throughout adulthood produced very minor fluctuations in neuroimmune genes, regardless of brain region. Intermittent "binge-type" ethanol during the adolescent period established an intermediate neuroinflammatory response in the hippocampus and frontal cortex, that can persist into adulthood. Chronic excessive drinking throughout adulthood, adolescent intermittent ethanol exposure, and thiamine deficiency all led to a loss of the cholinergic neuronal phenotype within the basal forebrain, reduced hippocampal neurogenesis, and alterations in the frontal cortex. Only thiamine deficiency results in gross pathological lesions of the thalamus. The behavioral impairment following these types of treatments is hierarchical: Thiamine deficiency produces the greatest impairment of hippocampal- and prefrontal-dependent behaviors, chronic ethanol drinking ensues mild impairments on both types of tasks and adolescent intermittent ethanol exposure leads to impairments on frontocortical tasks, with sparing on most hippocampal-dependent tasks. However, our preliminary data suggest that as rodents age following adolescent intermittent ethanol exposure, hippocampal functional deficits began to emerge. A necessary requirement for the advancement of understanding the neural consequences of alcoholism is a more comprehensive assessment and understanding of how excessive alcohol drinking at different development periods (adolescence, early adulthood, middle-aged and aged) influences the trajectory of the aging process, including pathological aging and disease.
Collapse
Affiliation(s)
- Polliana Toledo Nunes
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY, United States
| | - Brian T Kipp
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY, United States
| | - Nicole L Reitz
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY, United States
| | - Lisa M Savage
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY, United States.
| |
Collapse
|
17
|
Coppens V, Morrens M, Destoop M, Dom G. The Interplay of Inflammatory Processes and Cognition in Alcohol Use Disorders-A Systematic Review. Front Psychiatry 2019; 10:632. [PMID: 31572234 PMCID: PMC6751886 DOI: 10.3389/fpsyt.2019.00632] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 08/06/2019] [Indexed: 12/12/2022] Open
Abstract
Rationale: Of late, evidence emerges that the pathophysiology of psychiatric diseases and their affiliated symptomatologies are at least partly contributable to inflammatory processes. Also in alcohol use disorders (AUD), this interaction is strongly apparent, with severely immunogenic liver cirrhosis being one of the most critical sequelae of chronic abusive drinking. This somatic immune system activation negatively impacts brain functioning, and additionally, alcohol abuse appears to have a direct detrimental effect on the brain by actively stimulating its immune cells and responses. As cognitive decline majorly contributes to AUD's debility, it is important to know to what extent impairment of cognitive functioning is due to these (neuro-)inflammatory aberrations. Method: We hereby summarize the current existing literature on the interplay between AUD, inflammation, and cognition in a systematic review according to the PRISMA-P guidelines for the systematic review. Main findings: Although literature on the role of inflammation in alcohol use-related cognitive deficiency remains scarce, current findings indicate that pro-inflammatory processes indeed result in exacerbation of several domains of cognitive deterioration. Interestingly, microglia, the immune cells of the brain, appear to exert initial compensatory neuroprotective functionalities upon acute ethanol exposure while chronic alcohol intake seems to attenuate these responses and overall microglial activity. Conclusion: As these results indicate inflammation to be of importance in cognitive impairment following alcohol consumption and might as such provide alternate therapeutic avenues, a considerable increase in research efforts in this domain is urgently required.
Collapse
Affiliation(s)
- Violette Coppens
- Faculty of Medicine and Health Sciences, Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Antwerp, Belgium.,Scientific Initiative of Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Department of Psychiatry, Duffel, Belgium
| | - Manuel Morrens
- Faculty of Medicine and Health Sciences, Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Antwerp, Belgium.,Scientific Initiative of Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Department of Psychiatry, Duffel, Belgium
| | - Marianne Destoop
- Faculty of Medicine and Health Sciences, Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Antwerp, Belgium.,Department of Addiction, Psychiatric Hospital Multiversum, Boechout, Belgium
| | - Geert Dom
- Faculty of Medicine and Health Sciences, Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Antwerp, Belgium.,Department of Addiction, Psychiatric Hospital Multiversum, Boechout, Belgium
| |
Collapse
|
18
|
Moraes JO, Rodrigues SDC, Pereira LM, Medeiros RDCN, de Cordova CAS, de Cordova FM. Amprolium exposure alters mice behavior and metabolism in vivo. Animal Model Exp Med 2018; 1:272-281. [PMID: 30891577 PMCID: PMC6388078 DOI: 10.1002/ame2.12040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/01/2018] [Accepted: 10/22/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Thiamine deficiency (TD) models have been developed, mainly using the thiamine analog pyrithiamine. Other analogs have not been used in rodents. We aimed to evaluate the effects and mechanisms of intraperitoneal (ip) amprolium-induced TD in mice. We also evaluated the associated pathogenesis using antioxidant and anti-inflammatory compounds (Trolox, dimethyl sulfoxide). METHODS Male mice were separated into two groups, one receiving a standard diet (control animals), and the other a TD diet (deficient groups) for 20 days. Control mice were further subdivided into three groups receiving daily ip injections of saline (NaCl 0.9%; Cont group), Tolox (Tr group) or dimethyl sulfoxide (DMSO; Dmso group). The three TD groups received amprolium (Amp group), amprolium and Trolox (Amp+Tr group), or amprolium and DMSO (Amp+Dmso group). The animals were subjected to behavioral tests and then euthanized. The brain and viscera were analyzed. RESULTS Amprolium exposure induced weight loss with hyporexia, reduced the behavioral parameters (locomotion, exploratory activity, and motor coordination), and induced changes in the brain (lower cortical cell viability) and liver (steatosis). Trolox co-treatment partially improved these conditions, but to a lesser extent than DMSO. CONCLUSIONS Amprolium-induced TD may be an interesting model, allowing the deficiency to develop more slowly and to a lesser extent. Amprolium exposure also seems to involve oxidative stress and inflammation, suggested as the main mechanisms of cell dysfunction in TD.
Collapse
Affiliation(s)
- Juliana Oliveira Moraes
- Programa de Pós‐Graduação em Sanidade Animal e Saúde Pública nos TrópicosUniversidade Federal do TocantinsAraguaínaTOBrazil
| | | | | | | | | | - Fabiano Mendes de Cordova
- Programa de Pós‐Graduação em Sanidade Animal e Saúde Pública nos TrópicosUniversidade Federal do TocantinsAraguaínaTOBrazil
| |
Collapse
|
19
|
MacQueen DA, Young JW, Cope ZA. Cognitive Phenotypes for Biomarker Identification in Mental Illness: Forward and Reverse Translation. Curr Top Behav Neurosci 2018; 40:111-166. [PMID: 29858983 DOI: 10.1007/7854_2018_50] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Psychiatric illness has been acknowledged for as long as people were able to describe behavioral abnormalities in the general population. In modern times, these descriptions have been codified and continuously updated into manuals by which clinicians can diagnose patients. None of these diagnostic manuals have attempted to tie abnormalities to neural dysfunction however, nor do they necessitate the quantification of cognitive function despite common knowledge of its ties to functional outcome. In fact, in recent years the National Institute of Mental Health released a novel transdiagnostic classification, the Research Domain Criteria (RDoC), which utilizes quantifiable behavioral abnormalities linked to neurophysiological processes. This reclassification highlights the utility of RDoC constructs as potential cognitive biomarkers of disease state. In addition, with RDoC and cognitive biomarkers, the onus of researchers utilizing animal models no longer necessitates the recreation of an entire disease state, but distinct processes. Here, we describe the utilization of constructs from the RDoC initiative to forward animal research on these cognitive and behavioral processes, agnostic of disease. By linking neural processes to these constructs, identifying putative abnormalities in diseased patients, more targeted therapeutics can be developed.
Collapse
Affiliation(s)
- David A MacQueen
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA.
| | - Zackary A Cope
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
20
|
Ortigoza-Escobar JD, Alfadhel M, Molero-Luis M, Darin N, Spiegel R, de Coo IF, Gerards M, Taylor RW, Artuch R, Nashabat M, Rodríguez-Pombo P, Tabarki B, Pérez-Dueñas B. Thiamine deficiency in childhood with attention to genetic causes: Survival and outcome predictors. Ann Neurol 2017; 82:317-330. [PMID: 28856750 DOI: 10.1002/ana.24998] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 07/09/2017] [Accepted: 07/12/2017] [Indexed: 01/09/2023]
Abstract
Primary and secondary conditions leading to thiamine deficiency have overlapping features in children, presenting with acute episodes of encephalopathy, bilateral symmetric brain lesions, and high excretion of organic acids that are specific of thiamine-dependent mitochondrial enzymes, mainly lactate, alpha-ketoglutarate, and branched chain keto-acids. Undiagnosed and untreated thiamine deficiencies are often fatal or lead to severe sequelae. Herein, we describe the clinical and genetic characterization of 79 patients with inherited thiamine defects causing encephalopathy in childhood, identifying outcome predictors in patients with pathogenic SLC19A3 variants, the most common genetic etiology. We propose diagnostic criteria that will aid clinicians to establish a faster and accurate diagnosis so that early vitamin supplementation is considered. Ann Neurol 2017;82:317-330.
Collapse
Affiliation(s)
- Juan Darío Ortigoza-Escobar
- Division of Child Neurology, Sant Joan de Déu Hospital, University of Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Majid Alfadhel
- Division of Genetics, Department of Pediatrics, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Marta Molero-Luis
- Division of Biochemistry, Sant Joan de Déu Hospital, University of Barcelona, Barcelona, Spain
| | - Niklas Darin
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ronen Spiegel
- Rappaport School of Medicine, Technion, Haifa, Israel; Department of Pediatrics B, Emek Medical Center, Afula, Israel
| | - Irenaeus F de Coo
- Department of Neurology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Mike Gerards
- MaCSBio (Maastricht Centre for Systems Biology), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Robert W Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rafael Artuch
- Institut de Recerca Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Division of Biochemistry, Sant Joan de Déu Hospital, University of Barcelona, Barcelona, Spain
- CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
| | - Marwan Nashabat
- Division of Genetics, Department of Pediatrics, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Pilar Rodríguez-Pombo
- CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
- Departamento de Biología Molecular, Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Centro de Biología Molecular Severo Ochoa CSIC-UAM, IDIPAZ, Universidad Autónoma de Madrid, Madrid, Spain
| | - Brahim Tabarki
- Divisions of Pediatric Neurology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Belén Pérez-Dueñas
- Division of Child Neurology, Sant Joan de Déu Hospital, University of Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
| |
Collapse
|
21
|
Abstract
In this review, we present a survey on Korsakoff's syndrome (KS), a residual syndrome in patients who suffered from a Wernicke encephalopathy (WE) that is predominantly characterized by global amnesia, and in more severe cases also by cognitive and behavioral dysfunction. We describe the history of KS and its definition, its epidemiology, and the lack of consensus criteria for its diagnosis. The cognitive and behavioral symptoms of KS, which include anterograde and retrograde amnesia, executive dysfunction, confabulation, apathy, as well as affective and social-cognitive impairments, are discussed. Moreover, recent insights into the underlying neurocognitive mechanisms of these symptoms are presented. In addition, the evidence so far on the etiology of KS is examined, highlighting the role of thiamine and alcohol and discussing the continuity hypothesis. Furthermore, the neuropathology of KS is reviewed, focusing on abnormalities in the diencephalon, including the mammillary bodies and thalamic nuclei. Pharmacological treatment options and nonpharmacological interventions, such as those based on cognitive rehabilitation, are discussed. Our review shows that thiamine deficiency (TD) is a crucial factor in the etiology of KS. Although alcohol abuse is by far the most important context in which TD occurs, there is no convincing evidence for an essential contribution of ethanol neurotoxicity (EN) to the development of WE or to the progression of WE to KS. Future research on the postmortem histopathological analysis of brain tissues of KS patients is crucial for the advancement of our knowledge of KS, especially for associating its symptoms with lesions in various thalamic nuclei. A necessary requirement for the advancement of studies on KS is the broad acceptance of a comprehensive definition and definite diagnostic criteria. Therefore, in this review, we propose such a definition of KS and draft outlines for prospective diagnostic criteria.
Collapse
Affiliation(s)
- Nicolaas Jm Arts
- Centre of Excellence for Korsakoff and Alcohol-Related Cognitive Disorders, Vincent van Gogh Institute for Psychiatry, Venray.,Neuropsychiatry Center Thalamus, Institution for Integrated Mental Health Care Pro Persona, Wolfheze
| | - Serge Jw Walvoort
- Centre of Excellence for Korsakoff and Alcohol-Related Cognitive Disorders, Vincent van Gogh Institute for Psychiatry, Venray
| | - Roy Pc Kessels
- Centre of Excellence for Korsakoff and Alcohol-Related Cognitive Disorders, Vincent van Gogh Institute for Psychiatry, Venray.,Department of Neuropsychology and Rehabilitation Psychology, Donders Institute for Brain, Cognition and Behaviour, Radboud University.,Department of Medical Psychology, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
22
|
Zahr NM, Pfefferbaum A. Alcohol's Effects on the Brain: Neuroimaging Results in Humans and Animal Models. Alcohol Res 2017; 38:183-206. [PMID: 28988573 PMCID: PMC5513685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Brain imaging technology has allowed researchers to conduct rigorous studies of the dynamic course of alcoholism through periods of drinking, sobriety, and relapse and to gain insights into the effects of chronic alcoholism on the human brain. Magnetic resonance imaging (MRI) studies have distinguished alcohol-related brain effects that are permanent from those that are reversible with abstinence. In support of postmortem neuropathological studies showing degeneration of white matter, MRI studies have shown a specific vulnerability of white matter to chronic alcohol exposure. Such studies have demonstrated white-matter volume deficits as well as damage to selective gray-matter structures. Diffusion tensor imaging (DTI), by permitting microstructural characterization of white matter, has extended MRI findings in alcoholics. MR spectroscopy (MRS) allows quantification of several metabolites that shed light on brain biochemical alterations caused by alcoholism. This article focuses on MRI, DTI, and MRS findings in neurological disorders that commonly co-occur with alcoholism, including Wernicke's encephalopathy, Korsakoff's syndrome, and hepatic encephalopathy. Also reviewed are neuroimaging findings in animal models of alcoholism and related neurological disorders. This report also suggests that the dynamic course of alcoholism presents a unique opportunity to examine brain structural and functional repair and recovery.
Collapse
Affiliation(s)
- Natalie M Zahr
- Natalie M. Zahr, Ph.D., is a Research Scientist in the Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; and Program Director of Translational Imaging, Neuroscience Program, SRI International, Menlo Park, California. Adolf Pfefferbaum, M.D., is Professor of Psychiatry and Behavioral Sciences at Stanford University School of Medicine, Stanford, California; and Distinguished Scientist and Center Director of the Neuroscience Program, SRI International, Menlo Park, California
| | - Adolf Pfefferbaum
- Natalie M. Zahr, Ph.D., is a Research Scientist in the Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; and Program Director of Translational Imaging, Neuroscience Program, SRI International, Menlo Park, California. Adolf Pfefferbaum, M.D., is Professor of Psychiatry and Behavioral Sciences at Stanford University School of Medicine, Stanford, California; and Distinguished Scientist and Center Director of the Neuroscience Program, SRI International, Menlo Park, California
| |
Collapse
|
23
|
Lipids and Oxidative Stress Associated with Ethanol-Induced Neurological Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1543809. [PMID: 26949445 PMCID: PMC4753689 DOI: 10.1155/2016/1543809] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 12/10/2015] [Accepted: 12/13/2015] [Indexed: 12/17/2022]
Abstract
The excessive intake of alcohol is a serious public health problem, especially given the severe damage provoked by chronic or prenatal exposure to alcohol that affects many physiological processes, such as memory, motor function, and cognitive abilities. This damage is related to the ethanol oxidation in the brain. The metabolism of ethanol to acetaldehyde and then to acetate is associated with the production of reactive oxygen species that accentuate the oxidative state of cells. This metabolism of ethanol can induce the oxidation of the fatty acids in phospholipids, and the bioactive aldehydes produced are known to be associated with neurotoxicity and neurodegeneration. As such, here we will review the role of lipids in the neuronal damage induced by ethanol-related oxidative stress and the role that lipids play in the related compensatory or defense mechanisms.
Collapse
|
24
|
Zahr NM, Alt C, Mayer D, Rohlfing T, Manning-Bog A, Luong R, Sullivan EV, Pfefferbaum A. Associations between in vivo neuroimaging and postmortem brain cytokine markers in a rodent model of Wernicke's encephalopathy. Exp Neurol 2014; 261:109-19. [PMID: 24973622 PMCID: PMC4194214 DOI: 10.1016/j.expneurol.2014.06.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/13/2014] [Accepted: 06/17/2014] [Indexed: 02/03/2023]
Abstract
Thiamine (vitamin B1) deficiency, associated with a variety of conditions, including chronic alcoholism and bariatric surgery for morbid obesity, can result in the neurological disorder Wernicke's encephalopathy (WE). Recent work building upon early observations in animal models of thiamine deficiency has demonstrated an inflammatory component to the neuropathology observed in thiamine deficiency. The present, multilevel study including in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS) and postmortem quantification of chemokine and cytokine proteins sought to determine whether a combination of these in vivo neuroimaging tools could be used to characterize an in vivo MR signature for neuroinflammation. Thiamine deficiency for 12days was used to model neuroinflammation; glucose loading in thiamine deficiency was used to accelerate neurodegeneration. Among 38 animals with regional brain tissue assayed postmortem for cytokine/chemokine protein levels, three groups of rats (controls+glucose, n=6; pyrithiamine+saline, n=5; pyrithiamine+glucose, n=13) underwent MRI/MRS at baseline (time 1), after 12days of treatment (time 2), and 3h after challenge (glucose or saline, time 3). In the thalamus of glucose-challenged, thiamine deficient animals, correlations between in vivo measures of pathology (lower levels of N-acetyle aspartate and higher levels of lactate) and postmortem levels of monocyte chemotactic protein-1 (MCP-1, also known as chemokine ligand 2, CCL2) support a role for this chemokine in thiamine deficiency-related neurodegeneration, but do not provide a unique in vivo signature for neuroinflammation.
Collapse
Affiliation(s)
- Natalie M Zahr
- Psychiatry & Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA 94305, USA; Neuroscience Program, SRI International, Menlo Park, CA 94025, USA.
| | - Carsten Alt
- Immunology Program, SRI International, Menlo Park, CA 94025, USA; Palo Alto Institute for Research and Education, Palo Alto, CA 94304, USA
| | - Dirk Mayer
- Psychiatry & Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA 94305, USA; Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Torsten Rohlfing
- Neuroscience Program, SRI International, Menlo Park, CA 94025, USA
| | - Amy Manning-Bog
- Neuroscience Program, SRI International, Menlo Park, CA 94025, USA
| | - Richard Luong
- Department of Comparative Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Edwards R321, Stanford, CA 94305, USA
| | - Edith V Sullivan
- Psychiatry & Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA 94305, USA
| | - Adolf Pfefferbaum
- Psychiatry & Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA 94305, USA; Neuroscience Program, SRI International, Menlo Park, CA 94025, USA
| |
Collapse
|
25
|
Vernau K, Napoli E, Wong S, Ross-Inta C, Cameron J, Bannasch D, Bollen A, Dickinson P, Giulivi C. Thiamine Deficiency-Mediated Brain Mitochondrial Pathology in Alaskan Huskies with Mutation in SLC19A3.1. Brain Pathol 2014; 25:441-53. [PMID: 25117056 DOI: 10.1111/bpa.12188] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/05/2014] [Indexed: 02/05/2023] Open
Abstract
Alaskan Husky encephalopathy (AHE(1) ) is a fatal brain disease associated with a mutation in SLC19A3.1 (c.624insTTGC, c.625C>A). This gene encodes for a thiamine transporter 2 with a predominately (CNS) central nervous system distribution. Considering that brain is particularly vulnerable to thiamine deficiency because of its reliance on thiamine pyrophosphate (TPP)-dependent metabolic pathways involved in energy metabolism and neurotransmitter synthesis, we characterized the impact of this mutation on thiamine status, brain bioenergetics and the contribution of oxidative stress to this phenotype. In silico modeling of the mutated transporter indicated a significant loss of alpha-helices resulting in a more open protein structure suggesting an impaired thiamine transport ability. The cerebral cortex and thalamus of affected dogs were severely deficient in TPP-dependent enzymes accompanied by decreases in mitochondrial mass and oxidative phosphorylation (OXPHOS) capacity, and increases in oxidative stress. These results along with the behavioral and pathological findings indicate that the phenotype associated with AHE is consistent with a brain-specific thiamine deficiency, leading to brain mitochondrial dysfunction and increased oxidative stress. While some of the biochemical deficits, neurobehavior and affected brain areas in AHE were shared by Wernicke's and Korsakoff's syndromes, several differences were noted likely arising from a tissue-specific vs. that from a whole-body thiamine deficiency.
Collapse
Affiliation(s)
- Karen Vernau
- Department of Surgical and Radiological Sciences, University of California Davis, Toronto, Ontario, Canada
| | - Eleonora Napoli
- Molecular Biosciences, University of California Davis, Toronto, Ontario, Canada
| | - Sarah Wong
- Molecular Biosciences, University of California Davis, Toronto, Ontario, Canada
| | - Catherine Ross-Inta
- Molecular Biosciences, University of California Davis, Toronto, Ontario, Canada
| | - Jessie Cameron
- Department of Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Danika Bannasch
- Pathology, Microbiology and Immunology, University of California Davis, Sacramento, CA
| | - Andrew Bollen
- Department of Pathology and Laboratory Medicine, University of California San Francisco
| | - Peter Dickinson
- Department of Surgical and Radiological Sciences, University of California Davis, Toronto, Ontario, Canada
| | - Cecilia Giulivi
- Molecular Biosciences, University of California Davis, Toronto, Ontario, Canada.,Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, Sacramento, CA
| |
Collapse
|
26
|
Thiamine deficiency induces anorexia by inhibiting hypothalamic AMPK. Neuroscience 2014; 267:102-13. [PMID: 24607345 DOI: 10.1016/j.neuroscience.2014.02.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/08/2014] [Accepted: 02/21/2014] [Indexed: 01/26/2023]
Abstract
Obesity and eating disorders are prevailing health concerns worldwide. It is important to understand the regulation of food intake and energy metabolism. Thiamine (vitamin B1) is an essential nutrient. Thiamine deficiency (TD) can cause a number of disorders in humans, such as Beriberi and Wernicke-Korsakoff syndrome. We demonstrated here that TD caused anorexia in C57BL/6 mice. After feeding a TD diet for 16days, the mice displayed a significant decrease in food intake and an increase in resting energy expenditure (REE), which resulted in a severe weight loss. At the 22nd day, the food intake was reduced by 69% and 74% for male and female mice, respectively in TD group. The REE increased by ninefolds in TD group. The loss of body weight (17-24%) was similar between male and female animals and mainly resulted from the reduction of fat mass (49% decrease). Re-supplementation of thiamine (benfotiamine) restored animal's appetite, leading to a total recovery of body weight. The hypothalamic adenosine monophosphate-activated protein kinase (AMPK) is a critical regulator of food intake. TD inhibited the phosphorylation of AMPK in the arcuate nucleus (ARN) and paraventricular nucleus (PVN) of the hypothalamus without affecting its expression. TD-induced inhibition of AMPK phosphorylation was reversed once thiamine was re-supplemented. In contrast, TD increased AMPK phosphorylation in the skeletal muscle and upregulated the uncoupling protein (UCP)-1 in brown adipose tissues which was consistent with increased basal energy expenditure. Re-administration of thiamine stabilized AMPK phosphorylation in the skeletal muscle as well as energy expenditure. Taken together, TD may induce anorexia by inhibiting hypothalamic AMPK activity. With a simultaneous increase in energy expenditure, TD caused an overall body weight loss. The results suggest that the status of thiamine levels in the body may affect food intake and body weight.
Collapse
|
27
|
Hall JM, Vetreno RP, Savage LM. Differential cortical neurotrophin and cytogenetic adaptation after voluntary exercise in normal and amnestic rats. Neuroscience 2014; 258:131-46. [PMID: 24215977 PMCID: PMC3947177 DOI: 10.1016/j.neuroscience.2013.10.075] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/30/2013] [Accepted: 10/30/2013] [Indexed: 11/23/2022]
Abstract
Voluntary exercise (VEx) has profound effects on neural and behavioral plasticity, including recovery of CNS trauma and disease. However, the unique regional cortical adaption to VEx has not been elucidated. In a series of experiments, we first examined whether VEx would restore and retain neurotrophin levels in several cortical regions (frontal cortex [FC], retrosplenial cortex [RSC], occipital cortex [OC]) in an animal model (pyrithiamine-induced thiamine deficiency [PTD]) of the amnestic disorder Wernicke-Korsakoff syndrome. In addition, we assessed the time-dependent effect of VEx to rescue performance on a spontaneous alternation task. Following 2-weeks of VEx or stationary housing conditions (Stat), rats were behaviorally tested and brains were harvested either the day after VEx (24-h) or after an additional 2-week period (2-wk). In both control pair-fed (PF) rats and PTD rats, all neurotrophin levels (brain-derived neurotrophic factor [BDNF], nerve growth factor [NGF], and vascular endothelial growth factor) increased at the 24-h period after VEx in the FC and RSC, but not OC. Two-weeks following VEx, BDNF remained elevated in both FC and RSC, whereas NGF remained elevated in only the FC. Interestingly, VEx only recovered cognitive performance in amnestic rats when there was an additional 2-wk adaptation period after VEx. Given this unique temporal profile, Experiment 2 examined the cortical cytogenetic responses in all three cortical regions following a 2-wk adaptation period after VEx. In healthy (PF) rats, VEx increased the survival of progenitor cells in both the FC and RSC, but only increased oligodendrocyte precursor cells (OLPs) in the FC. Furthermore, VEx had a selective effect of only recovering OLPs in the FC in PTD rats. These data reveal the therapeutic potential of exercise to restore cortical plasticity in the amnestic brain, and that the FC is one of the most responsive cortical regions to VEx.
Collapse
Affiliation(s)
- J M Hall
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, United States
| | - R P Vetreno
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, United States
| | - L M Savage
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, United States.
| |
Collapse
|
28
|
Beh SC, Frohman TC, Frohman EM. Isolated mammillary body involvement on MRI in Wernicke's encephalopathy. J Neurol Sci 2013; 334:172-5. [DOI: 10.1016/j.jns.2013.07.2516] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 07/24/2013] [Accepted: 07/26/2013] [Indexed: 10/26/2022]
|
29
|
Qin L, Crews FT. Focal thalamic degeneration from ethanol and thiamine deficiency is associated with neuroimmune gene induction, microglial activation, and lack of monocarboxylic acid transporters. Alcohol Clin Exp Res 2013; 38:657-71. [PMID: 24117525 PMCID: PMC3959259 DOI: 10.1111/acer.12272] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 08/12/2013] [Indexed: 12/19/2022]
Abstract
Background Wernicke's encephalopathy-Korsakoff syndrome (WE-KS) is common in alcoholics, caused by thiamine deficiency (TD; vitamin B1) and associated with lesions to the thalamus (THAL). Although TD alone can cause WE, the high incidence in alcoholism suggests that TD and ethanol (EtOH) interact. Methods Mice in control, TD, or EtOH groups alone or combined were studied after 5 or 10 days of treatment. THAL and entorhinal cortex (ENT) histochemistry and mRNA were assessed. Results Combined EtOH-TD treatment for 5 days (EtOH-TD5) showed activated microglia, proinflammatory gene induction and THAL neurodegeneration that was greater than that found with TD alone (TD5), whereas 10 days resulted in marked THAL degeneration and microglial-neuroimmune activation in both groups. In contrast, 10 days of TD did not cause ENT degeneration. Interestingly, in ENT, TD10 activated microglia and astrocytes more than EtOH-TD10. In THAL, multiple astrocytic markers were lost consistent with glial cell loss. TD blocks glucose metabolism more than acetate. Acetate derived from hepatic EtOH metabolism is transported by monocarboxylic acid transporters (MCT) into both neurons and astrocytes that use acetyl-CoA synthetase (AcCoAS) to generate cellular energy from acetate. MCT and AcCoAS expression in THAL is lower than ENT prompting the hypothesis that focal THAL degeneration is related to insufficient MCT and AcCoAS in THAL. To test this hypothesis, we administered glycerin triacetate (GTA) to increase blood acetate and found it protected the THAL from TD-induced degeneration. Conclusions Our findings suggest that EtOH potentiates TD-induced THAL degeneration through neuroimmune gene induction. The findings support the hypothesis that TD deficiency inhibits global glucose metabolism and that a reduced ability to process acetate for cellular energy results in THAL focal degeneration in alcoholics contributing to the high incidence of Wernicke-Korsakoff syndrome in alcoholism.
Collapse
Affiliation(s)
- Liya Qin
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | |
Collapse
|
30
|
Wijnia JW, Oudman E. Biomarkers of delirium as a clue to diagnosis and pathogenesis of Wernicke-Korsakoff syndrome. Eur J Neurol 2013; 20:1531-8. [PMID: 23790077 DOI: 10.1111/ene.12217] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 05/16/2013] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND PURPOSE Wernicke's encephalopathy (WE) and Korsakoff's syndrome are considered to be different stages of the same disorder due to thiamine deficiency, which is called Wernicke-Korsakoff syndrome (WKS). The earliest biochemical change is the decrease of α-ketoglutarate-dehydrogenase activity in astrocytes. According to autopsy-based series, mental status changes are present in 82% of WE cases. The objective of the present review is to identify possible underlying mechanisms relating the occurrence of delirium to WKS. METHODS Studies involving delirium in WKS, however, are rare. Therefore, first, a search was done for candidate biomarkers of delirium irrespective of the clinical setting. Secondly, the results were focused on identification of these biomarkers in reports on WKS. RESULTS In various settings, 10 biochemical and/or genetic biomarkers showed strong associations with the occurrence of delirium. For WKS three of these candidate biomarkers were identified, namely brain tissue cell counts of CD68 positive cells as a marker of microglial activation, high cerebrospinal fluid lactate levels, and MHPG, a metabolite of norepinephrine. Based on current literature, markers of microglial activation may present an interesting patho-etiological relationship between thiamine deficiency and delirium in WKS. CONCLUSIONS In WKS cases, changes in astroglia and microglial proliferation were reported. The possible loss-of-function mechanisms following thiamine deficiency in WKS are proposed to come from microglial activation, resulting in a delirium in the initial phase of WKS.
Collapse
Affiliation(s)
- J W Wijnia
- Lelie Care Group, Slingedael Korsakoff Centre, Rotterdam, The Netherlands
| | | |
Collapse
|
31
|
Oscar-Berman M. Function and dysfunction of prefrontal brain circuitry in alcoholic Korsakoff's syndrome. Neuropsychol Rev 2012; 22:154-69. [PMID: 22538385 PMCID: PMC3681949 DOI: 10.1007/s11065-012-9198-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 04/04/2012] [Indexed: 10/28/2022]
Abstract
The signature symptom of alcohol-induced persisting amnestic disorder, more commonly referred to as alcoholic Korsakoff's syndrome (KS), is anterograde amnesia, or memory loss for recent events, and until the mid 20th Century, the putative brain damage was considered to be in diencephalic and medial temporal lobe structures. Overall intelligence, as measured by standardized IQ tests, usually remains intact. Preservation of IQ occurs because memories formed before the onset of prolonged heavy drinking--the types of information and abilities tapped by intelligence tests--remain relatively well preserved compared with memories recently acquired. However, clinical and experimental evidence has shown that neurobehavioral dysfunction in alcoholic patients with KS does include nonmnemonic abilities, and further brain damage involves extensive frontal and limbic circuitries. Among the abnormalities are confabulation, disruption of elements of executive functioning and cognitive control, and emotional impairments. Here, we discuss the relationship between neurobehavioral impairments in KS and alcoholism-related brain damage. More specifically, we examine the role of damage to prefrontal brain systems in the neuropsychological profile of alcoholic KS.
Collapse
Affiliation(s)
- Marlene Oscar-Berman
- Department of Neurology and Division of Psychiatry, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
32
|
Fama R, Pitel AL, Sullivan EV. Anterograde episodic memory in Korsakoff syndrome. Neuropsychol Rev 2012; 22:93-104. [PMID: 22644546 PMCID: PMC4724416 DOI: 10.1007/s11065-012-9207-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 05/09/2012] [Indexed: 12/22/2022]
Abstract
A profound anterograde memory deficit for information, regardless of the nature of the material, is the hallmark of Korsakoff syndrome, an amnesic condition resulting from severe thiamine (vitamin B1) deficiency. Since the late nineteenth century when the Russian physician, S. S. Korsakoff, initially described this syndrome associated with "polyneuropathy," the observed global amnesia has been a primary focus of neuroscience and neuropsychology. In this review we highlight the historical studies that examined anterograde episodic memory processes in KS, present a timeline and evidence supporting the myriad theories proffered to account for this memory dysfunction, and summarize what is known about the neuroanatomical correlates and neural systems presumed affected in KS. Rigorous study of KS amnesia and associated memory disorders of other etiologies provide evidence for distinct mnemonic component processes and neural networks imperative for normal declarative and nondeclarative memory abilities and for mnemonic processes spared in KS, from whence emerged the appreciation that memory is not a unitary function. Debate continues regarding the qualitative and quantitative differences between KS and other amnesias and what brain regions and neural pathways are necessary and sufficient to produce KS amnesia.
Collapse
Affiliation(s)
- Rosemary Fama
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine (MC5723), 401 Quarry Road, Stanford, CA 94305-5723, USA.
| | | | | |
Collapse
|
33
|
Jung YC, Chanraud S, Sullivan EV. Neuroimaging of Wernicke's encephalopathy and Korsakoff's syndrome. Neuropsychol Rev 2012; 22:170-80. [PMID: 22577003 PMCID: PMC4728174 DOI: 10.1007/s11065-012-9203-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 04/23/2012] [Indexed: 11/27/2022]
Abstract
There is considerable evidence that neuroimaging findings can improve the early diagnosis of Wernicke's encephalopathy (WE) in clinical settings. The most distinctive neuroimaging finding of acute WE are cytotoxic edema and vasogenic edema, which are represented by bilateral symmetric hyperintensity alterations on T2-weighted MR images in the periphery of the third ventricle, periaqueductal area, mammillary bodies and midbrain tectal plate. An initial bout of WE can result in Korsakoff's syndrome (KS), but repeated bouts in conjunction with its typical comorbidity, chronic alcoholism, can result in signs of tissue degeneration in vulnerable brain regions. Chronic abnormalities identified with neuroimaging enable examination of brain damage in living patients with KS and have expanded the understanding of the neuropsychological deficits resulting from thiamine deficiency, alcohol neurotoxicity, and their comorbidity. Brain structure and functional studies indicate that the interactions involving the thalamus, mammillary bodies, hippocampus, frontal lobes, and cerebellum are crucial for memory formation and executive functions, and the interruption of these circuits by WE and chronic alcoholism can contribute substantially to the neuropsychological deficits in KS.
Collapse
Affiliation(s)
- Young-Chul Jung
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, South Korea.
| | | | | |
Collapse
|
34
|
Savage LM, Hall JM, Resende LS. Translational rodent models of Korsakoff syndrome reveal the critical neuroanatomical substrates of memory dysfunction and recovery. Neuropsychol Rev 2012; 22:195-209. [PMID: 22528861 PMCID: PMC5113815 DOI: 10.1007/s11065-012-9194-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/14/2012] [Indexed: 01/01/2023]
Abstract
Investigation of the amnesic disorder Korsakoff Syndrome (KS) has been vital in elucidating the critical brain regions involved in learning and memory. Although the thalamus and mammillary bodies are the primary sites of neuropathology in KS, functional deactivation of the hippocampus and certain cortical regions also contributes to the chronic cognitive dysfunction reported in KS. The rodent pyrithiamine-induced thiamine deficiency (PTD) model has been used to study the extent of hippocampal and cortical neuroadaptations in KS. In the PTD model, the hippocampus, frontal and retrosplenial cortical regions display loss of cholinergic innervation, decreases in behaviorally stimulated acetylcholine release and reductions in neurotrophins. While PTD treatment results in significant impairment in measures of spatial learning and memory, other cognitive processes are left intact and may be recruited to improve cognitive outcome. In addition, behavioral recovery can be stimulated in the PTD model by increasing acetylcholine levels in the medial septum, hippocampus and frontal cortex, but not in the retrosplenial cortex. These data indicate that although the hippocampus and frontal cortex are involved in the pathogenesis of KS, these regions retain neuroplasticity and may be critical targets for improving cognitive outcome in KS.
Collapse
Affiliation(s)
- Lisa M Savage
- Behavioral Neuroscience Program, Department of Psychology, State University of New York at Binghamton, Binghamton, NY 13902, USA.
| | | | | |
Collapse
|
35
|
Resende LS, Ribeiro AM, Werner D, Hall JM, Savage LM. Thiamine deficiency degrades the link between spatial behavior and hippocampal synapsin I and phosphorylated synapsin I protein levels. Behav Brain Res 2012; 232:421-5. [PMID: 22507301 DOI: 10.1016/j.bbr.2012.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 04/01/2012] [Accepted: 04/03/2012] [Indexed: 01/07/2023]
Abstract
The links between spatial behavior and hippocampal levels of synapsin I and phosphosynapsin I were assessed in normal rats and in the pyrithiamine-induced thiamine deficiency (PTD) rat model of Wernicke-Korsakoff's syndrome. Synapsin I tethers small synaptic vesicles to the actin cytoskeleton in a phosphorylation-dependent manner, is involved in neurotransmitter release and has been implicated in hippocampal-dependent learning. Positive correlations between spontaneous alternation behavior and hippocampal levels of both synapsin I and phosphorylated synapsin I were found in control rats. However, spontaneous alternation performance was impaired in PTD rats and was accompanied by a significant reduction (30%) in phosphorylated synapsin I. Furthermore, no correlations were observed between either form of synapsin I and behavior in PTD rats. These data suggest that successful spontaneous alternation performance is related to high levels of hippocampal synapsin I and phosphorylated synapsin I. These results not only support the previous findings that implicate impaired hippocampal neurotransmission in the spatial learning and memory deficits associated with thiamine deficiency, but also suggest a presynaptic mechanism.
Collapse
Affiliation(s)
- Leticia S Resende
- Programa de Pós-graduação em Neurociências, Laboratório de Neurociência Comportamental e Molecular, LaNeC, Universidade Federal de Minas Gerais, Belo Horizonte 31270-010, Brazil
| | | | | | | | | |
Collapse
|