1
|
Gaur K, Siddique YH. Effect of Apigenin on Neurodegenerative Diseases. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:468-475. [PMID: 37038672 DOI: 10.2174/1871527322666230406082625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/08/2023] [Accepted: 02/17/2023] [Indexed: 04/12/2023]
Abstract
Neurodegenerative diseases (NDDs), such as Alzheimer's and Parkinson's, are the most frequent age-related illnesses affecting millions worldwide. No effective medication for NDDs is known to date and current disease management approaches include neuroprotection strategies with the hope of maintaining and improving the function of neurons. Such strategies will not provide a cure on their own but are likely to delay disease progression by reducing the production of neurotoxic chemicals such as reactive oxygen species (ROS) and related inflammatory chemicals. Natural compounds such as flavonoids that provide neuroprotection via numerous mechanisms have attracted much attention in recent years. This review discusses evidence from different research models and clinical trials on the therapeutic potential of one promising flavonoid, apigenin, and how it can be helpful for NDDs in the future prospects. We have also discussed its chemistry, mechanism of action, and possible benefits in various examples of NDDs.
Collapse
Affiliation(s)
- Kajal Gaur
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| |
Collapse
|
2
|
Kim C, Park S. IGF-1 protects SH-SY5Y cells against MPP +-induced apoptosis via PI3K/PDK-1/Akt pathway. Endocr Connect 2018; 7:443-455. [PMID: 29459421 PMCID: PMC5843822 DOI: 10.1530/ec-17-0350] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 02/19/2018] [Indexed: 01/13/2023]
Abstract
Insulin-like growth factor (IGF)-1 is a well-known anti-apoptotic pro-survival factor and phosphatidylinositol-3-kinase (PI3K)/Akt pathway is linked to cell survival induced by IGF-1. It is also reported that Akt signaling is modulated by 3-phosphoinositide-dependent kinase-1 (PDK1). In the current study, we investigated whether the anti-apoptotic effect of IGF-1 in SH-SY5Y cells exposed to 1-methyl-4-phenylpyridinium (MPP+) is associated with the activity of PI3K/PDK1/Akt pathway. Treatment of cells with IGF-1 inhibited MPP+-induced apoptotic cell death. IGF-1-induced activation of Akt and the protective effect of IGF-1 on MPP+-induced apoptosis were abolished by chemical inhibition of PDK1 (GSK2334470) or PI3K (LY294002). The phosphorylated levels of Akt and PDK1 were significantly suppressed after MPP+ exposure, while IGF-1 treatment completely restored MPP+-induced reductions in phosphorylation. IGF-1 protected cells from MPP+ insult by suppressing intracellular reactive oxygen species (ROS) production and malondialdehyde levels and increasing superoxide dismutase activity. Mitochondrial ROS levels were also increased during MPP+ exposure, which were attenuated by IGF-1 treatment. In addition, IGF-1-treated cells showed increased activities of succinate dehydrogenase and citrate synthase, stabilization of mitochondrial transmembrane potential, increased ratio of Bcl-2 to Bax, prevention of cytochrome c release and inhibition of caspase-3 activation with PARP cleavage. Furthermore, the protective effects of IGF-1 on oxidative stress and mitochondrial dysfunction were attenuated when cells were preincubated with GSK2334470 or LY294002. Our data suggest that IGF-1 protects SH-SY5Y cells against MPP+-associated oxidative stress by preserving mitochondrial integrity and inhibiting mitochondrial apoptotic cascades via the activation of PI3K/PDK1/Akt pathway.
Collapse
Affiliation(s)
- Chanyang Kim
- Department of Biomedical ScienceGraduate School, Kyung Hee University, Seoul, Korea
| | - Seungjoon Park
- Department of Pharmacology and Medical Research Center for Bioreaction to ROS and Biomedical Science InstituteSchool of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
3
|
The Short Isoform of DNAJB6 Protects against 1-Methyl-4-phenylpridinium Ion-Induced Apoptosis in LN18 Cells via Inhibiting Both ROS Formation and Mitochondrial Membrane Potential Loss. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7982389. [PMID: 28280525 PMCID: PMC5322441 DOI: 10.1155/2017/7982389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/31/2016] [Accepted: 11/30/2016] [Indexed: 01/20/2023]
Abstract
In a previous study, we found that the short isoform of DNAJB6 (DNAJB6(S)) had been decreased in the striatum of a mouse model of Parkinson's disease (PD) induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). DNAJB6, one of the heat shock proteins, has been implicated in the pathogenesis of PD. In this study, we explored the cytoprotective effect of DNAJB6(S) against 1-methyl-4-phenylpyridinium ion- (MPP+-) induced apoptosis and the underlying molecular mechanisms in cultured LN18 cells from astrocytic tumors. We observed that MPP+ significantly reduced the cell viability and induced apoptosis in LN18 glioblastoma cells. DNAJB6(S) protected LN18 cells against MPP+-induced apoptosis not only by suppressing Bax cleavage but also by inhibiting a series of apoptotic events including loss of mitochondrial membrane potential, increase in intracellular reactive oxygen species, and activation of caspase-9. These observations suggest that the cytoprotective effects of DNAJB6(S) may be mediated, at least in part, by the mitochondrial pathway of apoptosis.
Collapse
|
4
|
Cai T, Luo W, Ruan D, Wu YJ, Fox DA, Chen J. The History, Status, Gaps, and Future Directions of Neurotoxicology in China. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:722-732. [PMID: 26824332 PMCID: PMC4892912 DOI: 10.1289/ehp.1409566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 09/25/2015] [Accepted: 01/15/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Rapid economic development in China has produced serious ecological, environmental, and health problems. Neurotoxicity has been recognized as a major public health problem. The Chinese government, research institutes, and scientists conducted extensive studies concerning the source, characteristics, and mechanisms of neurotoxicants. OBJECTIVES This paper presents, for the first time, a comprehensive history and review of major sources of neurotoxicants, national bodies/legislation engaged, and major neurotoxicology research in China. METHODS Peer-reviewed research and pollution studies by Chinese scientists from 1991 to 2015 were examined. PubMed, Web of Science and Chinese National Knowledge Infrastructure (CNKI) were the major search tools. RESULTS The central problem is an increased exposure to neurotoxicants from air and water, food contamination, e-waste recycling, and manufacturing of household products. China formulated an institutional framework and standards system for management of major neurotoxicants. Basic and applied research was initiated, and international cooperation was achieved. The annual number of peer-reviewed neurotoxicology papers from Chinese authors increased almost 30-fold since 2001. CONCLUSIONS Despite extensive efforts, neurotoxicity remains a significant public health problem. This provides great challenges and opportunities. We identified 10 significant areas that require major educational, environmental, governmental, and research efforts, as well as attention to public awareness. For example, there is a need to increase efforts to utilize new in vivo and in vitro models, determine the potential neurotoxicity and mechanisms involved in newly emerging pollutants, and examine the effects and mechanisms of mixtures. In the future, we anticipate working with scientists worldwide to accomplish these goals and eliminate, prevent and treat neurotoxicity. CITATION Cai T, Luo W, Ruan D, Wu YJ, Fox DA, Chen J. 2016. The history, status, gaps, and future directions of neurotoxicology in China. Environ Health Perspect 124:722-732; http://dx.doi.org/10.1289/ehp.1409566.
Collapse
Affiliation(s)
- Tongjian Cai
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Wenjing Luo
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Diyun Ruan
- Neurotoxicology Lab, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Yi-Jun Wu
- Laboratory of Molecular Toxicology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Donald A. Fox
- College of Optometry,
- Department of Biology and Biochemistry,
- Department of Pharmacological and Pharmaceutical Sciences, and
- Department of Health and Human Performance, University of Houston, Houston, Texas, USA
| | - Jingyuan Chen
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
5
|
Wang S, Song T, Leng C, Lan K, Ning J, Chu H. Propofol protects against the neurotoxicity of 1‑methyl‑4‑phenylpyridinium. Mol Med Rep 2015; 13:309-14. [PMID: 26572916 DOI: 10.3892/mmr.2015.4570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 09/22/2015] [Indexed: 11/05/2022] Open
Abstract
Parkinson's disease (PD) is a progressive and degenerative disorder of the central nervous system, characterized by the loss of dopaminergic neurons and muscular rigidity. Treatment with propofol (2,6‑diisopropylphenol) has been observed to attenuate oxidative stress injury via inhibition of programmed cell death. Results from the present study indicate that propofol treatment attenuates 1‑methyl‑4‑phenylpyridinium (MPP+)‑induced oxidative stress, which was demonstrated by increased levels of reactive oxygen species, 4‑hydroxy‑2‑nonenal and protein carbonyls. Furthermore, it was demonstrated that propofol may ameliorate MPP+‑induced mitochondrial dysfunction by increasing the level of ATP and the mitochondrial membrane potential. MTT and lactate dehydrogenase assays indicated that propofol treatment reduces cell vulnerability to MPP+‑induced insult. Propofol was also observed to prevent apoptotic signals by reducing the ratio of Bcl‑2‑associated X protein to B‑cell lymphoma 2, reducing the expression level of cleaved caspase‑3 and attenuating cytochrome c release. Thus, propofol may present as a novel therapeutic strategy for the treatment of PD.
Collapse
Affiliation(s)
- Shoushi Wang
- Department of Anesthesiology, Qingdao Central Hospital, Qingdao, Shandong 266042, P.R. China
| | - Tingting Song
- Department of Oncology, Qingdao Central Hospital, Qingdao, Shandong 266042, P.R. China
| | - Cuibo Leng
- Department of Anesthesiology, Qingdao Central Hospital, Qingdao, Shandong 266042, P.R. China
| | - Ketao Lan
- Department of Cardiology, Qingdao Central Hospital, Qingdao, Shandong 266042, P.R. China
| | - Jishun Ning
- Department of Anesthesiology, Qingdao Central Hospital, Qingdao, Shandong 266042, P.R. China
| | - Haichen Chu
- Department of Anesthesiology, Affiliated Hospital of Qingdao University Medical College, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
6
|
Zhou JJ, Zhai SY, Zhang HN, Wang YH, Pu XP. Neuroprotective effects of 3-O-demethylswertipunicoside against MPTP-induced Parkinson's disease in vivo and its antioxidant properties in vitro. Brain Res 2015. [PMID: 26210618 DOI: 10.1016/j.brainres.2015.06.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
3-O-demethylswertipunicoside (3-ODS) has been reported to protect dopaminergic neurons against neurotoxicity induced by 1-methyl-4-phenylpyridinium (MPP(+)) in PC12 cells. Here, we investigate the neuroprotective effects in vivo and antioxidant activities in vitro of 3-ODS. In the 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP)-treated mouse model of Parkinson's disease (PD), 3-ODS dose-dependently improved motor coordination (as shown by rotarod test), increased the contents of dopamine (DA) and its metabolites in the striatum, and increased the number of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra (SN). In addition, 3-ODS also increased the spine density in hippocampal CA1 neurons. In antioxidant assays, 3-ODS showed a strong capacity in scavenging hydroxyl radical, superoxide anion and 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical in a concentration-dependent manner. Taken together, we conclude that 3-ODS attenuates the PD-related motor deficits mainly through its neuroprotective effects, growth-promoting effects on spine density, and its antioxidant activities.
Collapse
Affiliation(s)
- Jun-Jun Zhou
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China; Department of Pharmacology, Dalian Medical University, Dalian 116044, PR China; Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Shen-Yu Zhai
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China; Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Hui-Nan Zhang
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China; Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Yue-Hua Wang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Xiao-Ping Pu
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China; Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China.
| |
Collapse
|
7
|
LIU WEIHAI, KONG SONGZHI, XIE QINGFENG, SU JIYAN, LI WENJIE, GUO HUIZHEN, LI SHANSHAN, FENG XUEXUAN, SU ZIREN, XU YANG, LAI XIAOPING. Protective effects of apigenin against 1-methyl-4-phenylpyridinium ion-induced neurotoxicity in PC12 cells. Int J Mol Med 2014; 35:739-46. [DOI: 10.3892/ijmm.2014.2056] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 12/04/2014] [Indexed: 11/06/2022] Open
|
8
|
Fujimaki T, Saiki S, Tashiro E, Yamada D, Kitagawa M, Hattori N, Imoto M. Identification of licopyranocoumarin and glycyrurol from herbal medicines as neuroprotective compounds for Parkinson's disease. PLoS One 2014; 9:e100395. [PMID: 24960051 PMCID: PMC4069009 DOI: 10.1371/journal.pone.0100395] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/19/2014] [Indexed: 12/21/2022] Open
Abstract
In the course of screening for the anti-Parkinsonian drugs from a library of traditional herbal medicines, we found that the extracts of choi-joki-to and daio-kanzo-to protected cells from MPP+-induced cell death. Because choi-joki-to and daio-kanzo-to commonly contain the genus Glycyrrhiza, we isolated licopyranocoumarin (LPC) and glycyrurol (GCR) as potent neuroprotective principals from Glycyrrhiza. LPC and GCR markedly blocked MPP+-induced neuronal PC12D cell death and disappearance of mitochondrial membrane potential, which were mediated by JNK. LPC and GCR inhibited MPP+-induced JNK activation through the suppression of reactive oxygen species (ROS) generation, thereby inhibiting MPP+-induced neuronal PC12D cell death. These results indicated that LPC and GCR derived from choi-joki-to and daio-kanzo-to would be promising drug leads for PD treatment in the future.
Collapse
Affiliation(s)
- Takahiro Fujimaki
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Shinji Saiki
- Department of Neurology, Juntendo University School of Medicine, Bunkyo, Tokyo
| | - Etsu Tashiro
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Daisuke Yamada
- Department of Neurology, Juntendo University School of Medicine, Bunkyo, Tokyo
| | - Mitsuhiro Kitagawa
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Bunkyo, Tokyo
- * E-mail: (NH); (MI)
| | - Masaya Imoto
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
- * E-mail: (NH); (MI)
| |
Collapse
|
9
|
Cheng B, Guo Y, Li C, Ji B, Pan Y, Chen J, Bai B. Edaravone protected PC12 cells against MPP(+)-cytoxicity via inhibiting oxidative stress and up-regulating heme oxygenase-1 expression. J Neurol Sci 2014; 343:115-9. [PMID: 24930399 DOI: 10.1016/j.jns.2014.05.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 05/20/2014] [Accepted: 05/22/2014] [Indexed: 01/30/2023]
Abstract
Oxidative stress is involved in the pathogenesis of Parkinson's disease (PD). Edaravone has been shown to have a neuroprotective effect. In the present work, we investigated the effect of edaravone on 1-methyl-4-phenylpyridinium (MPP(+))-treated PC12 cells. Edaravone inhibited the decrease of cell viability and apoptosis induced by MPP(+) in PC12 cells. In addition, edaravone alleviated intracellular reactive oxygen species (ROS) production. MPP(+) induced heme oxygenase-1 (HO-1) expression, which was further enhanced by edaravone. The inhibitor of HO-1 zinc protoporphyrin-IX attenuated the neuroprotection of edaravone. So edaravone protected PC12 cells against MPP(+)-cytoxicity via inhibiting oxidative stress and up-regulating HO-1 expression. The data showed that edaravone was neuroprotective and could be potentially therapeutics for PD in future.
Collapse
Affiliation(s)
- Baohua Cheng
- Neurobiology Institute, Jining Medical University, Jining 272067, PR China
| | - Yunliang Guo
- Shandong University School of Medicine, Jinan 250012, PR China
| | - Chuangang Li
- The Second Hospital of Shandong University, Jinan 250033, PR China
| | - Bingyuan Ji
- Neurobiology Institute, Jining Medical University, Jining 272067, PR China
| | - Yanyou Pan
- Neurobiology Institute, Jining Medical University, Jining 272067, PR China
| | - Jing Chen
- Neurobiology Institute, Jining Medical University, Jining 272067, PR China.
| | - Bo Bai
- Neurobiology Institute, Jining Medical University, Jining 272067, PR China.
| |
Collapse
|
10
|
Zheng XY, Yang YF, Li W, Zhao X, Sun Y, Sun H, Wang YH, Pu XP. Two xanthones from Swertia punicea with hepatoprotective activities in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2014; 153:854-863. [PMID: 24690777 DOI: 10.1016/j.jep.2014.03.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/21/2014] [Accepted: 03/22/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Swertia punicea Hemsl. (Gentianaceae) is more commonly known as "Ganyan-cao" and used mainly as a traditional Chinese folk medicine for the treatment of acute bilious hepatitis, cholecystitis, fever, intoxification and jaundice. MATERIALS AND METHODS The active hepatoprotective constituents of Swertia punicea were purified using various column chromatography techniques. The structures of two isolated compounds were determined on the basis of spectroscopic data interpretation such as NMR analysis. The hepatoprotective activities of isolated compounds were evaluated by using hepatotoxicity in vitro and dimethylnitrosamine-induced rat hepatic fibrosis in vivo, respectively. RESULTS Two xanthones, 1, 7-dihydroxy-3, 4, 8-trimethoxyxanthone (1) and bellidifolin (2) were isolated from the stems of Swertia punicea. The compounds 1 and 2 exhibited notable hepatoprotective activities against carbon tetrachloride (CCl4) -induced HepG2 cell damage, and effectively alleviated the levels of aspartate transaminase (AST), lactate dehydrogenase (LDH), superoxide dismutase (SOD) and malonic dialdehyde (MDA) induced by CCl₄ in a concentration-dependent manner. Co-treatment with compound 2 significantly increased the cell viability compared with N-acetyl-p-aminophenol (APAP) treatment. Compound 2 also alleviated APAP-induced hepatotoxicity by increasing glutathione (GSH) content and decreasing hydroxyl free radical (·OH) levels and reactive oxygen specises (ROS) production. In addition, the protective effect of compound 1 significantly alleviated DMN-induced liver inflammation and fibrosis. Oral administration of compound 1 recovered the reduction of albumin (ALB) and reversed the elevation of serum alanine transaminase (ALT), AST and total bilirubin (TBIL) in dimethylnitrosamine (DMN)-induced fibrotic rats. Severe oxidative stress induced in fibrotic rats was evidenced by a 1.5-fold elevation in MDA and a fall in the SOD activity, and treatment with compound 1 protected against these adverse effects. Recovery of rat liver tissue against DMN-induced hepatocellular necrosis, inflammatory changes and hepatic fibrosis by compound 1 is also confirmed by H&E and Masson stained histopathological evaluation of liver tissue. CONCLUSION Two xanthones from Swertia punicea exhibited hepatoprotective activities in vitro (compounds 1 and 2) and in vivo (compound 1), respectively.
Collapse
Affiliation(s)
- Xi-Yuan Zheng
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China; Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, PR China
| | - Ying-Fan Yang
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China; Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, PR China
| | - Wan Li
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China; Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, PR China
| | - Xin Zhao
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China
| | - Yi Sun
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China
| | - Hua Sun
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Xian Nong Tan Street 1, PR China
| | - Yue-Hua Wang
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Xian Nong Tan Street 1, PR China
| | - Xiao-Ping Pu
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China.
| |
Collapse
|
11
|
Pyszko J, Strosznajder JB. Sphingosine kinase 1 and sphingosine-1-phosphate in oxidative stress evoked by 1-methyl-4-phenylpyridinium (MPP+) in human dopaminergic neuronal cells. Mol Neurobiol 2014; 50:38-48. [PMID: 24399507 DOI: 10.1007/s12035-013-8622-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 12/15/2013] [Indexed: 12/21/2022]
Abstract
Sphingosine kinases (Sphk1/2) are crucial enzymes in regulation of the biostat between sphingosine-1-phosphate (S1P) and ceramide and play an important role in the pathogenesis/pathomechanism of Alzheimer's disease (AD). These enzymes synthesise S1P, which regulates neurotransmission, synaptic function and neuron cell proliferation, by activating five G protein-coupled receptors (S1P1-5). However, S1P synthesised by Sphk2 could be involved in amyloid β (Aβ) release by stimulation of Aβ precursor protein degradation. The significance of this bioactive sphingolipid in the pathogenesis of Parkinson's disease (PD) is unknown. The aim of our study was to investigate the expression level of Sphk1 and its role in human dopaminergic neuronal cell (SH-SY5Y) viability under oxidative stress, evoked by 1-methyl-4-phenylpyridinium (MPP+). Moreover, the mechanism of S1P action on the death signalling pathway in these experimental conditions was evaluated. Our study indicated marked downregulation of Sphk1 expression in this cellular PD model. Inhibition of Sphk1 decreased SH-SY5Y cell viability and concomitantly enhanced the reactive oxygen species (ROS) level. It was found that exogenous S1P (1 μM) exerted the neuroprotective effect by activation of Sphk1 and S1P1 receptor gene expression. Moreover, S1P downregulated Bax and harakiri, death protein 5 (Hrk/DP5) expression and enhanced cell viability in MPP+-treated cells. The neuroprotective mechanism of S1P is mainly dependent on S1P1 receptor signalling, which was indicated by using specific agonists and antagonists of S1P1 receptor. The results show that S1P and S1P1 receptor agonists protected a significant population of neuronal cells against death.
Collapse
Affiliation(s)
- Joanna Pyszko
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|