1
|
Patko E, Szabo E, Toth D, Tornoczky T, Bosnyak I, Vaczy A, Atlasz T, Reglodi D. Distribution of PACAP and PAC1 Receptor in the Human Eye. J Mol Neurosci 2022; 72:2176-2187. [PMID: 35253081 PMCID: PMC9726800 DOI: 10.1007/s12031-022-01985-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/08/2022] [Indexed: 12/16/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide with widespread distribution and diverse biological functions. Several studies show that PACAP has strong cytoprotective effects mediated mostly through its specific PAC1 receptor (PAC1-R) and it plays important roles in several pathological conditions. Its distribution and altered expression are known in various human tissues, but there is no descriptive data about PACAP and its receptors in the human eyebulb. Since PACAP38 is the dominant form of the naturally occurring PACAP, our aim was to investigate the distribution of PACAP38-like immunoreactivity in the human eye and to describe the presence of PAC1-R. Semiquantitative evaluation was performed after routine histology and immunohistochemical labeling on human eye sections. Our results showed high level of immunopositivity in the corneal epithelium and endothelium. Within the vascular layer, the iris and the ciliary body had strong immunopositivity for both PACAP and PAC1-R. Several layers of the retina showed immunoreactivity for PACAP and PAC1-R, but the ganglion cell layer had a special pattern in the immunolabeling. Labeling was observed in the neuropil within the optic nerve in both cases and glial cells displayed immunoreactivity for PAC1-R. In summary, our study indicates the widespread occurrence of PACAP and its specific receptor in the human eye, implying that the results from in vitro and animal studies have translational value and most probably are also present in the human eye.
Collapse
Affiliation(s)
- Evelin Patko
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Team, University of Pecs, 7624, Pecs, Hungary
| | - Edina Szabo
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Team, University of Pecs, 7624, Pecs, Hungary
| | - Denes Toth
- Department of Forensic Medicine, Medical School, University of Pecs, 7624, Pecs, Hungary
| | - Tamas Tornoczky
- Department of Pathology, Medical School and Clinical Center, University of Pecs, 7624, Pecs, Hungary
| | - Inez Bosnyak
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Team, University of Pecs, 7624, Pecs, Hungary
| | - Alexandra Vaczy
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Team, University of Pecs, 7624, Pecs, Hungary
| | - Tamas Atlasz
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Team, University of Pecs, 7624, Pecs, Hungary.
- Szentagothai Research Center, Medical School, University of Pecs, 7624, Pecs, Hungary.
- Department of Sportbiology, University of Pecs, 7624, Pecs, Hungary.
| | - Dora Reglodi
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Team, University of Pecs, 7624, Pecs, Hungary
- Szentagothai Research Center, Medical School, University of Pecs, 7624, Pecs, Hungary
| |
Collapse
|
2
|
Hannibal J. Comparative Neurology of Circadian Photoreception: The Retinohypothalamic Tract (RHT) in Sighted and Naturally Blind Mammals. Front Neurosci 2021; 15:640113. [PMID: 34054403 PMCID: PMC8160255 DOI: 10.3389/fnins.2021.640113] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
The mammalian eye contains two systems for light perception: an image detecting system constituted primarily of the classical photoreceptors, rods and cones, and a non-image forming system (NIF) constituted of a small group of intrinsically photosensitive retinal ganglion cells driven by melanopsin (mRGCs). The mRGCs receive input from the outer retina and NIF mediates light entrainment of circadian rhythms, masking behavior, light induced inhibition of nocturnal melatonin secretion, pupillary reflex (PLR), and affect the sleep/wake cycle. This review focuses on the mammalian NIF and its anatomy in the eye as well as its neuronal projection to the brain. This pathway is known as the retinohypothalamic tract (RHT). The development and functions of the NIF as well as the knowledge gained from studying gene modified mice is highlighted. Furthermore, the similarities of the NIF between sighted (nocturnal and diurnal rodent species, monkeys, humans) and naturally blind mammals (blind mole rats Spalax ehrenbergi and the Iberian mole, Talpa occidentalis) are discussed in relation to a changing world where increasing exposure to artificial light at night (ALAN) is becoming a challenge for humans and animals in the modern society.
Collapse
Affiliation(s)
- Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Lipocalin-type prostaglandin D synthase regulates light-induced phase advance of the central circadian rhythm in mice. Commun Biol 2020; 3:557. [PMID: 33033338 PMCID: PMC7544906 DOI: 10.1038/s42003-020-01281-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/03/2020] [Indexed: 12/20/2022] Open
Abstract
We previously showed that mice lacking pituitary adenylate cyclase-activating polypeptide (PACAP) exhibit attenuated light-induced phase shift. To explore the underlying mechanisms, we performed gene expression analysis of laser capture microdissected suprachiasmatic nuclei (SCNs) and found that lipocalin-type prostaglandin (PG) D synthase (L-PGDS) is involved in the impaired response to light stimulation in the late subjective night in PACAP-deficient mice. L-PGDS-deficient mice also showed impaired light-induced phase advance, but normal phase delay and nonvisual light responses. Then, we examined the receptors involved in the response and observed that mice deficient for type 2 PGD2 receptor DP2/CRTH2 (chemoattractant receptor homologous molecule expressed on Th2 cells) show impaired light-induced phase advance. Concordant results were observed using the selective DP2/CRTH2 antagonist CAY10471. These results indicate that L-PGDS is involved in a mechanism of light-induced phase advance via DP2/CRTH2 signaling. Kawaguchi et al. show that mice deficient in lipocalin-type prostaglandin (PG) D synthase (L-PGDS) exhibit impaired light-induced phase advance, but normal phase delay and nonvisual light responses. This study suggests the role of L-PGDS for the light-induced phase advance possibly via a chemoattractant receptor DP2/CRTH2.
Collapse
|
4
|
Fahrenkrug J, Georg B, Hannibal J, Jørgensen HL. Role of light and the circadian clock in the rhythmic oscillation of intraocular pressure: Studies in VPAC2 receptor and PACAP deficient mice. Exp Eye Res 2018; 169:134-140. [PMID: 29428294 DOI: 10.1016/j.exer.2018.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 11/27/2022]
Abstract
The intraocular pressure of mice displays a daily rhythmicity being highest during the dark period. The present study was performed to elucidate the role of the circadian clock and light in the diurnal and the circadian variations in intraocular pressure in mice, by using animals with disrupted clock function (VPAC2 receptor knockout mice) or impaired light information to the clock (PACAP knockout mice). In wildtype mice, intraocular pressure measured under light/dark conditions showed a statistically significant 24 h sinusoidal rhythm with nadir during the light phase and peak during the dark phase. After transfer of the wildtype mice into constant darkness, the intraocular pressure increased, but the rhythmic changes in intraocular pressure continued with a pattern identical to that obtained during the light/dark cycle. The intraocular pressure in VPAC2 receptor deficient mice during light/dark conditions also showed a sinusoidal pattern with significant changes as a function of a 24 h cycle. However, transfer of the VPAC2 receptor knockout mice into constant darkness completely abolished the rhythmic changes in intraocular pressure. The intraocular pressure in PACAP deficient mice oscillated significantly during both 24 h light and darkness and during constant darkness. During LD conditions, the amplitude of PACAP deficient was significantly lower compared to wildtype mice, resulting in higher daytime and lower nighttime values. In conclusion, by studying the VPAC2 receptor knockout mouse which lacks circadian control and the PACAP knockout mouse which displays impaired light signaling, we provided evidence that the daily intraocular pressure rhythms are primarily generated by the circadian master clock and to a lesser extent by environmental light and darkness.
Collapse
Affiliation(s)
- Jan Fahrenkrug
- Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, Faculty of Health Sciences, University of Copenhagen, Bispebjerg, Bakke 23, DK-2400, København NV, Denmark.
| | - Birgitte Georg
- Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, Faculty of Health Sciences, University of Copenhagen, Bispebjerg, Bakke 23, DK-2400, København NV, Denmark.
| | - Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, Faculty of Health Sciences, University of Copenhagen, Bispebjerg, Bakke 23, DK-2400, København NV, Denmark.
| | - Henrik Løvendahl Jørgensen
- Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, Faculty of Health Sciences, University of Copenhagen, Bispebjerg, Bakke 23, DK-2400, København NV, Denmark.
| |
Collapse
|
5
|
Wang Q, Yue WWS, Jiang Z, Xue T, Kang SH, Bergles DE, Mikoshiba K, Offermanns S, Yau KW. Synergistic Signaling by Light and Acetylcholine in Mouse Iris Sphincter Muscle. Curr Biol 2017; 27:1791-1800.e5. [PMID: 28578927 PMCID: PMC8577559 DOI: 10.1016/j.cub.2017.05.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/04/2017] [Accepted: 05/05/2017] [Indexed: 01/29/2023]
Abstract
The mammalian pupillary light reflex (PLR) involves a bilateral brain circuit whereby afferent light signals in the optic nerve ultimately drive iris-sphincter-muscle contraction via excitatory cholinergic parasympathetic innervation [1, 2]. Additionally, the PLR in nocturnal and crepuscular sub-primate mammals has a "local" component in the isolated sphincter muscle [3-5], as in amphibians, fish, and bird [6-10]. In mouse, this local PLR requires the pigment melanopsin [5], originally found in intrinsically photosensitive retinal ganglion cells (ipRGCs) [11-19]. However, melanopsin's presence and effector pathway locally in the iris remain uncertain. The sphincter muscle itself may express melanopsin [5], or its cholinergic parasympathetic innervation may be modulated by suggested intraocular axonal collaterals of ipRGCs traveling to the eye's ciliary body or even to the iris [20-22]. Here, we show that the muscarinic receptor antagonist, atropine, eliminated the effect of acetylcholine (ACh), but not of light, on isolated mouse sphincter muscle. Conversely, selective genetic deletion of melanopsin in smooth muscle mostly removed the light-induced, but not the ACh-triggered, increase in isolated sphincter muscle's tension and largely suppressed the local PLR in vivo. Thus, sphincter muscle cells are bona fide, albeit unconventional, photoreceptors. We found melanopsin expression in a small subset of mouse iris sphincter muscle cells, with the light-induced contractile signal apparently spreading through gap junctions into neighboring muscle cells. Light and ACh share a common signaling pathway in sphincter muscle. In summary, our experiments have provided details of a photosignaling process in the eye occurring entirely outside the retina.
Collapse
Affiliation(s)
- Qian Wang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Biochemistry, Cellular, and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Wendy Wing Sze Yue
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Biochemistry, Cellular, and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zheng Jiang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tian Xue
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui, PRC
| | - Shin H Kang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dwight E Bergles
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Stefan Offermanns
- Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - King-Wai Yau
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
6
|
Keenan WT, Rupp AC, Ross RA, Somasundaram P, Hiriyanna S, Wu Z, Badea TC, Robinson PR, Lowell BB, Hattar SS. A visual circuit uses complementary mechanisms to support transient and sustained pupil constriction. eLife 2016; 5:e15392. [PMID: 27669145 PMCID: PMC5079752 DOI: 10.7554/elife.15392] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 09/22/2016] [Indexed: 12/22/2022] Open
Abstract
Rapid and stable control of pupil size in response to light is critical for vision, but the neural coding mechanisms remain unclear. Here, we investigated the neural basis of pupil control by monitoring pupil size across time while manipulating each photoreceptor input or neurotransmitter output of intrinsically photosensitive retinal ganglion cells (ipRGCs), a critical relay in the control of pupil size. We show that transient and sustained pupil responses are mediated by distinct photoreceptors and neurotransmitters. Transient responses utilize input from rod photoreceptors and output by the classical neurotransmitter glutamate, but adapt within minutes. In contrast, sustained responses are dominated by non-conventional signaling mechanisms: melanopsin phototransduction in ipRGCs and output by the neuropeptide PACAP, which provide stable pupil maintenance across the day. These results highlight a temporal switch in the coding mechanisms of a neural circuit to support proper behavioral dynamics.
Collapse
Affiliation(s)
| | - Alan C Rupp
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Rachel A Ross
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
- Department of Psychiatry, Massachusetts General Hospital, Boston, United States
| | - Preethi Somasundaram
- Department of Biological Sciences, University of Marlyand, Baltimore, United States
| | - Suja Hiriyanna
- National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Zhijian Wu
- National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Tudor C Badea
- National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Phyllis R Robinson
- Department of Biological Sciences, University of Marlyand, Baltimore, United States
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
- Program in Neuroscience, Harvard Medical School, Boston, United States
| | - Samer S Hattar
- Department of Biology, Johns Hopkins University, Baltimore, United States
- Department of Neuroscience, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
7
|
Hannibal J, Georg B, Fahrenkrug J. Altered Circadian Food Anticipatory Activity Rhythms in PACAP Receptor 1 (PAC1) Deficient Mice. PLoS One 2016; 11:e0146981. [PMID: 26757053 PMCID: PMC4710526 DOI: 10.1371/journal.pone.0146981] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/23/2015] [Indexed: 11/19/2022] Open
Abstract
Light signals from intrinsically photosensitive retinal ganglion cells (ipRGCs) entrain the circadian clock and regulate negative masking. Two neurotransmitters, glutamate and Pituitary Adenylate Cyclase Activating Polypeptide (PACAP), found in the ipRGCs transmit light signals to the brain via glutamate receptors and the specific PACAP type 1 (PAC1) receptor. Light entrainment occurs during the twilight zones and has little effect on clock phase during daytime. When nocturnal animals have access to food only for a few hours during the resting phase at daytime, they adapt behavior to the restricted feeding (RF) paradigm and show food anticipatory activity (FAA). A recent study in mice and rats demonstrating that light regulates FAA prompted us to investigate the role of PACAP/PAC1 signaling in the light mediated regulation of FAA. PAC1 receptor knock out (PAC1-/-) and wild type (PAC1+/+) mice placed in running wheels were examined in a full photoperiod (FPP) of 12:12 h light/dark (LD) and a skeleton photoperiod (SPP) 1:11:1:11 h L:DD:L:DD at 300 and 10 lux light intensity. Both PAC1-/- mice and PAC1+/+ littermates entrained to FPP and SPP at both light intensities. However, when placed in RF with access to food for 4–5 h during the subjective day, a significant change in behavior was observed in PAC1-/- mice compared to PAC1+/+ mice. While PAC1-/- mice showed similar FAA as PAC1+/+ animals in FPP at 300 lux, PAC1-/- mice demonstrated an advanced onset of FAA with a nearly 3-fold increase in amplitude compared to PAC1+/+ mice when placed in SPP at 300 lux. The same pattern of FAA was observed at 10 lux during both FPP and SPP. The present study indicates a role of PACAP/PAC1 signaling during light regulated FAA. Most likely, PACAP found in ipRGCs mediating non-image forming light information to the brain is involved.
Collapse
Affiliation(s)
- Jens Hannibal
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| | - Birgitte Georg
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jan Fahrenkrug
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Langel JL, Smale L, Esquiva G, Hannibal J. Central melanopsin projections in the diurnal rodent, Arvicanthis niloticus. Front Neuroanat 2015; 9:93. [PMID: 26236201 PMCID: PMC4500959 DOI: 10.3389/fnana.2015.00093] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/29/2015] [Indexed: 12/12/2022] Open
Abstract
The direct effects of photic stimuli on behavior are very different in diurnal and nocturnal species, as light stimulates an increase in activity in the former and a decrease in the latter. Studies of nocturnal mice have implicated a select population of retinal ganglion cells that are intrinsically photosensitive (ipRGCs) in mediation of these acute responses to light. ipRGCs are photosensitive due to the expression of the photopigment melanopsin; these cells use glutamate and pituitary adenylate cyclase-activating polypeptide (PACAP) as neurotransmitters. PACAP is useful for the study of central ipRGC projections because, in the retina, it is found exclusively within melanopsin cells. Little is known about the central projections of ipRGCs in diurnal species. Here, we first characterized these cells in the retina of the diurnal Nile grass rat using immunohistochemistry (IHC). The same basic subtypes of melanopsin cells that have been described in other mammals were present, but nearly 25% of them were displaced, primarily in its superior region. PACAP was present in 87.7% of all melanopsin cells, while 97.4% of PACAP cells contained melanopsin. We then investigated central projections of ipRGCs by examining the distribution of immunoreactive PACAP fibers in intact and enucleated animals. This revealed evidence that these cells project to the suprachiasmatic nucleus, lateral geniculate nucleus (LGN), pretectum, and superior colliculus. This distribution was confirmed with injections of cholera toxin subunit β coupled with Alexa Fluor 488 in one eye and Alexa Fluor 594 in the other, combined with IHC staining of PACAP. These studies also revealed that the ventral and dorsal LGN and the caudal olivary pretectal nucleus receive less innervation from ipRGCs than that reported in nocturnal rodents. Overall, these data suggest that although ipRGCs and their projections are very similar in diurnal and nocturnal rodents, they may not be identical.
Collapse
Affiliation(s)
- Jennifer L Langel
- Neuroscience Program, Michigan State University East Lansing, MI, USA
| | - Laura Smale
- Neuroscience Program, Michigan State University East Lansing, MI, USA ; Department of Psychology, Michigan State University East Lansing, MI, USA ; Department of Zoology, Michigan State University East Lansing, MI, USA
| | - Gema Esquiva
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen Copenhagen, Denmark ; Department of Physiology, Genetics and Microbiology, University of Alicante Alicante, Spain
| | - Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
9
|
Hannibal J, Kankipati L, Strang CE, Peterson BB, Dacey D, Gamlin PD. Central projections of intrinsically photosensitive retinal ganglion cells in the macaque monkey. J Comp Neurol 2014; 522:2231-48. [PMID: 24752373 DOI: 10.1002/cne.23588] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/16/2013] [Accepted: 01/27/2014] [Indexed: 12/23/2022]
Abstract
Circadian rhythms generated by the suprachiasmatic nucleus (SCN) are entrained to the environmental light/dark cycle via intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing the photopigment melanopsin and the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP). The ipRGCs regulate other nonimage-forming visual functions such as the pupillary light reflex, masking behavior, and light-induced melatonin suppression. To evaluate whether PACAP-immunoreactive retinal projections are useful as a marker for central projection of ipRGCs in the monkey brain, we characterized the occurrence of PACAP in melanopsin-expressing ipRGCs and in the retinal target areas in the brain visualized by the anterograde tracer cholera toxin subunit B (CtB) in combination with PACAP staining. In the retina, PACAP and melanopsin were found to be costored in 99% of melanopsin-expressing cells characterized as inner and outer stratifying melanopsin RGCs. Two macaque monkeys were anesthetized and received a unilateral intravitreal injection of CtB. Bilateral retinal projections containing colocalized CtB and PACAP immunostaining were identified in the SCN, the lateral geniculate complex including the pregeniculate nucleus, the pretectal olivary nucleus, the nucleus of the optic tract, the brachium of the superior colliculus, and the superior colliculus. In conclusion, PACAP-immunoreactive projections with colocalized CtB represent retinal projections of ipRGCs in the macaque monkey, supporting previous retrograde tracer studies demonstrating that melanopsin-containing retinal projections reach areas in the primate brain involved in both image- and nonimage-forming visual processing.
Collapse
Affiliation(s)
- J Hannibal
- Department of Clinical Biochemistry, Bispebjerg Hospital, DK2400, NV, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
10
|
Kunst M, Tso MCF, Ghosh DD, Herzog ED, Nitabach MN. Rhythmic control of activity and sleep by class B1 GPCRs. Crit Rev Biochem Mol Biol 2014; 50:18-30. [PMID: 25410535 DOI: 10.3109/10409238.2014.985815] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Members of the class B1 family of G-protein coupled receptors (GPCRs) whose ligands are neuropeptides have been implicated in regulation of circadian rhythms and sleep in diverse metazoan clades. This review discusses the cellular and molecular mechanisms by which class B1 GPCRs, especially the mammalian VPAC2 receptor and its functional homologue PDFR in Drosophila and C. elegans, regulate arousal and daily rhythms of sleep and wake. There are remarkable parallels in the cellular and molecular roles played by class B1 intercellular signaling pathways in coordinating arousal and circadian timekeeping across multiple cells and tissues in these very different genetic model organisms.
Collapse
Affiliation(s)
- Michael Kunst
- Department of Cellular and Molecular Physiology, Yale University School of Medicine , New Haven, CT , USA and
| | | | | | | | | |
Collapse
|
11
|
Purrier N, Engeland WC, Kofuji P. Mice deficient of glutamatergic signaling from intrinsically photosensitive retinal ganglion cells exhibit abnormal circadian photoentrainment. PLoS One 2014; 9:e111449. [PMID: 25357191 PMCID: PMC4214747 DOI: 10.1371/journal.pone.0111449] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/02/2014] [Indexed: 12/03/2022] Open
Abstract
Several aspects of behavior and physiology, such as sleep and wakefulness, blood pressure, body temperature, and hormone secretion exhibit daily oscillations known as circadian rhythms. These circadian rhythms are orchestrated by an intrinsic biological clock in the suprachiasmatic nuclei (SCN) of the hypothalamus which is adjusted to the daily environmental cycles of day and night by the process of photoentrainment. In mammals, the neuronal signal for photoentrainment arises from a small subset of intrinsically photosensitive retinal ganglion cells (ipRGCs) that send a direct projection to the SCN. ipRGCs also mediate other non-image-forming (NIF) visual responses such as negative masking of locomotor activity by light, and the pupillary light reflex (PLR) via co-release of neurotransmitters glutamate and pituitary adenylate cyclase-activating peptide (PACAP) from their synaptic terminals. The relative contribution of each neurotransmitter system for the circadian photoentrainment and other NIF visual responses is still unresolved. We investigated the role of glutamatergic neurotransmission for circadian photoentrainment and NIF behaviors by selective ablation of ipRGC glutamatergic synaptic transmission in mice. Mutant mice displayed delayed re-entrainment to a 6 h phase shift (advance or delay) in the light cycle and incomplete photoentrainment in a symmetrical skeleton photoperiod regimen (1 h light pulses between 11 h dark periods). Circadian rhythmicity in constant darkness also was reduced in some mutant mice. Other NIF responses such as the PLR and negative masking responses to light were also partially attenuated. Overall, these results suggest that glutamate from ipRGCs drives circadian photoentrainment and negative masking responses to light.
Collapse
Affiliation(s)
- Nicole Purrier
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - William C Engeland
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Paulo Kofuji
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
12
|
Hannibal J, Kankipati L, Strang C, Peterson B, Dacey D, Gamlin P. Central projections of intrinsically photosensitive retinal ganglion cells in the macaque monkey. J Comp Neurol 2014. [DOI: 10.1002/cne.23555] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- J. Hannibal
- Department of Clinical Biochemistry; Bispebjerg Hospital; DK2400, NV Copenhagen Denmark
| | - L. Kankipati
- Department of Ophthalmology; University of Alabama at Birmingham; Birmingham Alabama 35233
| | - C.E. Strang
- Department of Vision Sciences; University of Alabama at Birmingham; Birmingham Alabama 35233
| | - B.B. Peterson
- Department of Biological Structure and the National Primate Research Center; University of Washington; Seattle Washington 98195
| | - D. Dacey
- Department of Biological Structure and the National Primate Research Center; University of Washington; Seattle Washington 98195
| | - P.D. Gamlin
- Department of Ophthalmology; University of Alabama at Birmingham; Birmingham Alabama 35233
| |
Collapse
|
13
|
Delwig A, Majumdar S, Ahern K, LaVail MM, Edwards R, Hnasko TS, Copenhagen DR. Glutamatergic neurotransmission from melanopsin retinal ganglion cells is required for neonatal photoaversion but not adult pupillary light reflex. PLoS One 2013; 8:e83974. [PMID: 24391855 PMCID: PMC3877098 DOI: 10.1371/journal.pone.0083974] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/11/2013] [Indexed: 12/29/2022] Open
Abstract
Melanopsin-expressing retinal ganglion cells (mRGCs) in the eye play an important role in many light-activated non-image-forming functions including neonatal photoaversion and the adult pupillary light reflex (PLR). MRGCs rely on glutamate and possibly PACAP (pituitary adenylate cyclase-activating polypeptide) to relay visual signals to the brain. However, the role of these neurotransmitters for individual non-image-forming responses remains poorly understood. To clarify the role of glutamatergic signaling from mRGCs in neonatal aversion to light and in adult PLR, we conditionally deleted vesicular glutamate transporter (VGLUT2) selectively from mRGCs in mice. We found that deletion of VGLUT2 in mRGCs abolished negative phototaxis and light-induced distress vocalizations in neonatal mice, underscoring a necessary role for glutamatergic signaling. In adult mice, loss of VGLUT2 in mRGCs resulted in a slow and an incomplete PLR. We conclude that glutamatergic neurotransmission from mRGCs is required for neonatal photoaversion but is complemented by another non-glutamatergic signaling mechanism for the pupillary light reflex in adult mice. We speculate that this complementary signaling might be due to PACAP neurotransmission from mRGCs.
Collapse
Affiliation(s)
- Anton Delwig
- Department of Ophthalmology, University of California San Francisco, San Francisco, California, United States of America
| | - Sriparna Majumdar
- Department of Ophthalmology, University of California San Francisco, San Francisco, California, United States of America
| | - Kelly Ahern
- Department of Anatomy, University of California San Francisco, San Francisco, California United States of America
| | - Matthew M. LaVail
- Department of Ophthalmology, University of California San Francisco, San Francisco, California, United States of America
- Department of Anatomy, University of California San Francisco, San Francisco, California United States of America
| | - Robert Edwards
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
- Department of Neurology, University of California, San Francisco San Francisco, California, United States of America
| | - Thomas S. Hnasko
- Department of Neurology, University of California, San Francisco San Francisco, California, United States of America
- Department of Neurosciences, University of California San Diego, San Diego, California, United States of America
| | - David R. Copenhagen
- Department of Ophthalmology, University of California San Francisco, San Francisco, California, United States of America
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
14
|
Szabo A, Danyadi B, Bognar E, Szabadfi K, Fabian E, Kiss P, Mester L, Manavalan S, Atlasz T, Gabriel R, Toth G, Tamas A, Reglodi D, Kovacs K. Effect of PACAP on MAP kinases, Akt and cytokine expressions in rat retinal hypoperfusion. Neurosci Lett 2012; 523:93-8. [DOI: 10.1016/j.neulet.2012.06.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 06/15/2012] [Accepted: 06/17/2012] [Indexed: 10/28/2022]
|
15
|
Hundahl CA, Fahrenkrug J, Luuk H, Hay-Schmidt A, Hannibal J. Restricted expression of Neuroglobin in the mouse retina and co-localization with Melanopsin and Tyrosine Hydroxylase. Biochem Biophys Res Commun 2012; 425:100-6. [PMID: 22820193 DOI: 10.1016/j.bbrc.2012.07.061] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 07/13/2012] [Indexed: 10/28/2022]
Abstract
Neuroglobin (Ngb), a neuronal specific oxygen binding heme-globin, reported to be expressed at high levels in most layers of the murine retina. Ngb's function is presently unknown, but based on its high expression level and oxygen binding capabilities Ngb was proposed to function as an oxygen reservoir facilitating oxygen metabolism in highly active neurons or to function as a neuroprotectant. In the present study, we re-examined the expression pattern of Ngb in the retina using a highly validated antibody. Furthermore, intactness of retino-hypothalamic projections and the retinal expression level of Melanopsin and Tyrosine Hydroxylase were investigated in Ngb-null mice. Ngb-immunoreactivity was found in a few neurons of the ganglion cell and inner nuclear layers co-expressing Melanopsin and Tyrosine Hydroxylase, respectively. Ngb deficiency neither affected the level of Melanopsin and Tyrosine Hydroxylase proteins nor the intactness of PACAP-positive retinohypothalamic projections in the suprachiasmatic nucleus. Based on the present results, it seems unlikely that Ngb could have a major role in retinal oxygen homeostasis and neuronal survival under normal conditions. The present study suggests that a number of previously published reports have relied on antibodies with dubious specificity.
Collapse
Affiliation(s)
- C A Hundahl
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|