1
|
Akaree N, Secco V, Levy-Adam F, Younis A, Carra S, Shalgi R. Regulation of physiological and pathological condensates by molecular chaperones. FEBS J 2025. [PMID: 39756021 DOI: 10.1111/febs.17390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/17/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
Biomolecular condensates are dynamic membraneless compartments that regulate a myriad of cellular functions. A particular type of physiological condensate called stress granules (SGs) has gained increasing interest due to its role in the cellular stress response and various diseases. SGs, composed of several hundred RNA-binding proteins, form transiently in response to stress to protect mRNAs from translation and disassemble when the stress subsides. Interestingly, SGs contain several aggregation-prone proteins, such as TDP-43, FUS, hnRNPA1, and others, which are typically found in pathological inclusions seen in autopsy tissues from amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) patients. Moreover, mutations in these genes lead to the familial form of ALS and FTD. This has led researchers to propose that pathological aggregation is seeded by aberrant SGs: SGs that fail to properly disassemble, lose their dynamic properties, and become pathological condensates which finally 'mature' into aggregates. Here, we discuss the evidence supporting this model for various ALS/FTD-associated proteins. We further continue to focus on molecular chaperone-mediated regulation of ALS/FTD-associated physiological condensates on one hand, and pathological condensates on the other. In addition to SGs, we review ALS/FTD-relevant nuclear condensates, namely paraspeckles, anisosomes, and nucleolar amyloid bodies, and discuss their emerging regulation by chaperones. As the majority of chaperoning mechanisms regulate physiological condensate disassembly, we highlight parallel themes of physiological and pathological condensation regulation across different chaperone families, underscoring the potential for early disease intervention.
Collapse
Affiliation(s)
- Nadeen Akaree
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Valentina Secco
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy
| | - Flonia Levy-Adam
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Amal Younis
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy
| | - Reut Shalgi
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
2
|
Ko VI, Ong K, Kwon DY, Li X, Pietrasiewicz A, Harvey JS, Lulla M, Bhat G, Cleveland DW, Ravits JM. CK1δ/ε-mediated TDP-43 phosphorylation contributes to early motor neuron disease toxicity in amyotrophic lateral sclerosis. Acta Neuropathol Commun 2024; 12:187. [PMID: 39633494 PMCID: PMC11619411 DOI: 10.1186/s40478-024-01902-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
Hyperphosphorylated TDP-43 aggregates in the cytoplasm of motor neurons is a neuropathological signature of amyotrophic lateral sclerosis (ALS). These aggregates have been proposed to possess a toxic disease driving role in ALS pathogenesis and progression, however, the contribution of phosphorylation to TDP-43 aggregation and ALS disease mechanisms remains poorly understood. We've previously shown that CK1δ and CK1ε phosphorylate TDP-43 at disease relevant sites, and that genetic reduction and chemical inhibition could reduce phosphorylated TDP-43 (pTDP-43) levels in cellular models. In this study, we advanced our findings into the hTDP-43-ΔNLS in vivo mouse model of ALS and TDP-43 proteinopathy. This mouse model possesses robust disease-relevant features of ALS, including TDP-43 nuclear depletion, cytoplasmic pTDP-43 accumulation, motor behavior deficits, and shortened survival. We tested the effect of homozygous genetic deletion of Csnk1e in the hTDP-43-ΔNLS mouse model and observed a delay in the formation of pTDP-43 without significant ultimate rescue of TDP-43 proteinopathy or disease progression. Homozygous genetic deletion of Csnk1d is lethal in mice, and we were unable to test the role of CK1δ alone. We then targeted both CK1δ and CK1ε kinases by way of CK1δ/ε-selective PF-05236216 inhibitor in the hTDP-43-ΔNLS mouse model, reasoning that inhibiting CK1ε alone would be insufficient as shown by our Csnk1e knockout mouse model study. Treated mice demonstrated reduced TDP-43 phosphorylation, lowered Nf-L levels, and improved survival in the intermediate stages. The soluble TDP-43 may have been more amenable to the inhibitor treatment than insoluble TDP-43. However, the treatments did not result in improved functional measurements or in overall survival. Our results demonstrate that phosphorylation contributes to neuronal toxicity and suggest CK1δ/ε inhibition in combination with other therapies targeting TDP-43 pathology could potentially provide therapeutic benefit in ALS.
Collapse
Affiliation(s)
- Vivian I Ko
- Neuroscience Graduate Program, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA, 92093-0624, USA
- Department of Neurosciences, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA, 92093-0624, USA
| | - Kailee Ong
- Department of Neurosciences, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA, 92093-0624, USA
| | - Deborah Y Kwon
- Neuromuscular & Muscle Disorders, Biogen Inc., 250 Binney Street, Cambridge, MA, 02142, USA
| | - Xueying Li
- Neuromuscular & Muscle Disorders, Biogen Inc., 250 Binney Street, Cambridge, MA, 02142, USA
| | - Alicia Pietrasiewicz
- Drug Metabolism and Pharmacokinetics, Biogen Inc., 250 Binney Street, Cambridge, MA, 02142, USA
| | - James S Harvey
- Biotherapeutics and Medicinal Sciences, Biogen Inc., 250 Binney Street, Cambridge, MA, 02142, USA
| | - Mukesh Lulla
- Drug Metabolism and Pharmacokinetics, Biogen Inc., 250 Binney Street, Cambridge, MA, 02142, USA
| | - Guruharsha Bhat
- Neuromuscular & Muscle Disorders, Biogen Inc., 250 Binney Street, Cambridge, MA, 02142, USA
| | - Don W Cleveland
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0624, USA
| | - John M Ravits
- Department of Neurosciences, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA, 92093-0624, USA.
| |
Collapse
|
3
|
Ko VI, Ong K, Cleveland DW, Yu H, Ravits JM. CK1δ/ε kinases regulate TDP-43 phosphorylation and are therapeutic targets for ALS-related TDP-43 hyperphosphorylation. Neurobiol Dis 2024; 196:106516. [PMID: 38677657 DOI: 10.1016/j.nbd.2024.106516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024] Open
Abstract
Hyperphosphorylated TAR DNA-binding protein 43 (TDP-43) aggregates in the cytoplasm of neurons is the neuropathological hallmark of amyotrophic lateral sclerosis (ALS) and a group of neurodegenerative diseases collectively referred to as TDP-43 proteinopathies that includes frontotemporal dementia, Alzheimer's disease, and limbic onset age-related TDP-43 encephalopathy. The mechanism of TDP-43 phosphorylation is poorly understood. Previously we reported casein kinase 1 epsilon gene (CSNK1E gene encoding CK1ε protein) as being tightly correlated with phosphorylated TDP-43 (pTDP-43) pathology. Here we pursued studies to investigate in cellular models and in vitro how CK1ε and CK1δ (a closely related family sub-member) mediate TDP-43 phosphorylation in disease. We first validated the binding interaction between TDP-43 and either CK1δ and CK1ε using kinase activity assays and predictive bioinformatic database. We utilized novel inducible cellular models that generated translocated phosphorylated TDP-43 (pTDP-43) and cytoplasmic aggregation. Reducing CK1 kinase activity with siRNA or small molecule chemical inhibitors resulted in significant reduction of pTDP-43, in both soluble and insoluble protein fractions. We also established CK1δ and CK1ε are the primary kinases that phosphorylate TDP-43 compared to CK2α, CDC7, ERK1/2, p38α/MAPK14, and TTBK1, other identified kinases that have been implicated in TDP-43 phosphorylation. Throughout our studies, we were careful to examine both the soluble and insoluble TDP-43 protein fractions, the critical protein fractions related to protein aggregation diseases. These results identify CK1s as critical kinases involved in TDP-43 hyperphosphorylation and aggregation in cellular models and in vitro, and in turn are potential therapeutic targets by way of CK1δ/ε inhibitors.
Collapse
Affiliation(s)
- Vivian I Ko
- Neuroscience Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0624, USA; Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0624, USA
| | - Kailee Ong
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0624, USA
| | - Don W Cleveland
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0624, USA
| | - Haiyang Yu
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0624, USA
| | - John M Ravits
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0624, USA.
| |
Collapse
|
4
|
Caldi Gomes L, Hänzelmann S, Hausmann F, Khatri R, Oller S, Parvaz M, Tzeplaeff L, Pasetto L, Gebelin M, Ebbing M, Holzapfel C, Columbro SF, Scozzari S, Knöferle J, Cordts I, Demleitner AF, Deschauer M, Dufke C, Sturm M, Zhou Q, Zelina P, Sudria-Lopez E, Haack TB, Streb S, Kuzma-Kozakiewicz M, Edbauer D, Pasterkamp RJ, Laczko E, Rehrauer H, Schlapbach R, Carapito C, Bonetto V, Bonn S, Lingor P. Multiomic ALS signatures highlight subclusters and sex differences suggesting the MAPK pathway as therapeutic target. Nat Commun 2024; 15:4893. [PMID: 38849340 PMCID: PMC11161513 DOI: 10.1038/s41467-024-49196-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a debilitating motor neuron disease and lacks effective disease-modifying treatments. This study utilizes a comprehensive multiomic approach to investigate the early and sex-specific molecular mechanisms underlying ALS. By analyzing the prefrontal cortex of 51 patients with sporadic ALS and 50 control subjects, alongside four transgenic mouse models (C9orf72-, SOD1-, TDP-43-, and FUS-ALS), we have uncovered significant molecular alterations associated with the disease. Here, we show that males exhibit more pronounced changes in molecular pathways compared to females. Our integrated analysis of transcriptomes, (phospho)proteomes, and miRNAomes also identified distinct ALS subclusters in humans, characterized by variations in immune response, extracellular matrix composition, mitochondrial function, and RNA processing. The molecular signatures of human subclusters were reflected in specific mouse models. Our study highlighted the mitogen-activated protein kinase (MAPK) pathway as an early disease mechanism. We further demonstrate that trametinib, a MAPK inhibitor, has potential therapeutic benefits in vitro and in vivo, particularly in females, suggesting a direction for developing targeted ALS treatments.
Collapse
Affiliation(s)
- Lucas Caldi Gomes
- Technical University of Munich, School of Medicine, rechts der Isar Hospital, Clinical Department of Neurology, Munich, Germany
| | - Sonja Hänzelmann
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Hausmann
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robin Khatri
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sergio Oller
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mojan Parvaz
- Technical University of Munich, School of Medicine, rechts der Isar Hospital, Clinical Department of Neurology, Munich, Germany
| | - Laura Tzeplaeff
- Technical University of Munich, School of Medicine, rechts der Isar Hospital, Clinical Department of Neurology, Munich, Germany
| | - Laura Pasetto
- Research Center for ALS, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marie Gebelin
- Laboratoire de Spectrométrie de Masse Bio-Organique, Université de Strasbourg, Infrastructure Nationale de Protéomique, Strasbourg, France
| | - Melanie Ebbing
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Constantin Holzapfel
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Serena Scozzari
- Research Center for ALS, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Johanna Knöferle
- Technical University of Munich, School of Medicine, rechts der Isar Hospital, Clinical Department of Neurology, Munich, Germany
| | - Isabell Cordts
- Technical University of Munich, School of Medicine, rechts der Isar Hospital, Clinical Department of Neurology, Munich, Germany
| | - Antonia F Demleitner
- Technical University of Munich, School of Medicine, rechts der Isar Hospital, Clinical Department of Neurology, Munich, Germany
| | - Marcus Deschauer
- Technical University of Munich, School of Medicine, rechts der Isar Hospital, Clinical Department of Neurology, Munich, Germany
| | - Claudia Dufke
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Marc Sturm
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Qihui Zhou
- German Center for Neurodegenerative Diseases (DZNE), München, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Pavol Zelina
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Emma Sudria-Lopez
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Center for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Sebastian Streb
- Functional Genomics Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | | | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE), München, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Endre Laczko
- Functional Genomics Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - Hubert Rehrauer
- Functional Genomics Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - Ralph Schlapbach
- Functional Genomics Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse Bio-Organique, Université de Strasbourg, Infrastructure Nationale de Protéomique, Strasbourg, France
| | - Valentina Bonetto
- Research Center for ALS, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Stefan Bonn
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Paul Lingor
- Technical University of Munich, School of Medicine, rechts der Isar Hospital, Clinical Department of Neurology, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), München, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
5
|
Dhakal S, Mondal M, Mirzazadeh A, Banerjee S, Ghosh A, Rangachari V. α-Synuclein emulsifies TDP-43 prion-like domain-RNA liquid droplets to promote heterotypic amyloid fibrils. Commun Biol 2023; 6:1227. [PMID: 38052886 PMCID: PMC10697960 DOI: 10.1038/s42003-023-05608-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023] Open
Abstract
Many neurodegenerative diseases including frontotemporal lobar degeneration (FTLD), Lewy body disease (LBD), multiple system atrophy (MSA), etc., show colocalized deposits of TDP-43 and α-synuclein (αS) aggregates. To understand whether these colocalizations are driven by specific molecular interactions between the two proteins, we previously showed that the prion-like C-terminal domain of TDP-43 (TDP-43PrLD) and αS synergistically interact to form neurotoxic heterotypic amyloids in homogeneous buffer conditions. However, it remains unclear if αS can modulate TDP-43 present within liquid droplets and biomolecular condensates called stress granules (SGs). Here, using cell culture and in vitro TDP-43PrLD - RNA liquid droplets as models along with microscopy, nanoscale AFM-IR spectroscopy, and biophysical analyses, we uncover the interactions of αS with phase-separated droplets. We learn that αS acts as a Pickering agent by forming clusters on the surface of TDP-43PrLD - RNA droplets. The aggregates of αS on these clusters emulsify the droplets by nucleating the formation of heterotypic TDP-43PrLD amyloid fibrils, structures of which are distinct from those derived from homogenous solutions. Together, these results reveal an intriguing property of αS to act as a Pickering agent while interacting with SGs and unmask the hitherto unknown role of αS in modulating TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Shailendra Dhakal
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
- Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Malay Mondal
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
- Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Azin Mirzazadeh
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
- Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Siddhartha Banerjee
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL, 35401, USA
| | - Ayanjeet Ghosh
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL, 35401, USA
| | - Vijayaraghavan Rangachari
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, MS, 39406, USA.
- Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, MS, 39406, USA.
| |
Collapse
|
6
|
Chakraborty P, Zweckstetter M. Role of aberrant phase separation in pathological protein aggregation. Curr Opin Struct Biol 2023; 82:102678. [PMID: 37604044 DOI: 10.1016/j.sbi.2023.102678] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 08/23/2023]
Abstract
Neurodegenerative diseases are associated with the pathological deposition of many different intrinsically disordered proteins or proteins with intrinsically disordered regions. Recent evidence suggests that these proteins can undergo liquid-liquid phase separation and also form membrane-less organelles in cells. Additionally, the biomolecular condensates formed by these proteins may undergo liquid-to-solid phase transition thereby maturating to amyloid fibrils, oligomeric species, or amorphous aggregates and contributing to the pathology of several neurodegenerative diseases. Here we discuss the role of phase separation of the neuronal proteins tau, α-synuclein, fused in sarcoma (FUS), and the transactive response DNA-binding protein of 43 kDa (TDP-43) that are associated with neurodegeneration in the context of pathological protein aggregation.
Collapse
Affiliation(s)
- Pijush Chakraborty
- Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany
| | - Markus Zweckstetter
- Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany.
| |
Collapse
|
7
|
Blazquez S, Sanchez‐Burgos I, Ramirez J, Higginbotham T, Conde MM, Collepardo‐Guevara R, Tejedor AR, Espinosa JR. Location and Concentration of Aromatic-Rich Segments Dictates the Percolating Inter-Molecular Network and Viscoelastic Properties of Ageing Condensates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207742. [PMID: 37386790 PMCID: PMC10477902 DOI: 10.1002/advs.202207742] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/03/2023] [Indexed: 07/01/2023]
Abstract
Maturation of functional liquid-like biomolecular condensates into solid-like aggregates has been linked to the onset of several neurodegenerative disorders. Low-complexity aromatic-rich kinked segments (LARKS) contained in numerous RNA-binding proteins can promote aggregation by forming inter-protein β-sheet fibrils that accumulate over time and ultimately drive the liquid-to-solid transition of the condensates. Here, atomistic molecular dynamics simulations are combined with sequence-dependent coarse-grained models of various resolutions to investigate the role of LARKS abundance and position within the amino acid sequence in the maturation of condensates. Remarkably, proteins with tail-located LARKS display much higher viscosity over time than those in which the LARKS are placed toward the center. Yet, at very long timescales, proteins with a single LARKS-independently of its location-can still relax and form high viscous liquid condensates. However, phase-separated condensates of proteins containing two or more LARKS become kinetically trapped due to the formation of percolated β-sheet networks that display gel-like behavior. Furthermore, as a work case example, they demonstrate how shifting the location of the LARKS-containing low-complexity domain of FUS protein toward its center effectively precludes the accumulation of β-sheet fibrils in FUS-RNA condensates, maintaining functional liquid-like behavior without ageing.
Collapse
Affiliation(s)
- Samuel Blazquez
- Department of Physical‐ChemistryUniversidad Complutense de MadridAv. Complutense s/nMadrid28040Spain
- Maxwell Centre, Cavendish LaboratoryDepartment of PhysicsUniversity of CambridgeJ J Thomson AvenueCambridgeCB3 0HEUK
| | - Ignacio Sanchez‐Burgos
- Maxwell Centre, Cavendish LaboratoryDepartment of PhysicsUniversity of CambridgeJ J Thomson AvenueCambridgeCB3 0HEUK
| | - Jorge Ramirez
- Department of Chemical EngineeringUniversidad Politécnica de MadridJosé Gutiérrez Abascal 2Madrid28006Spain
| | - Tim Higginbotham
- Maxwell Centre, Cavendish LaboratoryDepartment of PhysicsUniversity of CambridgeJ J Thomson AvenueCambridgeCB3 0HEUK
| | - Maria M. Conde
- Department of Chemical EngineeringUniversidad Politécnica de MadridJosé Gutiérrez Abascal 2Madrid28006Spain
| | - Rosana Collepardo‐Guevara
- Maxwell Centre, Cavendish LaboratoryDepartment of PhysicsUniversity of CambridgeJ J Thomson AvenueCambridgeCB3 0HEUK
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Department of GeneticsUniversity of CambridgeCambridgeCB2 3EH, UK
| | - Andres R. Tejedor
- Maxwell Centre, Cavendish LaboratoryDepartment of PhysicsUniversity of CambridgeJ J Thomson AvenueCambridgeCB3 0HEUK
- Department of Chemical EngineeringUniversidad Politécnica de MadridJosé Gutiérrez Abascal 2Madrid28006Spain
| | - Jorge R. Espinosa
- Department of Physical‐ChemistryUniversidad Complutense de MadridAv. Complutense s/nMadrid28040Spain
- Maxwell Centre, Cavendish LaboratoryDepartment of PhysicsUniversity of CambridgeJ J Thomson AvenueCambridgeCB3 0HEUK
| |
Collapse
|
8
|
Dhakal S, Mondal M, Mirzazadeh A, Banerjee S, Ghosh A, Rangachari V. α-Synuclein emulsifies TDP-43 prion-like domain - RNA liquid droplets to promote heterotypic amyloid fibrils. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554502. [PMID: 37662377 PMCID: PMC10473755 DOI: 10.1101/2023.08.23.554502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Many neurodegenerative diseases including frontotemporal lobar degeneration (FTLD), Lewy body disease (LBD), multiple system atrophy (MSA), etc., show colocalized deposits of TDP-43 and α-synuclein (αS) aggregates. To understand whether these colocalizations are driven by specific molecular interactions between the two proteins, we previously showed that the prion-like C-terminal domain of TDP-43 (TDP-43PrLD) and αS synergistically interact to form neurotoxic heterotypic amyloids in homogeneous buffer conditions. However, it remains unclear whether and how αS modulates TDP-43 present within liquid droplets and biomolecular condensates called stress granules (SGs). Here, using cell culture and in vitro TDP-43PrLD - RNA liquid droplets as models along with microscopy, nanoscale spatially-resolved spectroscopy, and other biophysical analyses, we uncover the interactions of αS with phase-separated droplets. We learn that αS acts as a Pickering agent by forming clusters on the surface of TDP-43PrLD - RNA droplets and emulsifying them. The 'hardening' of the droplets that follow by αS aggregates on the periphery, nucleates the formation of heterotypic TDP-43PrLD amyloid fibrils with structures distinct from those derived from homogenous solutions. Together, these results reveal an intriguing property of αS as a Pickering agent in interacting with SGs and unmask the hitherto unknown role of αS in modulating TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Shailendra Dhakal
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg MS 39406, USA
- Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg MS 39406, USA
| | - Malay Mondal
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg MS 39406, USA
- Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg MS 39406, USA
| | - Azin Mirzazadeh
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg MS 39406, USA
- Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg MS 39406, USA
| | - Siddhartha Banerjee
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL 35401, USA
| | - Ayanjeet Ghosh
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL 35401, USA
| | - Vijayaraghavan Rangachari
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg MS 39406, USA
- Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg MS 39406, USA
| |
Collapse
|
9
|
Li K, Wang Z. lncRNA NEAT1: Key player in neurodegenerative diseases. Ageing Res Rev 2023; 86:101878. [PMID: 36738893 DOI: 10.1016/j.arr.2023.101878] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/09/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Neurodegenerative diseases are the most common causes of disability worldwide. Given their high prevalence, devastating symptoms, and lack of definitive diagnostic tests, there is an urgent need to identify potential biomarkers and new therapeutic targets. Long non-coding RNAs (lncRNAs) have recently emerged as powerful regulatory molecules in neurodegenerative diseases. Among them, lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) has been reported to be upregulated in Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). However, whether this is part of a protective or harmful mechanism is still unclear. This review summarizes our current knowledge of the role of NEAT1 in neurodegenerative diseases and its association with the characteristic aggregation of misfolded proteins: amyloid-β and tau in AD, α-synuclein in PD, mutant huntingtin in HD, and TAR DNA-binding protein-43 fused in sarcoma/translocated in liposarcoma in ALS. The aim of this review is to stimulate further research on more precise and effective treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Kun Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Ziqiang Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China.
| |
Collapse
|
10
|
Shenoy J, Lends A, Berbon M, Bilal M, El Mammeri N, Bertoni M, Saad A, Morvan E, Grélard A, Lecomte S, Theillet FX, Buell AK, Kauffmann B, Habenstein B, Loquet A. Structural polymorphism of the low-complexity C-terminal domain of TDP-43 amyloid aggregates revealed by solid-state NMR. Front Mol Biosci 2023; 10:1148302. [PMID: 37065450 PMCID: PMC10095165 DOI: 10.3389/fmolb.2023.1148302] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Aberrant aggregation of the transactive response DNA-binding protein (TDP-43) is associated with several lethal neurodegenerative diseases, including amyotrophic lateral sclerosis and frontotemporal dementia. Cytoplasmic neuronal inclusions of TDP-43 are enriched in various fragments of the low-complexity C-terminal domain and are associated with different neurotoxicity. Here we dissect the structural basis of TDP-43 polymorphism using magic-angle spinning solid-state NMR spectroscopy in combination with electron microscopy and Fourier-transform infrared spectroscopy. We demonstrate that various low-complexity C-terminal fragments, namely TDP-13 (TDP-43300–414), TDP-11 (TDP-43300–399), and TDP-10 (TDP-43314–414), adopt distinct polymorphic structures in their amyloid fibrillar state. Our work demonstrates that the removal of less than 10% of the low-complexity sequence at N- and C-termini generates amyloid fibrils with comparable macroscopic features but different local structural arrangement. It highlights that the assembly mechanism of TDP-43, in addition to the aggregation of the hydrophobic region, is also driven by complex interactions involving low-complexity aggregation-prone segments that are a potential source of structural polymorphism.
Collapse
Affiliation(s)
- Jayakrishna Shenoy
- University Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Alons Lends
- University Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Mélanie Berbon
- University Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Muhammed Bilal
- University Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Nadia El Mammeri
- University Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Mathilde Bertoni
- University Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Ahmad Saad
- University Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Estelle Morvan
- University Bordeaux, CNRS, INSERM, IECB, UAR 3033, Pessac, France
| | - Axelle Grélard
- University Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Sophie Lecomte
- University Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - François-Xavier Theillet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-surYvette Cedex, France
| | - Alexander K. Buell
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Brice Kauffmann
- University Bordeaux, CNRS, INSERM, IECB, UAR 3033, Pessac, France
| | - Birgit Habenstein
- University Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
- *Correspondence: Birgit Habenstein, ; Antoine Loquet,
| | - Antoine Loquet
- University Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
- *Correspondence: Birgit Habenstein, ; Antoine Loquet,
| |
Collapse
|
11
|
Alessenko AV, Gutner UA, Shupik MA. Involvement of Lipids in the Pathogenesis of Amyotrophic Lateral Sclerosis. Life (Basel) 2023; 13:life13020510. [PMID: 36836867 PMCID: PMC9966871 DOI: 10.3390/life13020510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/26/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive degeneration of upper and lower motor neurons. To study its underlying mechanisms, a variety of models are currently used at the cellular level and in animals with mutations in multiple ALS associated genes, including SOD1, C9ORF72, TDP-43, and FUS. Key mechanisms involved in the disease include excitotoxicity, oxidative stress, mitochondrial dysfunction, neuroinflammatory, and immune reactions. In addition, significant metabolism alterations of various lipids classes, including phospholipids, fatty acids, sphingolipids, and others have been increasingly recognized. Recently, the mechanisms of programmed cell death (apoptosis), which may be responsible for the degeneration of motor neurons observed in the disease, have been intensively studied. In this context, sphingolipids, which are the most important sources of secondary messengers transmitting signals for cell proliferation, differentiation, and apoptosis, are gaining increasing attention in the context of ALS pathogenesis given their role in the development of neuroinflammatory and immune responses. This review describes changes in lipids content and activity of enzymes involved in their metabolism in ALS, both summarizing current evidence from animal models and clinical studies and discussing the potential of new drugs among modulators of lipid metabolism enzymes.
Collapse
|
12
|
Koike Y, Onodera O. Implications of miRNAs dysregulation in amyotrophic lateral sclerosis: Challenging for clinical applications. Front Neurosci 2023; 17:1131758. [PMID: 36895420 PMCID: PMC9989161 DOI: 10.3389/fnins.2023.1131758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/03/2023] [Indexed: 02/23/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the selective degeneration of upper and lower motor neurons. Currently, there are no effective biomarkers and fundamental therapies for this disease. Dysregulation in RNA metabolism plays a critical role in the pathogenesis of ALS. With the contribution of Next Generation Sequencing, the functions of non-coding RNAs (ncRNAs) have gained increasing interests. Especially, micro RNAs (miRNAs), which are tissue-specific small ncRNAs of about 18-25 nucleotides, have emerged as key regulators of gene expression to target multiple molecules and pathways in the central nervous system (CNS). Despite intensive recent research in this field, the crucial links between ALS pathogenesis and miRNAs remain unclear. Many studies have revealed that ALS-related RNA binding proteins (RBPs), such as TAR DNA-binding protein 43 (TDP-43) and fused in sarcoma/translocated in liposarcoma (FUS), regulate miRNAs processing in both the nucleus and cytoplasm. Of interest, Cu2+/Zn2+ superoxide dismutase (SOD1), a non-RBP associated with familial ALS, shows partially similar properties to these RBPs via the dysregulation of miRNAs in the cellular pathway related to ALS. The identification and validation of miRNAs are important to understand the physiological gene regulation in the CNS, and the pathological implications in ALS, leading to a new avenue for early diagnosis and gene therapies. Here, we offer a recent overview regarding the mechanism underlying the functions of multiple miRNAs across TDP-43, FUS, and SOD1 with the context of cell biology, and challenging for clinical applications in ALS.
Collapse
Affiliation(s)
- Yuka Koike
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
13
|
Dash BP, Freischmidt A, Weishaupt JH, Hermann A. Downstream Effects of Mutations in SOD1 and TARDBP Converge on Gene Expression Impairment in Patient-Derived Motor Neurons. Int J Mol Sci 2022; 23:ijms23179652. [PMID: 36077049 PMCID: PMC9456253 DOI: 10.3390/ijms23179652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a progressive and fatal neurodegenerative disease marked by death of motor neurons (MNs) present in the spinal cord, brain stem and motor cortex. Despite extensive research, the reason for neurodegeneration is still not understood. To generate novel hypotheses of putative underlying molecular mechanisms, we used human induced pluripotent stem cell (hiPSCs)-derived motor neurons (MNs) from SOD1- and TARDBP (TDP-43 protein)-mutant-ALS patients and healthy controls to perform high-throughput RNA-sequencing (RNA-Seq). An integrated bioinformatics approach was employed to identify differentially expressed genes (DEGs) and key pathways underlying these familial forms of the disease (fALS). In TDP43-ALS, we found dysregulation of transcripts encoding components of the transcriptional machinery and transcripts involved in splicing regulation were particularly affected. In contrast, less is known about the role of SOD1 in RNA metabolism in motor neurons. Here, we found that many transcripts relevant for mitochondrial function were specifically altered in SOD1-ALS, indicating that transcriptional signatures and expression patterns can vary significantly depending on the causal gene that is mutated. Surprisingly, however, we identified a clear downregulation of genes involved in protein translation in SOD1-ALS suggesting that ALS-causing SOD1 mutations shift cellular RNA abundance profiles to cause neural dysfunction. Altogether, we provided here an extensive profiling of mRNA expression in two ALS models at the cellular level, corroborating the major role of RNA metabolism and gene expression as a common pathomechanism in ALS.
Collapse
Affiliation(s)
- Banaja P. Dash
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany
| | | | - Jochen H. Weishaupt
- Division of Neurodegeneration, Department of Neurology, Mannheim Center for Translational Neurosciences, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock, University Medical Center Rostock, 18147 Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, 18147 Rostock, Germany
- Correspondence: ; Tel.: +49-(0)381-494-9541; Fax: +49-(0)381-494-9542
| |
Collapse
|
14
|
Aida H, Shigeta Y, Harada R. The role of ATP in solubilizing RNA-binding protein fused in sarcoma. Proteins 2022; 90:1606-1612. [PMID: 35297101 DOI: 10.1002/prot.26335] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 12/29/2022]
Abstract
Intrinsically disordered protein (IDP) plays an important role in liquid-liquid phase separation (LLPS). RNA-binding protein fused in sarcoma (FUS) is a well-studied IDP that induces LLPS since its low-complexity core region (FUS-LC-core) is essential for droplet formation through contacts between FUS-LC-cores. Several experimental studies have reported that adenosine triphosphate (ATP) concentrations modulate LLPS-driven droplet formation through the dissolution of FUS. To elucidate the role of ATP in this dissolution, microsecond-order all-atom molecular dynamics (MD) simulations were performed for a crowded system of FUS-LC-cores in the presence of multiple ATP molecules. Our analysis revealed that the adenine group of ATP frequently contacted the FUS-LC-core, and the phosphoric acid group of ATP was exposed to the external solvent, which promoted both hydration and solubilization of FUS.
Collapse
Affiliation(s)
- Hayato Aida
- College of Biological Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ryuhei Harada
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
15
|
Sharma A, Dey P. Novel insights into the structural changes induced by disease-associated mutations in TDP-43: a computational approach. J Biomol Struct Dyn 2022:1-11. [PMID: 35751132 DOI: 10.1080/07391102.2022.2092551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Over the last two decades, the pathogenic aggregation of TAR DNA-binding protein 43 (TDP-43) is found to be strongly associated with several fatal neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTD), etc. While the mutations and truncation in TDP-43 protein have been suggested to be responsible for TDP-43 pathogenesis by accelerating the aggregation process, the effects of these mutations on the bio-mechanism of pathological TDP-43 protein remained poorly understood. Investigating this at the molecular level, we formulized an integrated workflow of molecular dynamic simulation and machine learning models (MD-ML). By performing an extensive structural analysis of three disease-related mutations (i.e., I168A, D169G, and I168A-D169G) in the conserved RNA recognition motifs (RRM1) of TDP-43, we observed that the I168A-D169G double mutant delineates the highest packing of the protein inner core as compared to the other mutations, which may indicate more stability and higher chances of pathogenesis. Moreover, through our MD-ML workflow, we identified the biological descriptors of TDP-43 which includes the interacting residue pairs and individual protein residues that influence the stability of the protein and could be experimentally evaluated to develop potential therapeutic strategies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abhibhav Sharma
- School of Computer and System Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Pinki Dey
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
16
|
Cortical Hyperexcitability in the Driver’s Seat in ALS. CLINICAL AND TRANSLATIONAL NEUROSCIENCE 2022. [DOI: 10.3390/ctn6010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by the degeneration of cortical and spinal motor neurons. With no effective treatment available to date, patients face progressive paralysis and eventually succumb to the disease due to respiratory failure within only a few years. Recent research has revealed the multifaceted nature of the mechanisms and cell types involved in motor neuron degeneration, thereby opening up new therapeutic avenues. Intriguingly, two key features present in both ALS patients and rodent models of the disease are cortical hyperexcitability and hyperconnectivity, the mechanisms of which are still not fully understood. We here recapitulate current findings arguing for cell autonomous and non-cell autonomous mechanisms causing cortical excitation and inhibition imbalance, which is involved in the degeneration of motor neurons in ALS. Moreover, we will highlight recent evidence that strongly indicates a cardinal role for the motor cortex as a main driver and source of the disease, thus arguing for a corticofugal trajectory of the pathology.
Collapse
|
17
|
Chatterjee S, Kan Y, Brzezinski M, Koynov K, Regy RM, Murthy AC, Burke KA, Michels JJ, Mittal J, Fawzi NL, Parekh SH. Reversible Kinetic Trapping of FUS Biomolecular Condensates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104247. [PMID: 34862761 PMCID: PMC8811844 DOI: 10.1002/advs.202104247] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Indexed: 05/13/2023]
Abstract
Formation of membrane-less organelles by self-assembly of disordered proteins can be triggered by external stimuli such as pH, salt, or temperature. These organelles, called biomolecular condensates, have traditionally been classified as liquids, gels, or solids with limited subclasses. Here, the authors show that a thermal trigger can lead to formation of at least two distinct liquid condensed phases of the fused in sarcoma low complexity (FUS LC) domain. Forming FUS LC condensates directly at low temperature leads to formation of metastable, kinetically trapped condensates that show arrested coalescence, escape from which to untrapped condensates can be achieved via thermal annealing. Using experimental and computational approaches, the authors find that molecular structure of interfacial FUS LC in kinetically trapped condensates is distinct (more β-sheet like) compared to untrapped FUS LC condensates. Moreover, molecular motion within kinetically trapped condensates is substantially slower compared to that in untrapped condensates thereby demonstrating two unique liquid FUS condensates. Controlling condensate thermodynamic state, stability, and structure with a simple thermal switch may contribute to pathological protein aggregate stability and provides a facile method to trigger condensate mixing for biotechnology applications.
Collapse
Affiliation(s)
- Sayantan Chatterjee
- Department of Biomedical EngineeringUniversity of Texas at Austin107 W. Dean Keeton Rd.AustinTX78712USA
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Yelena Kan
- Department of Biomedical EngineeringUniversity of Texas at Austin107 W. Dean Keeton Rd.AustinTX78712USA
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
- LUT School of Engineering ScienceLUT UniversityYliopistonkatu 34Lappeenranta53850Finland
| | - Mateusz Brzezinski
- Department of Biomedical EngineeringUniversity of Texas at Austin107 W. Dean Keeton Rd.AustinTX78712USA
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Roshan Mammen Regy
- Artie McFerrin Department of Chemical EngineeringTexas A&M University200 Jack E. Brown Engineering BuildingCollege StationTX77843USA
| | - Anastasia C. Murthy
- Department of Molecular Biology, Cell Biology, and BiochemistryBrown University70 Ship StreetProvidenceRI02912USA
| | - Kathleen A. Burke
- Department of Molecular Biology, Cell Biology, and BiochemistryBrown University70 Ship StreetProvidenceRI02912USA
| | - Jasper J. Michels
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical EngineeringTexas A&M University200 Jack E. Brown Engineering BuildingCollege StationTX77843USA
| | - Nicolas L. Fawzi
- Department of Molecular Biology, Cell Biology, and BiochemistryBrown University70 Ship StreetProvidenceRI02912USA
| | - Sapun H. Parekh
- Department of Biomedical EngineeringUniversity of Texas at Austin107 W. Dean Keeton Rd.AustinTX78712USA
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| |
Collapse
|
18
|
Differential roles for DNAJ isoforms in HTT-polyQ and FUS aggregation modulation revealed by chaperone screens. Nat Commun 2022; 13:516. [PMID: 35082301 PMCID: PMC8792056 DOI: 10.1038/s41467-022-27982-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/28/2021] [Indexed: 12/26/2022] Open
Abstract
Protein aggregation is a hallmark of neurodegeneration. Here, we find that Huntington's disease-related HTT-polyQ aggregation induces a cellular proteotoxic stress response, while ALS-related mutant FUS (mutFUS) aggregation leads to deteriorated proteostasis. Further exploring chaperone function as potential modifiers of pathological aggregation in these contexts, we reveal divergent effects of naturally-occurring chaperone isoforms on different aggregate types. We identify a complex of the full-length (FL) DNAJB14 and DNAJB12, that substantially protects from mutFUS aggregation, in an HSP70-dependent manner. Their naturally-occurring short isoforms, however, do not form a complex, and lose their ability to preclude mutFUS aggregation. In contrast, DNAJB12-short alleviates, while DNAJB12-FL aggravates, HTT-polyQ aggregation. DNAJB14-FL expression increases the mobility of mutFUS aggregates, and restores the deteriorated proteostasis in mutFUS aggregate-containing cells and primary neurons. Our results highlight a maladaptive cellular response to pathological aggregation, and reveal a layer of chaperone network complexity conferred by DNAJ isoforms, in regulation of different aggregate types.
Collapse
|
19
|
Sun Y, Zhang S, Hu J, Tao Y, Xia W, Gu J, Li Y, Cao Q, Li D, Liu C. Molecular structure of an amyloid fibril formed by FUS low-complexity domain. iScience 2022; 25:103701. [PMID: 35036880 PMCID: PMC8749265 DOI: 10.1016/j.isci.2021.103701] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/22/2021] [Accepted: 12/22/2021] [Indexed: 01/25/2023] Open
Abstract
FUS is a multifunctional nuclear protein which undergoes liquid–liquid phase separation in response to stress and DNA damage. Dysregulation of FUS dynamic phase separation leads to formation of pathological fibril closely associated with neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal dementia. In this study, we determined the cryo-EM structure of a cytotoxic fibril formed by the low-complexity (LC) domain of FUS at 2.9 Å resolution. The fibril structure exhibits a new and extensive serpentine fold consisting of three motifs incorporating together via a Tyr triad. FUS LC employs 91 residues to form an enlarged and stable fibril core via hydrophilic interaction and hydrogen bonds, which is distinct from most of previously determined fibrils commonly stabilized by hydrophobic interaction. Our work reveals the structural basis underlying formation of a cytotoxic and thermostable fibril of FUS LC and sheds light on understanding the liquid-to-solid phase transition of FUS in disease. Cryo-EM structure of an amyloid fibril formed by FUS low-complexity (LC) domain FUS LC forms a novel enlarged and thermostable fibril core (FC) involving 91 residues Hydrophilic interaction and hydrogen bonds are essential in FC formation of FUS LC
Collapse
Affiliation(s)
- Yunpeng Sun
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shenqing Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China.,Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiaojiao Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Youqi Tao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China.,Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wencheng Xia
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jinge Gu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yichen Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China.,Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qin Cao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China.,Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China.,Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| |
Collapse
|
20
|
Pampalakis G, Angelis G, Zingkou E, Vekrellis K, Sotiropoulou G. A chemogenomic approach is required for effective treatment of amyotrophic lateral sclerosis. Clin Transl Med 2022; 12:e657. [PMID: 35064780 PMCID: PMC8783349 DOI: 10.1002/ctm2.657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 11/10/2022] Open
Abstract
ALS is a fatal untreatable disease involving degeneration of motor neurons. Μultiple causative genes encoding proteins with versatile functions have been identified indicating that diverse biological pathways lead to ALS. Chemical entities still represent a promising choice to delay ALS progression, attenuate symptoms and/or increase life expectancy, but also gene-based and stem cell-based therapies are in the process of development, and some are tested in clinical trials. Various compounds proved effective in transgenic models overexpressing distinct ALS causative genes unfortunately though, they showed no efficacy in clinical trials. Notably, while animal models provide a uniform genetic background for preclinical testing, ALS patients are not stratified, and the distinct genetic forms of ALS are treated as one group, which could explain the observed discrepancies between treating genetically homogeneous mice and quite heterogeneous patient cohorts. We suggest that chemical entity-genotype correlation should be exploited to guide patient stratification for pharmacotherapy, that is administered drugs should be selected based on the ALS genetic background.
Collapse
Affiliation(s)
- Georgios Pampalakis
- Department of Pharmacology - Pharmacognosy, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Angelis
- Department of Pharmacology - Pharmacognosy, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| | - Eleni Zingkou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| | - Kostas Vekrellis
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Georgia Sotiropoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| |
Collapse
|
21
|
Peggion C, Massimino ML, Bonadio RS, Lia F, Lopreiato R, Cagnin S, Calì T, Bertoli A. Regulation of Endoplasmic Reticulum-Mitochondria Tethering and Ca 2+ Fluxes by TDP-43 via GSK3β. Int J Mol Sci 2021; 22:11853. [PMID: 34769284 PMCID: PMC8584823 DOI: 10.3390/ijms222111853] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondria-ER contacts (MERCs), tightly regulated by numerous tethering proteins that act as molecular and functional connections between the two organelles, are essential to maintain a variety of cellular functions. Such contacts are often compromised in the early stages of many neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS). TDP-43, a nuclear protein mainly involved in RNA metabolism, has been repeatedly associated with ALS pathogenesis and other neurodegenerative diseases. Although TDP-43 neuropathological mechanisms are still unclear, the accumulation of the protein in cytoplasmic inclusions may underlie a protein loss-of-function effect. Accordingly, we investigated the impact of siRNA-mediated TDP-43 silencing on MERCs and the related cellular parameters in HeLa cells using GFP-based probes for MERCs quantification and aequorin-based probes for local Ca2+ measurements, combined with targeted protein and mRNA profiling. Our results demonstrated that TDP-43 down-regulation decreases MERCs density, thereby remarkably reducing mitochondria Ca2+ uptake after ER Ca2+ release. Thorough mRNA and protein analyses did not highlight altered expression of proteins involved in MERCs assembly or Ca2+-mediated ER-mitochondria cross-talk, nor alterations of mitochondrial density and morphology were observed by confocal microscopy. Further mechanistic inspections, however, suggested that the observed cellular alterations are correlated to increased expression/activity of GSK3β, previously associated with MERCs disruption.
Collapse
Affiliation(s)
- Caterina Peggion
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (F.L.); (R.L.); (T.C.)
| | | | - Raphael Severino Bonadio
- Department of Biology, CRIBI Biotechnology Center, University of Padova, 35131 Padova, Italy; (R.S.B.); (S.C.)
| | - Federica Lia
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (F.L.); (R.L.); (T.C.)
| | - Raffaele Lopreiato
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (F.L.); (R.L.); (T.C.)
| | - Stefano Cagnin
- Department of Biology, CRIBI Biotechnology Center, University of Padova, 35131 Padova, Italy; (R.S.B.); (S.C.)
- CIR-Myo Myology Center, University of Padova, 35131 Padova, Italy
| | - Tito Calì
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (F.L.); (R.L.); (T.C.)
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| | - Alessandro Bertoli
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (F.L.); (R.L.); (T.C.)
- CNR—Neuroscience Institute, 35131 Padova, Italy;
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| |
Collapse
|
22
|
Garaizar A, Espinosa JR. Salt dependent phase behavior of intrinsically disordered proteins from a coarse-grained model with explicit water and ions. J Chem Phys 2021; 155:125103. [PMID: 34598583 DOI: 10.1063/5.0062687] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Multivalent proteins and nucleic acids can self-assemble into biomolecular condensates that contribute to compartmentalize the cell interior. Computer simulations offer a unique view to elucidate the mechanisms and key intermolecular interactions behind the dynamic formation and dissolution of these condensates. In this work, we present a novel approach to include explicit water and salt in sequence-dependent coarse-grained (CG) models for proteins and RNA, enabling the study of biomolecular condensate formation in a salt-dependent manner. Our framework combines a reparameterized version of the HPS protein force field with the monoatomic mW water model and the mW-ion potential for NaCl. We show how our CG model qualitatively captures the experimental radius of the gyration trend of a subset of intrinsically disordered proteins and reproduces the experimental protein concentration and water percentage of the human fused in sarcoma (FUS) low-complexity-domain droplets at physiological salt concentration. Moreover, we perform seeding simulations as a function of salt concentration for two antagonist systems: the engineered peptide PR25 and poly-uridine/poly-arginine mixtures, finding good agreement with their reported in vitro phase behavior with salt concentration in both cases. Taken together, our work represents a step forward towards extending sequence-dependent CG models to include water and salt, and to consider their key role in biomolecular condensate self-assembly.
Collapse
Affiliation(s)
- Adiran Garaizar
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Jorge R Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
23
|
TDP-43 regulates GAD1 mRNA splicing and GABA signaling in Drosophila CNS. Sci Rep 2021; 11:18761. [PMID: 34548578 PMCID: PMC8455590 DOI: 10.1038/s41598-021-98241-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/01/2021] [Indexed: 12/11/2022] Open
Abstract
Alterations in the function of the RNA-binding protein TDP-43 are largely associated with the pathogenesis of amyotrophic lateral sclerosis (ALS), a devastating disease of the human motor system that leads to motoneurons degeneration and reduced life expectancy by molecular mechanisms not well known. In our previous work, we found that the expression levels of the glutamic acid decarboxylase enzyme (GAD1), responsible for converting glutamate to γ-aminobutyric acid (GABA), were downregulated in TBPH-null flies and motoneurons derived from ALS patients carrying mutations in TDP-43, suggesting that defects in the regulation of GAD1 may lead to neurodegeneration by affecting neurotransmitter balance. In this study, we observed that TBPH was required for the regulation of GAD1 pre-mRNA splicing and the levels of GABA in the Drosophila central nervous system (CNS). Interestingly, we discovered that pharmacological treatments aimed to potentiate GABA neurotransmission were able to revert locomotion deficiencies in TBPH-minus flies, revealing novel mechanisms and therapeutic strategies in ALS.
Collapse
|
24
|
Vu L, Ghosh A, Tran C, Tebung WA, Sidibé H, Garcia-Mansfield K, David-Dirgo V, Sharma R, Pirrotte P, Bowser R, Vande Velde C. Defining the Caprin-1 Interactome in Unstressed and Stressed Conditions. J Proteome Res 2021; 20:3165-3178. [PMID: 33939924 PMCID: PMC9083243 DOI: 10.1021/acs.jproteome.1c00016] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cytoplasmic stress granules (SGs) are dynamic foci containing translationally arrested mRNA and RNA-binding proteins (RBPs) that form in response to a variety of cellular stressors. It has been debated that SGs may evolve into cytoplasmic inclusions observed in many neurodegenerative diseases. Recent studies have examined the SG proteome by interrogating the interactome of G3BP1. However, it is widely accepted that multiple baits are required to capture the full SG proteome. To gain further insight into the SG proteome, we employed immunoprecipitation coupled with mass spectrometry of endogenous Caprin-1, an RBP implicated in mRNP granules. Overall, we identified 1543 proteins that interact with Caprin-1. Interactors under stressed conditions were primarily annotated to the ribosome, spliceosome, and RNA transport pathways. We validated four Caprin-1 interactors that localized to arsenite-induced SGs: ANKHD1, TALIN-1, GEMIN5, and SNRNP200. We also validated these stress-induced interactions in SH-SY5Y cells and further determined that SNRNP200 also associated with osmotic- and thermal-induced SGs. Finally, we identified SNRNP200 in cytoplasmic aggregates in amyotrophic lateral sclerosis (ALS) spinal cord and motor cortex. Collectively, our findings provide the first description of the Caprin-1 protein interactome, identify novel cytoplasmic SG components, and reveal a SG protein in cytoplasmic aggregates in ALS patient neurons. Proteomic data collected in this study are available via ProteomeXchange with identifier PXD023271.
Collapse
Affiliation(s)
- Lucas Vu
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Asmita Ghosh
- Department of Neurosciences, Université de Montréal, Montreal, QC, Canada
- CHUM Research Center, Montréal, QC, Canada
| | - Chelsea Tran
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Walters Aji Tebung
- Department of Neurosciences, Université de Montréal, Montreal, QC, Canada
- CHUM Research Center, Montréal, QC, Canada
| | - Hadjara Sidibé
- Department of Neurosciences, Université de Montréal, Montreal, QC, Canada
- CHUM Research Center, Montréal, QC, Canada
| | - Krystine Garcia-Mansfield
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Victoria David-Dirgo
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Ritin Sharma
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Patrick Pirrotte
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Robert Bowser
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Christine Vande Velde
- Department of Neurosciences, Université de Montréal, Montreal, QC, Canada
- CHUM Research Center, Montréal, QC, Canada
| |
Collapse
|
25
|
Anderson EN, Morera AA, Kour S, Cherry JD, Ramesh N, Gleixner A, Schwartz JC, Ebmeier C, Old W, Donnelly CJ, Cheng JP, Kline AE, Kofler J, Stein TD, Pandey UB. Traumatic injury compromises nucleocytoplasmic transport and leads to TDP-43 pathology. eLife 2021; 10:e67587. [PMID: 34060470 PMCID: PMC8169113 DOI: 10.7554/elife.67587] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is a predisposing factor for many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), and chronic traumatic encephalopathy (CTE). Although defects in nucleocytoplasmic transport (NCT) is reported ALS and other neurodegenerative diseases, whether defects in NCT occur in TBI remains unknown. We performed proteomic analysis on Drosophila exposed to repeated TBI and identified resultant alterations in several novel molecular pathways. TBI upregulated nuclear pore complex (NPC) and nucleocytoplasmic transport (NCT) proteins as well as alter nucleoporin stability. Traumatic injury disrupted RanGAP1 and NPC protein distribution in flies and a rat model and led to coaggregation of NPC components and TDP-43. In addition, trauma-mediated NCT defects and lethality are rescued by nuclear export inhibitors. Importantly, genetic upregulation of nucleoporins in vivo and in vitro triggered TDP-43 cytoplasmic mislocalization, aggregation, and altered solubility and reduced motor function and lifespan of animals. We also found NUP62 pathology and elevated NUP62 concentrations in postmortem brain tissues of patients with mild or severe CTE as well as co-localization of NUP62 and TDP-43 in CTE. These findings indicate that TBI leads to NCT defects, which potentially mediate the TDP-43 pathology in CTE.
Collapse
Affiliation(s)
- Eric N Anderson
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical CenterPittsburghUnited States
| | - Andrés A Morera
- Department of Chemistry and Biochemistry, University of ArizonaTucsonUnited States
| | - Sukhleen Kour
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical CenterPittsburghUnited States
| | - Jonathan D Cherry
- Department of Pathology and Laboratory Medicine, Boston University School of MedicineBostonUnited States
- Boston VA Healthcare SystemBostonUnited States
| | - Nandini Ramesh
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical CenterPittsburghUnited States
| | - Amanda Gleixner
- Department of Neurobiology, University of Pittsburgh School of MedicinePittsburghUnited States
- LiveLike Lou Center for ALS Research, Brain Institute, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Jacob C Schwartz
- Department of Chemistry and Biochemistry, University of ArizonaTucsonUnited States
| | - Christopher Ebmeier
- Molecular, Cellular & Developmental Biology, University of ColoradoBoulderUnited States
| | - William Old
- Molecular, Cellular & Developmental Biology, University of ColoradoBoulderUnited States
| | - Christopher J Donnelly
- Department of Neurobiology, University of Pittsburgh School of MedicinePittsburghUnited States
- LiveLike Lou Center for ALS Research, Brain Institute, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Jeffrey P Cheng
- Physical Medicine & Rehabilitation; Safar Center for Resuscitation Research, University of PittsburghPittsburghUnited States
| | - Anthony E Kline
- Physical Medicine & Rehabilitation; Safar Center for Resuscitation Research, University of PittsburghPittsburghUnited States
- Center for Neuroscience; Center for the Neural Basis of Cognition; Critical Care Medicine, University of PittsburghPittsburghUnited States
| | - Julia Kofler
- Department of Pathology, University of PittsburghPittsburghUnited States
| | - Thor D Stein
- Department of Pathology and Laboratory Medicine, Boston University School of MedicineBostonUnited States
- Boston VA Healthcare SystemBostonUnited States
| | - Udai Bhan Pandey
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical CenterPittsburghUnited States
- Department of Human Genetics, University of Pittsburgh School of Public HealthPittsburghUnited States
| |
Collapse
|
26
|
Jiao B, Wang M, Feng H, Bao H, Zhang F, Wu H, Wang J, Tang B, Jin P, Shen L. Downregulation of TOP2 modulates neurodegeneration caused by GGGGCC expanded repeats. Hum Mol Genet 2021; 30:893-901. [PMID: 33749734 DOI: 10.1093/hmg/ddab079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/18/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022] Open
Abstract
GGGGCC repeats in a non-coding region of the C9orf72 gene have been identified as a major genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. We previously showed that the GGGGCC expanded repeats alone were sufficient to cause neurodegeneration in Drosophila. Recent evidence indicates that GGGGCC expanded repeats can modify various gene transcriptomes. To determine the role of these genes in GGGGCC-mediated neurotoxicity, we screened an established Drosophila model expressing GGGGCC expanded repeats in this study. Our results showed that knockdown of the DNA topoisomerase II (Top2) gene can specifically modulate GGGGCC-associated neurodegeneration of the eye. Furthermore, chemical inhibition of Top2 or siRNA-induced Top2 downregulation could alleviate the GGGGCC-mediated neurotoxicity in Drosophila assessed by eye neurodegeneration and locomotion impairment. By contrast, upregulated Top2 levels were detected in Drosophila strains, and moreover, TOP2A level was also upregulated in Neuro-2a cells expressing GGGGCC expanded repeats, as well as in the brains of Sod1G93A model mice. This indicated that elevated levels of TOP2A may be involved in a pathway common to the pathophysiology of distinct ALS forms. Moreover, through RNA-sequencing, a total of 67 genes, involved in the pathways of intracellular signaling cascades, peripheral nervous system development, and others, were identified as potential targets of TOP2A to modulate GGGGCC-mediated neurodegeneration.
Collapse
Affiliation(s)
- Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, China
| | - Mengli Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Hao Feng
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Han Bao
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Feiran Zhang
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, China
| | - Peng Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
27
|
Wang JC, Ramaswami G, Geschwind DH. Gene co-expression network analysis in human spinal cord highlights mechanisms underlying amyotrophic lateral sclerosis susceptibility. Sci Rep 2021; 11:5748. [PMID: 33707641 PMCID: PMC7970949 DOI: 10.1038/s41598-021-85061-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/14/2021] [Indexed: 12/23/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease defined by motor neuron (MN) loss. Multiple genetic risk factors have been identified, implicating RNA and protein metabolism and intracellular transport, among other biological mechanisms. To achieve a systems-level understanding of the mechanisms governing ALS pathophysiology, we built gene co-expression networks using RNA-sequencing data from control human spinal cord samples, identifying 13 gene co-expression modules, each of which represents a distinct biological process or cell type. Analysis of four RNA-seq datasets from a range of ALS disease-associated contexts reveal dysregulation in numerous modules related to ribosomal function, wound response, and leukocyte activation, implicating astrocytes, oligodendrocytes, endothelia, and microglia in ALS pathophysiology. To identify potentially causal processes, we partitioned heritability across the genome, finding that ALS common genetic risk is enriched within two specific modules, SC.M4, representing genes related to RNA processing and gene regulation, and SC.M2, representing genes related to intracellular transport and autophagy and enriched in oligodendrocyte markers. Top hub genes of this latter module include ALS-implicated risk genes such as KPNA3, TMED2, and NCOA4, the latter of which regulates ferritin autophagy, implicating this process in ALS pathophysiology. These unbiased, genome-wide analyses confirm the utility of a systems approach to understanding the causes and drivers of ALS.
Collapse
Affiliation(s)
- Jerry C Wang
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Gokul Ramaswami
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA. .,Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA. .,Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA. .,Institute for Precision Health, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
28
|
Benayad Z, von Bülow S, Stelzl LS, Hummer G. Simulation of FUS Protein Condensates with an Adapted Coarse-Grained Model. J Chem Theory Comput 2021; 17:525-537. [PMID: 33307683 PMCID: PMC7872324 DOI: 10.1021/acs.jctc.0c01064] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Indexed: 01/02/2023]
Abstract
Disordered proteins and nucleic acids can condense into droplets that resemble the membraneless organelles observed in living cells. MD simulations offer a unique tool to characterize the molecular interactions governing the formation of these biomolecular condensates, their physicochemical properties, and the factors controlling their composition and size. However, biopolymer condensation depends sensitively on the balance between different energetic and entropic contributions. Here, we develop a general strategy to fine-tune the potential energy function for molecular dynamics simulations of biopolymer phase separation. We rebalance protein-protein interactions against solvation and entropic contributions to match the excess free energy of transferring proteins between dilute solution and condensate. We illustrate this formalism by simulating liquid droplet formation of the FUS low-complexity domain (LCD) with a rebalanced MARTINI model. By scaling the strength of the nonbonded interactions in the coarse-grained MARTINI potential energy function, we map out a phase diagram in the plane of protein concentration and interaction strength. Above a critical scaling factor of αc ≈ 0.6, FUS-LCD condensation is observed, where α = 1 and 0 correspond to full and repulsive interactions in the MARTINI model. For a scaling factor α = 0.65, we recover experimental densities of the dilute and dense phases, and thus the excess protein transfer free energy into the droplet and the saturation concentration where FUS-LCD condenses. In the region of phase separation, we simulate FUS-LCD droplets of four different sizes in stable equilibrium with the dilute phase and slabs of condensed FUS-LCD for tens of microseconds, and over one millisecond in aggregate. We determine surface tensions in the range of 0.01-0.4 mN/m from the fluctuations of the droplet shape and from the capillary-wave-like broadening of the interface between the two phases. From the dynamics of the protein end-to-end distance, we estimate shear viscosities from 0.001 to 0.02 Pa s for the FUS-LCD droplets with scaling factors α in the range of 0.625-0.75, where we observe liquid droplets. Significant hydration of the interior of the droplets keeps the proteins mobile and the droplets fluid.
Collapse
Affiliation(s)
- Zakarya Benayad
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
- Département
de Chimie, École Normale Supérieure, PSL University, 75005 Paris, France
| | - Sören von Bülow
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Lukas S. Stelzl
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Gerhard Hummer
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
- Institute
for Biophysics, Goethe University Frankfurt, 60438 Frankfurt
am Main, Germany
| |
Collapse
|
29
|
Buratti E. Trends in Understanding the Pathological Roles of TDP-43 and FUS Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:243-267. [PMID: 33433879 DOI: 10.1007/978-3-030-51140-1_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Following the discovery of TDP-43 and FUS involvement in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD), the major challenge in the field has been to understand their physiological functions, both in normal and disease conditions. The hope is that this knowledge will improve our understanding of disease and lead to the development of effective therapeutic options. Initially, the focus has been directed at characterizing the role of these proteins in the control of RNA metabolism, because the main function of TDP-43 and FUS is to bind coding and noncoding RNAs to regulate their life cycle within cells. As a result, we now have an in-depth picture of the alterations that occur in RNA metabolism following their aggregation in various ALS/FTLD models and, to a somewhat lesser extent, in patients' brains. In parallel, progress has been made with regard to understanding how aggregation of these proteins occurs in neurons, how it can spread in different brain regions, and how these changes affect various metabolic cellular pathways to result in neuronal death. The aim of this chapter will be to provide a general overview of the trending topics in TDP-43 and FUS investigations and to highlight what might represent the most promising avenues of research in the years to come.
Collapse
Affiliation(s)
- Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.
| |
Collapse
|
30
|
Garofalo M, Pandini C, Bordoni M, Pansarasa O, Rey F, Costa A, Minafra B, Diamanti L, Zucca S, Carelli S, Cereda C, Gagliardi S. Alzheimer's, Parkinson's Disease and Amyotrophic Lateral Sclerosis Gene Expression Patterns Divergence Reveals Different Grade of RNA Metabolism Involvement. Int J Mol Sci 2020; 21:ijms21249500. [PMID: 33327559 PMCID: PMC7765024 DOI: 10.3390/ijms21249500] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/27/2020] [Accepted: 12/06/2020] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) are neurodegenerative disorders characterized by a progressive degeneration of the central or peripheral nervous systems. A central role of the RNA metabolism has emerged in these diseases, concerning mRNAs processing and non-coding RNAs biogenesis. We aimed to identify possible common grounds or differences in the dysregulated pathways of AD, PD, and ALS. To do so, we performed RNA-seq analysis to investigate the deregulation of both coding and long non-coding RNAs (lncRNAs) in ALS, AD, and PD patients and controls (CTRL) in peripheral blood mononuclear cells (PBMCs). A total of 293 differentially expressed (DE) lncRNAs and 87 mRNAs were found in ALS patients. In AD patients a total of 23 DE genes emerged, 19 protein coding genes and four lncRNAs. Through Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses, we found common affected pathways and biological processes in ALS and AD. In PD patients only five genes were found to be DE. Our data brought to light the importance of lncRNAs and mRNAs regulation in three principal neurodegenerative disorders, offering starting points for new investigations on deregulated pathogenic mechanisms.
Collapse
Affiliation(s)
- Maria Garofalo
- Genomic and Post-Genomic Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (M.G.); (C.P.); (O.P.); (S.Z.); (S.G.)
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Cecilia Pandini
- Genomic and Post-Genomic Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (M.G.); (C.P.); (O.P.); (S.Z.); (S.G.)
| | - Matteo Bordoni
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy;
| | - Orietta Pansarasa
- Genomic and Post-Genomic Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (M.G.); (C.P.); (O.P.); (S.Z.); (S.G.)
| | - Federica Rey
- Department of Biomedical and Clinical Sciences “Luigi Sacco”, University of Milan, Via G.B Grassi 74, 20157 Milan, Italy; (F.R.); (S.C.)
- Pediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi”, University of Milano, Via G.B. Grassi 74, 20157 Milano, Italy
| | - Alfredo Costa
- Unit of Behavioral Neurology, IRCCS Mondino Foundation, 27100 Pavia, Italy;
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Brigida Minafra
- Parkinson Unit and Movement disorders Mondino Foundation IRCCS, 27100 Pavia, Italy;
| | - Luca Diamanti
- Neuro-Oncology Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy;
| | - Susanna Zucca
- Genomic and Post-Genomic Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (M.G.); (C.P.); (O.P.); (S.Z.); (S.G.)
- enGenomesrl, 27100 Pavia, Italy
| | - Stephana Carelli
- Department of Biomedical and Clinical Sciences “Luigi Sacco”, University of Milan, Via G.B Grassi 74, 20157 Milan, Italy; (F.R.); (S.C.)
- Pediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi”, University of Milano, Via G.B. Grassi 74, 20157 Milano, Italy
| | - Cristina Cereda
- Genomic and Post-Genomic Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (M.G.); (C.P.); (O.P.); (S.Z.); (S.G.)
- Correspondence:
| | - Stella Gagliardi
- Genomic and Post-Genomic Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (M.G.); (C.P.); (O.P.); (S.Z.); (S.G.)
| |
Collapse
|
31
|
Marques RF, Engler JB, Küchler K, Jones RA, Lingner T, Salinas G, Gillingwater TH, Friese MA, Duncan KE. Motor neuron translatome reveals deregulation of SYNGR4 and PLEKHB1 in mutant TDP-43 amyotrophic lateral sclerosis models. Hum Mol Genet 2020; 29:2647-2661. [PMID: 32686835 PMCID: PMC7530531 DOI: 10.1093/hmg/ddaa140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/18/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurological disease with progressive loss of motor neuron (MN) function in the brain and spinal cord. Mutations in TARDBP, encoding the RNA-binding protein TDP-43, are one cause of ALS, and TDP-43 mislocalization in MNs is a key pathological feature of >95% of ALS cases. While numerous studies support altered RNA regulation by TDP-43 as a major cause of disease, specific changes within MNs that trigger disease onset remain unclear. Here, we combined translating ribosome affinity purification (TRAP) with RNA sequencing to identify molecular changes in spinal MNs of TDP-43-driven ALS at motor symptom onset. By comparing the MN translatome of hTDP-43A315T mice to littermate controls and to mice expressing wild type hTDP-43, we identified hundreds of mRNAs that were selectively up- or downregulated in MNs. We validated the deregulated candidates Tex26, Syngr4, and Plekhb1 mRNAs in an independent TRAP experiment. Moreover, by quantitative immunostaining of spinal cord MNs, we found corresponding protein level changes for SYNGR4 and PLEKHB1. We also observed these changes in spinal MNs of an independent ALS mouse model caused by a different patient mutant allele of TDP-43, suggesting that they are general features of TDP-43-driven ALS. Thus, we identified SYNGR4 and PLEKHB1 to be deregulated in MNs at motor symptom onset in TDP-43-driven ALS models. This spatial and temporal pattern suggests that these proteins could be functionally important for driving the transition to the symptomatic phase of the disease.
Collapse
Affiliation(s)
- Rita F Marques
- Neuronal Translational Control Research Group, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Jan B Engler
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Katrin Küchler
- Neuronal Translational Control Research Group, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Ross A Jones
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Thomas Lingner
- NGS—Integrative Genomics Core Unit (NIG), Institute of Human Genetics, University Medical Center Göttingen, Göttingen 37077, Germany
| | - Gabriela Salinas
- NGS—Integrative Genomics Core Unit (NIG), Institute of Human Genetics, University Medical Center Göttingen, Göttingen 37077, Germany
| | - Thomas H Gillingwater
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Kent E Duncan
- Neuronal Translational Control Research Group, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| |
Collapse
|
32
|
Ashford BA, Boche D, Cooper-Knock J, Heath PR, Simpson JE, Highley JR. Review: Microglia in motor neuron disease. Neuropathol Appl Neurobiol 2020; 47:179-197. [PMID: 32594542 DOI: 10.1111/nan.12640] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/14/2020] [Indexed: 02/06/2023]
Abstract
Motor Neuron Disease (MND) is a fatal neurodegenerative condition, which is characterized by the selective loss of the upper and lower motor neurons. At the sites of motor neuron injury, accumulation of activated microglia, the primary immune cells of the central nervous system, is commonly observed in both human post mortem studies and animal models of MND. Microglial activation has been found to correlate with many clinical features and importantly, the speed of disease progression in humans. Both anti-inflammatory and pro-inflammatory microglial responses have been shown to influence disease progression in humans and models of MND. As such, microglia could both contribute to and protect against inflammatory mechanisms of pathogenesis in MND. While murine models have characterized the microglial response to MND, these studies have painted a complex and often contradictory picture, indicating a need for further characterization in humans. This review examines the potential role microglia play in MND in human and animal studies. Both the pro-inflammatory and anti-inflammatory responses will be addressed, throughout the course of disease, followed by the potential of microglia as a target in the development of disease-modifying treatments for MND.
Collapse
Affiliation(s)
| | - D Boche
- University of Southampton, Southampton, UK
| | | | - P R Heath
- University of Sheffield, Sheffield, UK
| | | | | |
Collapse
|
33
|
Collins M, Li Y, Bowser R. RBM45 associates with nuclear stress bodies and forms nuclear inclusions during chronic cellular stress and in neurodegenerative diseases. Acta Neuropathol Commun 2020; 8:91. [PMID: 32586379 PMCID: PMC7318465 DOI: 10.1186/s40478-020-00965-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
The RNA binding protein (RBP) RBM45 forms nuclear and cytoplasmic inclusions in neurons and glia in amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration with TDP-43 proteinopathy (FTLD-TDP), and Alzheimer's disease (AD). The normal functions of RBM45 are poorly understood, as are the mechanisms by which it forms inclusions in disease. To better understand the normal and pathological functions of RBM45, we evaluated whether the protein functions via association with several membraneless organelles and whether such an association could promote the formation of nuclear RBM45 inclusions. Under basal conditions, RBM45 is diffusely distributed throughout the nucleus and does not localize to membraneless organelles, including nuclear speckles, Cajal bodies, or nuclear gems. During cellular stress, however, nuclear RBM45 undergoes a reversible, RNA-binding dependent incorporation into nuclear stress bodies (NSBs). Chronic stress leads to the persistent association of RBM45 with NSBs and the irreversible accumulation of nuclear RBM45 inclusions. We also quantified the cell type- and disease-specific patterns of RBM45 pathology in ALS, FTLD-TDP, and AD. RBM45 nuclear and cytoplasmic inclusions are found in both neurons and glia in ALS, FTLD-TDP, and AD but are absent in non-neurologic disease controls. Across neurodegenerative diseases, RBM45 nuclear inclusion pathology occurs more frequently than cytoplasmic RBM45 inclusion pathology and exhibits cell type-specific variation. Collectively, our results define new stress-associated functions of RBM45, a mechanism for nuclear RBM45 inclusion formation, a role for NSBs in the pathogenesis of ALS, FTLD-TDP, and AD, and further underscore the importance of protein self-association to both the normal and pathological functions of RBPs in these diseases.
Collapse
|
34
|
Gunes ZI, Kan VWY, Ye X, Liebscher S. Exciting Complexity: The Role of Motor Circuit Elements in ALS Pathophysiology. Front Neurosci 2020; 14:573. [PMID: 32625051 PMCID: PMC7311855 DOI: 10.3389/fnins.2020.00573] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease, characterized by the degeneration of both upper and lower motor neurons. Despite decades of research, we still to date lack a cure or disease modifying treatment, emphasizing the need for a much-improved insight into disease mechanisms and cell type vulnerability. Altered neuronal excitability is a common phenomenon reported in ALS patients, as well as in animal models of the disease, but the cellular and circuit processes involved, as well as the causal relevance of those observations to molecular alterations and final cell death, remain poorly understood. Here, we review evidence from clinical studies, cell type-specific electrophysiology, genetic manipulations and molecular characterizations in animal models and culture experiments, which argue for a causal involvement of complex alterations of structure, function and connectivity of different neuronal subtypes within the cortical and spinal cord motor circuitries. We also summarize the current knowledge regarding the detrimental role of astrocytes and reassess the frequently proposed hypothesis of glutamate-mediated excitotoxicity with respect to changes in neuronal excitability. Together, these findings suggest multifaceted cell type-, brain area- and disease stage- specific disturbances of the excitation/inhibition balance as a cardinal aspect of ALS pathophysiology.
Collapse
Affiliation(s)
- Zeynep I Gunes
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig Maximilians University Munich, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig Maximilians University Munich, Munich, Germany.,Biomedical Center, Ludwig Maximilians University Munich, Munich, Germany
| | - Vanessa W Y Kan
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig Maximilians University Munich, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig Maximilians University Munich, Munich, Germany.,Biomedical Center, Ludwig Maximilians University Munich, Munich, Germany
| | - XiaoQian Ye
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig Maximilians University Munich, Munich, Germany.,Biomedical Center, Ludwig Maximilians University Munich, Munich, Germany
| | - Sabine Liebscher
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig Maximilians University Munich, Munich, Germany.,Biomedical Center, Ludwig Maximilians University Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
35
|
A Genetic Screen for Human Genes Suppressing FUS Induced Toxicity in Yeast. G3-GENES GENOMES GENETICS 2020; 10:1843-1852. [PMID: 32276960 PMCID: PMC7263679 DOI: 10.1534/g3.120.401164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
FUS is a nucleic acid binding protein that, when mutated, cause a subset of familial amyotrophic lateral sclerosis (ALS). Expression of FUS in yeast recapitulates several pathological features of the disease-causing mutant proteins, including nuclear to cytoplasmic translocation, formation of cytoplasmic inclusions, and cytotoxicity. Genetic screens using the yeast model of FUS have identified yeast genes and their corresponding human homologs suppressing FUS induced toxicity in yeast, neurons and animal models. To expand the search for human suppressor genes of FUS induced toxicity, we carried out a genome-scale genetic screen using a newly constructed library containing 13570 human genes cloned in an inducible yeast-expression vector. Through multiple rounds of verification, we found 37 human genes that, when overexpressed, suppress FUS induced toxicity in yeast. Human genes with DNA or RNA binding functions are overrepresented among the identified suppressor genes, supporting that perturbations of RNA metabolism is a key underlying mechanism of FUS toxicity.
Collapse
|
36
|
Paron F, Dardis A, Buratti E. Pre-mRNA splicing defects and RNA binding protein involvement in Niemann Pick type C disease. J Biotechnol 2020; 318:20-30. [PMID: 32387451 DOI: 10.1016/j.jbiotec.2020.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/22/2022]
Abstract
Niemann-Pick type C (NPC) is an autosomal recessive lysosomal storage disorder due to mutations in NPC1 (95 % cases) or NPC2 genes, encoding NPC1 and NPC2 proteins, respectively. Both NPC1 and NPC2 proteins are involved in transport of intracellular cholesterol and their alteration leads to the accumulation of unesterified cholesterol and other lipids within the lysosomes. The disease is characterized by visceral, neurological and psychiatric symptoms. However, the pathogenic mechanisms that lead to the fatal neurodegeneration are still unclear. To date, several mutations leading to the generation of aberrant splicing variants or mRNA degradation in NPC1 and NPC2 genes have been reported. In addition, different lines of experimental evidence have highlighted the possible role of RNA-binding proteins and RNA-metabolism, in the onset and progression of many neurodegenerative disorders, that could explain NPC neurological features and in general, the disease pathogenesis. In this review, we will provide an overview of the impact of mRNA processing and metabolism on NPC disease pathology.
Collapse
Affiliation(s)
- Francesca Paron
- Molecular Pathology, International Institute for Genetic Engineering and Biotechnology, Trieste, Italy.
| | - Andrea Dardis
- Regional Coordinator Centre for Rare Diseases, Academic Hospital Santa Maria della Misericordia, Udine, Italy.
| | - Emanuele Buratti
- Molecular Pathology, International Institute for Genetic Engineering and Biotechnology, Trieste, Italy.
| |
Collapse
|
37
|
Low Level of Expression of C-Terminally Truncated Human FUS Causes Extensive Changes in the Spinal Cord Transcriptome of Asymptomatic Transgenic Mice. Neurochem Res 2020; 45:1168-1179. [PMID: 32157564 DOI: 10.1007/s11064-020-02999-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/13/2022]
Abstract
A number of mutations in a gene encoding RNA-binding protein FUS have been linked to the development of a familial form of amyotrophic lateral sclerosis known as FUS-ALS. C-terminal truncations of FUS by either nonsense or frameshift mutations lead to the development of FUS-ALS with a particularly early onset and fast progression. However, even in patients bearing these highly pathogenic mutations the function of motor neurons is not noticeably compromised for at least a couple of decades, suggesting that until cytoplasmic levels of FUS lacking its C-terminal nuclear localisation signal reaches a critical threshold, motor neurons are able to tolerate its permanent production. In order to identify how the nervous system responds to low levels of pathogenic variants of FUS we produced and characterised a mouse line, L-FUS[1-359], with a low neuronal expression level of a highly aggregation-prone and pathogenic form of C-terminally truncated FUS. In contrast to mice that express substantially higher level of the same FUS variant and develop severe early onset motor neuron pathology, L-FUS[1-359] mice do not develop any clinical or histopathological signs of motor neuron deficiency even at old age. Nevertheless, we detected substantial changes in the spinal cord transcriptome of these mice compared to their wild type littermates. We suggest that at least some of these changes reflect activation of cellular mechanisms compensating for the potentially damaging effect of pathogenic FUS production. Further studies of these mechanism might reveal effective targets for therapy of FUS-ALS and possibly, other forms of ALS.
Collapse
|
38
|
Story BD, Miller ME, Bradbury AM, Million ED, Duan D, Taghian T, Faissler D, Fernau D, Beecy SJ, Gray-Edwards HL. Canine Models of Inherited Musculoskeletal and Neurodegenerative Diseases. Front Vet Sci 2020; 7:80. [PMID: 32219101 PMCID: PMC7078110 DOI: 10.3389/fvets.2020.00080] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/31/2020] [Indexed: 12/11/2022] Open
Abstract
Mouse models of human disease remain the bread and butter of modern biology and therapeutic discovery. Nonetheless, more often than not mouse models do not reproduce the pathophysiology of the human conditions they are designed to mimic. Naturally occurring large animal models have predominantly been found in companion animals or livestock because of their emotional or economic value to modern society and, unlike mice, often recapitulate the human disease state. In particular, numerous models have been discovered in dogs and have a fundamental role in bridging proof of concept studies in mice to human clinical trials. The present article is a review that highlights current canine models of human diseases, including Alzheimer's disease, degenerative myelopathy, neuronal ceroid lipofuscinosis, globoid cell leukodystrophy, Duchenne muscular dystrophy, mucopolysaccharidosis, and fucosidosis. The goal of the review is to discuss canine and human neurodegenerative pathophysiologic similarities, introduce the animal models, and shed light on the ability of canine models to facilitate current and future treatment trials.
Collapse
Affiliation(s)
- Brett D. Story
- Auburn University College of Veterinary Medicine, Auburn, AL, United States
- University of Florida College of Veterinary Medicine, Gainesville, FL, United States
| | - Matthew E. Miller
- Auburn University College of Veterinary Medicine, Auburn, AL, United States
| | - Allison M. Bradbury
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Emily D. Million
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
- Department of Biomedical, Biological and Chemical Engineering, College of Engineering, University of Missouri, Columbia, MO, United States
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Toloo Taghian
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
| | - Dominik Faissler
- Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, United States
| | - Deborah Fernau
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
| | - Sidney J. Beecy
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, United States
| | - Heather L. Gray-Edwards
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
39
|
Alessenko A, Gutner U, Nebogatikov V, Shupik M, Ustyugov A. The role of lipids in the pathogenesis of lateral amyotrophic sclerosis. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:108-117. [DOI: 10.17116/jnevro2020120101108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Regulatory roles of the miR-200 family in neurodegenerative diseases. Biomed Pharmacother 2019; 119:109409. [PMID: 31518873 DOI: 10.1016/j.biopha.2019.109409] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/24/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases are chronic and progressive disorders which are not effectively treated through adopting conventional therapies. For this unmet medical need, alternative therapeutic methods including gene-based therapies are emphasized. MicroRNAs (miRNAs) are small non-coding RNAs which can regulate gene expression at the post-transcriptional level. In recent years, dysregulated miRNAs have been indicated to be implicated in the occurrence and development of neurodegenerative diseases. They are investigated as candidates for diagnostic and prognostic biomarkers, as well as therapeutic targets. The miR-200 family consists of miR-200a, -200b, -200c, -141, and -429. Numerous studies have found that miR-200 family members are associated with the pathogenesis of neurodegenerative diseases. It is reported that miR-200 family members are aberrantly expressed in several neurodegenerative diseases, participating in various cellular processes including beta-amyloid (Aβ) secretion, alpha-synuclein aggregation and DNA repair, etc. In the present review, we summarize the recent progress in the roles of miR-200 family in neurodegenerative diseases.
Collapse
|
41
|
Neelagandan N, Gonnella G, Dang S, Janiesch PC, Miller KK, Küchler K, Marques RF, Indenbirken D, Alawi M, Grundhoff A, Kurtz S, Duncan KE. TDP-43 enhances translation of specific mRNAs linked to neurodegenerative disease. Nucleic Acids Res 2019; 47:341-361. [PMID: 30357366 PMCID: PMC6326785 DOI: 10.1093/nar/gky972] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022] Open
Abstract
The RNA-binding protein TDP-43 is heavily implicated in neurodegenerative disease. Numerous patient mutations in TARDBP, the gene encoding TDP-43, combined with data from animal and cell-based models, imply that altered RNA regulation by TDP-43 causes Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. However, underlying mechanisms remain unresolved. Increased cytoplasmic TDP-43 levels in diseased neurons suggest a possible role in this cellular compartment. Here, we examined the impact on translation of overexpressing human TDP-43 and the TDP-43A315T patient mutant protein in motor neuron-like cells and primary cultures of cortical neurons. In motor-neuron like cells, TDP-43 associates with ribosomes without significantly affecting global translation. However, ribosome profiling and additional assays revealed enhanced translation and direct binding of Camta1, Mig12, and Dennd4a mRNAs. Overexpressing either wild-type TDP-43 or TDP-43A315T stimulated translation of Camta1 and Mig12 mRNAs via their 5'UTRs and increased CAMTA1 and MIG12 protein levels. In contrast, translational enhancement of Dennd4a mRNA required a specific 3'UTR region and was specifically observed with the TDP-43A315T patient mutant allele. Our data reveal that TDP-43 can function as an mRNA-specific translational enhancer. Moreover, since CAMTA1 and DENND4A are linked to neurodegeneration, they suggest that this function could contribute to disease.
Collapse
Affiliation(s)
- Nagammal Neelagandan
- Neuronal Translational Control Research Group, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg 20251, Germany
| | - Giorgio Gonnella
- Universität Hamburg, MIN-Fakultät, ZBH-Center for Bioinformatics, Hamburg 20146, Germany
| | - Stefan Dang
- Universität Hamburg, MIN-Fakultät, ZBH-Center for Bioinformatics, Hamburg 20146, Germany
| | - Philipp C Janiesch
- Neuronal Translational Control Research Group, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg 20251, Germany
| | - Katharine K Miller
- Neuronal Translational Control Research Group, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg 20251, Germany
| | - Katrin Küchler
- Neuronal Translational Control Research Group, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg 20251, Germany
| | - Rita F Marques
- Neuronal Translational Control Research Group, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg 20251, Germany
| | - Daniela Indenbirken
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg 20251, Germany
| | - Malik Alawi
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg 20251, Germany.,Bioinformatics Core, University Medical Center Hamburg-Eppendorf (UKE), Hamburg 20251, Germany
| | - Adam Grundhoff
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg 20251, Germany
| | - Stefan Kurtz
- Universität Hamburg, MIN-Fakultät, ZBH-Center for Bioinformatics, Hamburg 20146, Germany
| | - Kent E Duncan
- Neuronal Translational Control Research Group, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg 20251, Germany
| |
Collapse
|
42
|
Giampetruzzi A, Danielson EW, Gumina V, Jeon M, Boopathy S, Brown RH, Ratti A, Landers JE, Fallini C. Modulation of actin polymerization affects nucleocytoplasmic transport in multiple forms of amyotrophic lateral sclerosis. Nat Commun 2019; 10:3827. [PMID: 31444357 PMCID: PMC6707192 DOI: 10.1038/s41467-019-11837-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 08/01/2019] [Indexed: 12/30/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of unknown etiology. Although defects in nucleocytoplasmic transport (NCT) may be central to the pathogenesis of ALS and other neurodegenerative diseases, the molecular mechanisms modulating the nuclear pore function are still largely unknown. Here we show that genetic and pharmacological modulation of actin polymerization disrupts nuclear pore integrity, nuclear import, and downstream pathways such as mRNA post-transcriptional regulation. Importantly, we demonstrate that modulation of actin homeostasis can rescue nuclear pore instability and dysfunction caused by mutant PFN1 as well as by C9ORF72 repeat expansion, the most common mutation in ALS patients. Collectively, our data link NCT defects to ALS-associated cellular pathology and propose the regulation of actin homeostasis as a novel therapeutic strategy for ALS and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Anthony Giampetruzzi
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Eric W Danielson
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Valentina Gumina
- Istituto Auxologico Italiano, IRCCS, Department of Neurology - Stroke Unit and Laboratory of Neuroscience, Milan, Italy
| | - Maryangel Jeon
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Sivakumar Boopathy
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Robert H Brown
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Antonia Ratti
- Istituto Auxologico Italiano, IRCCS, Department of Neurology - Stroke Unit and Laboratory of Neuroscience, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - John E Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Claudia Fallini
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
43
|
ALS and FTD: Where RNA metabolism meets protein quality control. Semin Cell Dev Biol 2019; 99:183-192. [PMID: 31254610 DOI: 10.1016/j.semcdb.2019.06.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022]
Abstract
Recent genetic and biochemical evidence has improved our understanding of the pathomechanisms that lead to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two devastating neurodegenerative diseases with overlapping symptoms and causes. Impaired RNA metabolism, enhanced aggregation of protein-RNA complexes, aberrant formation of ribonucleoprotein (RNP) granules and dysfunctional protein clearance via autophagy are emerging as crucial events in ALS/FTD pathogenesis. Importantly, these processes interact at the molecular level, converging on a common pathogenic cascade. In this review, we summarize key principles underlying ALS and FTD, and we discuss how mutations in genes involved in RNA metabolism, protein quality control and protein degradation meet mechanistically to impair the functionality and dynamics of RNP granules, and how this leads to cellular toxicity and death. Finally, we describe recent advances in understanding signaling pathways that become dysfunctional in ALS/FTD, partly due to altered RNP granule dynamics, but also with stress granule-independent mechanisms and, thus could be promising targets for future therapeutic intervention.
Collapse
|
44
|
Prasad A, Bharathi V, Sivalingam V, Girdhar A, Patel BK. Molecular Mechanisms of TDP-43 Misfolding and Pathology in Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2019; 12:25. [PMID: 30837838 PMCID: PMC6382748 DOI: 10.3389/fnmol.2019.00025] [Citation(s) in RCA: 506] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022] Open
Abstract
TAR DNA binding protein 43 (TDP-43) is a versatile RNA/DNA binding protein involved in RNA-related metabolism. Hyper-phosphorylated and ubiquitinated TDP-43 deposits act as inclusion bodies in the brain and spinal cord of patients with the motor neuron diseases: amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). While the majority of ALS cases (90-95%) are sporadic (sALS), among familial ALS cases 5-10% involve the inheritance of mutations in the TARDBP gene and the remaining (90-95%) are due to mutations in other genes such as: C9ORF72, SOD1, FUS, and NEK1 etc. Strikingly however, the majority of sporadic ALS patients (up to 97%) also contain the TDP-43 protein deposited in the neuronal inclusions, which suggests of its pivotal role in the ALS pathology. Thus, unraveling the molecular mechanisms of the TDP-43 pathology seems central to the ALS therapeutics, hence, we comprehensively review the current understanding of the TDP-43's pathology in ALS. We discuss the roles of TDP-43's mutations, its cytoplasmic mis-localization and aberrant post-translational modifications in ALS. Also, we evaluate TDP-43's amyloid-like in vitro aggregation, its physiological vs. pathological oligomerization in vivo, liquid-liquid phase separation (LLPS), and potential prion-like propagation propensity of the TDP-43 inclusions. Finally, we describe the various evolving TDP-43-induced toxicity mechanisms, such as the impairment of endocytosis and mitotoxicity etc. and also discuss the emerging strategies toward TDP-43 disaggregation and ALS therapeutics.
Collapse
Affiliation(s)
| | | | | | | | - Basant K. Patel
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, India
| |
Collapse
|
45
|
Fukushima M, Hosoda N, Chifu K, Hoshino SI. TDP-43 accelerates deadenylation of target mRNAs by recruiting Caf1 deadenylase. FEBS Lett 2019; 593:277-287. [PMID: 30520513 DOI: 10.1002/1873-3468.13310] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/14/2022]
Abstract
TAR DNA-binding protein 43 (TDP-43) is an RNA-binding protein, whose loss-of-function mutation causes amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration. Recent studies demonstrated that TDP-43 binds to the 3' untranslated region (UTR) of target mRNAs to promote mRNA instability. Here, we show that TDP-43 recruits Caf1 deadenylase to mRNA targets and accelerates their deadenylation. Tethering TDP-43 to the mRNA 3'UTR recapitulates destabilization of the mRNA, and TDP-43 accelerates their deadenylation. This accelerated deadenylation is inhibited by a dominant negative mutant of Caf1. We find that TDP-43 physically interacts with Caf1. In addition, we provide evidence that TDP-43 regulates poly(A) tail length of endogenous Progranulin (GRN) mRNA. These results may shed light on the link between dysregulation of TDP-43-mediated mRNA deadenylation and pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Makoto Fukushima
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Japan
| | - Nao Hosoda
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Japan
| | - Kotaro Chifu
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Japan
| | - Shin-Ichi Hoshino
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Japan
| |
Collapse
|
46
|
Butti Z, Patten SA. RNA Dysregulation in Amyotrophic Lateral Sclerosis. Front Genet 2019; 9:712. [PMID: 30723494 PMCID: PMC6349704 DOI: 10.3389/fgene.2018.00712] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motor neuron disease and is characterized by the degeneration of upper and lower motor neurons. It has become increasingly clear that RNA dysregulation is a key contributor to ALS pathogenesis. The major ALS genes SOD1, TARDBP, FUS, and C9orf72 are involved in aspects of RNA metabolism processes such as mRNA transcription, alternative splicing, RNA transport, mRNA stabilization, and miRNA biogenesis. In this review, we highlight the current understanding of RNA dysregulation in ALS pathogenesis involving these major ALS genes and discuss the potential of therapeutic strategies targeting disease RNAs for treating ALS.
Collapse
Affiliation(s)
- Zoe Butti
- INRS-Institut Armand-Frappier, National Institute of Scientific Research, Laval, QC, Canada
| | - Shunmoogum A Patten
- INRS-Institut Armand-Frappier, National Institute of Scientific Research, Laval, QC, Canada
| |
Collapse
|
47
|
Borroni B, Alberici A, Buratti E. Review: Molecular pathology of frontotemporal lobar degenerations. Neuropathol Appl Neurobiol 2019; 45:41-57. [DOI: 10.1111/nan.12534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/04/2018] [Indexed: 02/07/2023]
Affiliation(s)
- B. Borroni
- Neurology Clinic; Department of Clinical and Experimental Sciences; University of Brescia; Brescia Italy
| | - A. Alberici
- Neurology Clinic; Department of Clinical and Experimental Sciences; University of Brescia; Brescia Italy
| | - E. Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB); Trieste Italy
| |
Collapse
|
48
|
Hinkle ER, Wiedner HJ, Black AJ, Giudice J. RNA processing in skeletal muscle biology and disease. Transcription 2019; 10:1-20. [PMID: 30556762 DOI: 10.1080/21541264.2018.1558677] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
RNA processing encompasses the capping, cleavage, polyadenylation and alternative splicing of pre-mRNA. Proper muscle development relies on precise RNA processing, driven by the coordination between RNA-binding proteins. Recently, skeletal muscle biology has been intensely investigated in terms of RNA processing. High throughput studies paired with deletion of RNA-binding proteins have provided a high-level understanding of the molecular mechanisms controlling the regulation of RNA-processing in skeletal muscle. Furthermore, misregulation of RNA processing is implicated in muscle diseases. In this review, we comprehensively summarize recent studies in skeletal muscle that demonstrated: (i) the importance of RNA processing, (ii) the RNA-binding proteins that are involved, and (iii) diseases associated with defects in RNA processing.
Collapse
Affiliation(s)
- Emma R Hinkle
- a Curriculum in Genetics and Molecular Biology (GMB) , University of North Carolina , Chapel Hill , USA.,b Department of Cell Biology & Physiology , University of North Carolina , Chapel Hill , USA
| | - Hannah J Wiedner
- a Curriculum in Genetics and Molecular Biology (GMB) , University of North Carolina , Chapel Hill , USA.,b Department of Cell Biology & Physiology , University of North Carolina , Chapel Hill , USA
| | - Adam J Black
- b Department of Cell Biology & Physiology , University of North Carolina , Chapel Hill , USA
| | - Jimena Giudice
- a Curriculum in Genetics and Molecular Biology (GMB) , University of North Carolina , Chapel Hill , USA.,b Department of Cell Biology & Physiology , University of North Carolina , Chapel Hill , USA.,c McAllister Heart Institute , University of North Carolina , Chapel Hill , USA
| |
Collapse
|
49
|
Müller P, Schürmann M, Girardo S, Cojoc G, Guck J. Accurate evaluation of size and refractive index for spherical objects in quantitative phase imaging. OPTICS EXPRESS 2018; 26:10729-10743. [PMID: 29716005 DOI: 10.1364/oe.26.010729] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
Measuring the average refractive index (RI) of spherical objects, such as suspended cells, in quantitative phase imaging (QPI) requires a decoupling of RI and size from the QPI data. This has been commonly achieved by determining the object's radius with geometrical approaches, neglecting light-scattering. Here, we present a novel QPI fitting algorithm that reliably uncouples the RI using Mie theory and a semi-analytical, corrected Rytov approach. We assess the range of validity of this algorithm in silico and experimentally investigate various objects (oil and protein droplets, microgel beads, cells) and noise conditions. In addition, we provide important practical cues for the analysis of spherical objects in QPI.
Collapse
|
50
|
Anderson EN, Gochenaur L, Singh A, Grant R, Patel K, Watkins S, Wu JY, Pandey UB. Traumatic injury induces stress granule formation and enhances motor dysfunctions in ALS/FTD models. Hum Mol Genet 2018; 27:1366-1381. [PMID: 29432563 PMCID: PMC6455923 DOI: 10.1093/hmg/ddy047] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/30/2018] [Accepted: 02/05/2018] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) has been predicted to be a predisposing factor for amyotrophic lateral sclerosis (ALS) and other neurological disorders. Despite the importance of TBI in ALS progression, the underlying cellular and molecular mechanisms are still an enigma. Here, we examined the contribution of TBI as an extrinsic factor and investigated whether TBI influences the susceptibility of developing neurodegenerative symptoms. To evaluate the effects of TBI in vivo, we applied mild to severe trauma to Drosophila and found that TBI leads to the induction of stress granules (SGs) in the brain. The degree of SGs induction directly correlates with the level of trauma. Furthermore, we observed that the level of mortality is directly proportional to the number of traumatic hits. Interestingly, trauma-induced SGs are ubiquitin, p62 and TDP-43 positive, and persistently remain over time suggesting that SGs might be aggregates and exert toxicity in our fly models. Intriguingly, TBI on animals expressing ALS-linked genes increased mortality and locomotion dysfunction suggesting that mild trauma might aggravate neurodegenerative symptoms associated with ALS. Furthermore, we found elevated levels of high molecular weight ubiquitinated proteins and p62 in animals expressing ALS-causing genes with TBI, suggesting that TBI may lead to the defects in protein degradation pathways. Finally, we observed that genetic and pharmacological induction of autophagy enhanced the clearance of SGs and promoted survival of flies in vivo. Together, our study demonstrates that trauma can induce SG formation in vivo and might enhance neurodegenerative phenotypes in the fly models of ALS.
Collapse
Affiliation(s)
- Eric N Anderson
- Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Lauren Gochenaur
- Department of Neuroscience, Dietrich School of Arts and Science, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Aditi Singh
- Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Rogan Grant
- Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Krishani Patel
- Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Simon Watkins
- Center for Biological Imaging, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
- Department of Cell Biology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Jane Y Wu
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Udai Bhan Pandey
- Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
- Department of Neuroscience, Dietrich School of Arts and Science, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|