1
|
Kalinowski D, Bogus-Nowakowska K, Kozłowska A, Równiak M. The Co-Expression Pattern of Calcium-Binding Proteins with γ-Aminobutyric Acid and Glutamate Transporters in the Amygdala of the Guinea Pig: Evidence for Glutamatergic Subpopulations. Int J Mol Sci 2023; 24:15025. [PMID: 37834473 PMCID: PMC10573686 DOI: 10.3390/ijms241915025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
The amygdala has large populations of neurons utilizing specific calcium-binding proteins such as parvalbumin (PV), calbindin (CB), or calretinin (CR). They are considered specialized subsets of γ-aminobutyric acid (GABA) interneurons; however, many of these cells are devoid of GABA or glutamate decarboxylase. The neurotransmitters used by GABA-immunonegative cells are still unknown, but it is suggested that a part may use glutamate. Thus, this study investigates in the amygdala of the guinea pig relationships between PV, CB, or CR-containing cells and GABA transporter (VGAT) or glutamate transporter type 2 (VGLUT2), markers of GABAergic and glutamatergic neurons, respectively. The results show that although most neurons using PV, CB, and CR co-expressed VGAT, each of these populations also had a fraction of VGLUT2 co-expressing cells. For almost all neurons using PV (~90%) co-expressed VGAT, while ~1.5% of them had VGLUT2. The proportion of neurons using CB and VGAT was smaller than that for PV (~80%), while the percentage of cells with VGLUT2 was larger (~4.5%). Finally, only half of the neurons using CR (~53%) co-expressed VGAT, while ~3.5% of them had VGLUT2. In conclusion, the populations of neurons co-expressing PV, CB, and CR are in the amygdala, primarily GABAergic. However, at least a fraction of neurons in each of them co-express VGLUT2, suggesting that these cells may use glutamate. Moreover, the number of PV-, CB-, and CR-containing neurons that may use glutamate is probably larger as they can utilize VGLUT1 or VGLUT3, which are also present in the amygdala.
Collapse
Affiliation(s)
- Daniel Kalinowski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, pl. Łódzki 3, 10-727 Olsztyn, Poland; (K.B.-N.); (M.R.)
| | - Krystyna Bogus-Nowakowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, pl. Łódzki 3, 10-727 Olsztyn, Poland; (K.B.-N.); (M.R.)
| | - Anna Kozłowska
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland;
| | - Maciej Równiak
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, pl. Łódzki 3, 10-727 Olsztyn, Poland; (K.B.-N.); (M.R.)
| |
Collapse
|
2
|
Równiak M, Bogus‐Nowakowska K, Kalinowski D, Kozłowska A. The evolutionary trajectories of the individual amygdala nuclei in the common shrew, guinea pig, rabbit, fox and pig: A consequence of embryological fate and mosaic-like evolution. J Anat 2022; 240:489-502. [PMID: 34648181 PMCID: PMC8819052 DOI: 10.1111/joa.13571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 11/30/2022] Open
Abstract
The amygdala primarily evolved as a danger detector that regulates emotional behaviours and learning. However, it is also engaged in stress responses as well as olfactory/pheromonal and reproductive functions. All of these functions are processed by a set of nuclei which are derived from different telencephalic sources (pallial and subpallial) and have a unique cellular structure and specific connections. It is unclear how these individual anatomical and functional units evolved to fit the amygdala to the specific needs of various mammals. Thus, this study provides quantitative data regarding volumes, neuron density and neuron numbers in the main amygdala nuclei of the common shrew, guinea pig, rabbit, fox and pig - species from across the mammalian phylogeny which differ in brain complexity and ecology. The results show that the volume of the amygdala and its individual nuclei scale with negative allometry relative to brain mass (an allometric coefficient below one). However, in relation to the whole amygdala volume, volumes and volumetric percentages of the lateral (LA) and basomedial (BM) nuclei scale with positive allometry, for the medial (ME) and lateral olfactory tract (NLOT) nuclei these parameters scale with negative allometry while the values of these parameters for the basolateral (BL), central (CE) and cortical (CO) nuclei scale with isometry. Moreover, density of neurons scales with strong negative allometry relative to both brain mass and amygdala volume with values of allometric coefficient below zero across studied species. This value for BL is significantly lower than that for the whole amygdala, for ME it is significantly higher while values for NLOT, CE, CO, LA and BM are quite similar to the value for whole amygdala. Finally, neuron numbers in the whole amygdala and its individual nuclei scale with negative allometry in relation to brain mass. However, in relation to the number of neurons in the whole amygdala, neuron numbers and percentages of neurons for LA and BM scale with positive allometry, for BL and NLOT they scale with negative allometry while the values of these parameters for CE, CO and ME scale with isometry. In conclusion, all of these results indicate that each of the nuclei studied displays a different and unique pattern of evolution in relation to brain mass or the whole amygdala volume. These patterns do not match with the various classical concepts of amygdala parcellation; however, in some way, they reflect diversity revealed by the expression of homeobox genes in various embryological studies.
Collapse
Affiliation(s)
- Maciej Równiak
- Department of Animal Anatomy and PhysiologyFaculty of Biology and BiotechnologyUniversity of Warmia and Mazury in OlsztynOlsztynPoland
| | - Krystyna Bogus‐Nowakowska
- Department of Animal Anatomy and PhysiologyFaculty of Biology and BiotechnologyUniversity of Warmia and Mazury in OlsztynOlsztynPoland
| | - Daniel Kalinowski
- Department of Animal Anatomy and PhysiologyFaculty of Biology and BiotechnologyUniversity of Warmia and Mazury in OlsztynOlsztynPoland
| | - Anna Kozłowska
- Department of Human Physiology and PathophysiologySchool of MedicineUniversity of Warmia and Mazury in OlsztynOlsztynPoland
| |
Collapse
|
3
|
Gobbo DR, Pereira LDS, Ferreira JGP, de Castro Horta-Junior JA, Bittencourt JC, Sá SI. Effects of ovariectomy on the inputs from the medial nucleus of the amygdala to the ventromedial nucleus of the hypothalamus in young adult rats. Neurosci Lett 2021; 746:135657. [PMID: 33482312 DOI: 10.1016/j.neulet.2021.135657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
During puberty, sexual hormones induce crucial changes in neural circuit organization, leading to significant sexual dimorphism in adult behaviours. The ventrolateral division of the ventromedial nucleus of the hypothalamus (VMHvl) is the major neural site controlling the receptive component of female sexual behaviour, which is dependent on ovarian hormones. The inputs to the VMHvl, originating from the medial nucleus of the amygdala (MeA), transmit essential information to trigger such behaviour. In this study, we investigated the projection pattern of the MeA to the VMHvl in ovariectomized rats at early puberty. Six-week-old Sprague-Dawley rats were ovariectomized (OVX) and, upon reaching 90 days of age, were subjected to iontophoretic injections of the neuronal anterograde tracer Phaseolus vulgaris leucoagglutinin into the MeA. Projections from the MeA to the VMHvl and to other structures included in the neural circuit responsible for female sexual behaviour were analysed in the Control and OVX groups. The results of the semi-quantitative analysis showed that peripubertal ovariectomy reduced the density of intra-amygdalar fibres. The stereological estimates, however, failed to find changes in the organization of the terminal fields of nerve fibres from the MeA to the VMHvl in the adult. The present data show that ovariectomized rats during the peripubertal phase did not undergo significant changes in MeA fibres reaching the VMHvl; however, they suggest a possible effect of ovariectomy on MeA connectivity under amygdalar subnuclei.
Collapse
Affiliation(s)
- Denise Ribeiro Gobbo
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Laboratorio de Neuroanatomia Quimica, Departamento de Anatomia, Sao Paulo, SP, Brazil
| | - Lais da Silva Pereira
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Laboratorio de Neuroanatomia Quimica, Departamento de Anatomia, Sao Paulo, SP, Brazil
| | - Jozélia Gomes Pacheco Ferreira
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Laboratorio de Neuroanatomia Quimica, Departamento de Anatomia, Sao Paulo, SP, Brazil
| | | | - Jackson Cioni Bittencourt
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Laboratorio de Neuroanatomia Quimica, Departamento de Anatomia, Sao Paulo, SP, Brazil; Universidade de Sao Paulo, Instituto de Psicologia, Nucleo de Neurociências e Comportamento, São Paulo, SP, Brazil.
| | - Susana Isabel Sá
- Department of Biomedicine, Unit of Anatomy, Faculty of Medicine, University of Porto, Porto, Portugal; CINTESIS, Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
4
|
Równiak M, Bogus-Nowakowska K. The amygdala of the common shrew, guinea pig, rabbit, fox and pig: five flavours of the mammalian amygdala as a consequence of clade-specific mosaic-like evolution. J Anat 2020; 236:891-905. [PMID: 31898329 DOI: 10.1111/joa.13148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2019] [Indexed: 01/11/2023] Open
Abstract
The amygdala is a part of neural networks that contribute to the regulation of emotional behaviours and emotional learning, stress response, and olfactory, pheromonal and reproductive functions. All these various functions are processed by the three main functional systems, frontotemporal, autonomic and olfactory, which are derived from different telencephalic sources (claustrum, striatum and olfactory cortex) and are represented, respectively, by the basolateral complex (BLC), the central complex (CC) and corticomedial complex (CMC) of the amygdala. The question arises of how these three functional systems evolved during mammalian phylogeny to fit the amygdala to specific needs of various animals. In the present study, we provide quantitative information regarding the individual volumes and neuron numbers in the BLC, CC and CMC of the common shrew, guinea pig, rabbit, fox and pig, a series of animals arranged according to increasing size and complexity of the brain. The results show that, in this series of animals, the BLC underwent a gradual size increase in volume and number of neurons, whereas the CMC was gradually reduced with regard to both these measures. The CC was more or less conserved across studied species. For example, the volume of the amygdala in pigs is ~250 times larger than that in shrews and it also has almost 26 times as many neurons as the amygdala of shrews. However, the volumes of the BLC, CC and CMC were ~380, 208 and 148 times larger, respectively, in pigs than in shrews. The number of neurons in these three regions was ~38, 23 and 20 times greater, respectively, in pigs than in shrews. The results also show striking morphometric similarities of the amygdala in the guinea pig and rabbit as well as fox and pig. For example, the percentages of neurons in the fox and pig are 42.23% and 42.78%, respectively, for the BLC, 16.64% and 16.58%, respectively, for the CC, and 41.12% and 40.64%, respectively, for the CMC. In conclusion, our results indicate that the amygdala does not evolve as a single unit but, instead, the three main functional systems evolved independently, which suggests that brain structures with major functional links evolve together independently of evolutionary changes in other unrelated structures. The size progression of the BLC parallels the size progression of the neocortex with which it is strongly functionally linked, whereas the CMC is strongly connected to olfactory regions, and all these structures follow the same regression course. Remarkable morphometric similarity of the amygdala in the guinea pig and rabbit as well as in the fox and pig, however, suggest that there must also be another mechanism shaping the morphology of the amygdala and the brain during evolution. The gradual nature of size changes in the BLC and CMC support this hypothesis as well.
Collapse
Affiliation(s)
- Maciej Równiak
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Olsztyn, Poland
| | - Krystyna Bogus-Nowakowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
5
|
Cherry JA, Baum MJ. Sex differences in main olfactory system pathways involved in psychosexual function. GENES BRAIN AND BEHAVIOR 2019; 19:e12618. [PMID: 31634411 DOI: 10.1111/gbb.12618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 01/21/2023]
Abstract
We summarize literature from animal and human studies assessing sex differences in the ability of the main olfactory system to detect and process sex-specific olfactory signals ("pheromones") that control the expression of psychosexual functions in males and females. A case is made in non primate mammals for an obligatory role of pheromonal signaling via the main olfactory system (in addition to the vomeronasal-accessory olfactory system) in mate recognition and sexual arousal, with male-specific as well as female-specific pheromones subserving these functions in the opposite sex. Although the case for an obligatory role of pheromones in mate recognition and mating among old world primates, including humans, is weaker, we review the current literature assessing the role of putative human pheromones (eg, AND, EST, "copulin"), detected by the main olfactory system, in promoting mate choice and mating in men and women. Based on animal studies, we hypothesize that sexually dimorphic effects of putative human pheromones are mediated via main olfactory inputs to the medial amygdala which, in turn, transmits olfactory information to sites in the hypothalamus that regulate reproduction.
Collapse
Affiliation(s)
- James A Cherry
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts
| | - Michael J Baum
- Department of Biology, Boston University, Boston, Massachusetts
| |
Collapse
|
6
|
Równiak M. The neurons expressing calcium-binding proteins in the amygdala of the guinea pig: precisely designed interface for sex hormones. Brain Struct Funct 2017; 222:3775-3793. [PMID: 28456912 PMCID: PMC5676811 DOI: 10.1007/s00429-017-1432-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 04/24/2017] [Indexed: 01/18/2023]
Abstract
The generation of emotional responses by the amygdala is determined largely by the balance of excitatory and inhibitory inputs to its principal neurons. These responses are often sex-specific, and any imbalance in excitatory and/or inhibitory tones leads to serious psychiatric disorders which occur with different rates in men versus women. To investigate the neural basis of sex-specific processing in the amygdala, relationships between the neurons expressing calbindin (CB), parvalbumin (PV) and calretinin (CR), which form in the amygdala main subsets of γ-aminobutyric acid (GABA)-ergic inhibitory system, and neurons endowed with oestrogen alpha (ERα), oestrogen beta (ERβ) or androgen (AR) receptors were analysed using double immunohistochemistry in male and female guinea pig subjects. The results show that in various nuclei of the amygdala in both sexes small subsets of CB neurons and substantial proportions of PV neurons co-express ERβ, while many of the CR neurons co-express ERα. Both these oestrogen-sensitive populations are strictly separated as CB and PV neurons almost never co-express ERα, while CR cells are usually devoid of ERβ. In addition, in the medial nucleus and some other neighbouring regions, there are non-overlapping subpopulations of CB and CR neurons which co-express AR. In conclusion, the localization of ERα, ERβ or AR within subsets of GABAergic interneurons across diverse amygdaloid regions suggests that steroid hormones may exert a significant influence over local neuronal activity by directly modulating inhibitory tone. The control of inhibitory tone may be one of the mechanisms whereby oestrogen and androgen could modulate amygdala processing in a sex-specific manner. Another mechanism may be thorough steroid-sensitive projection neurons, which are most probably located in the medial and central nuclei.
Collapse
Affiliation(s)
- Maciej Równiak
- Department of Comparative Anatomy, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, pl. Łódzki 3, 10-727, Olsztyn, Poland.
| |
Collapse
|
7
|
Marwha D, Halari M, Eliot L. Meta-analysis reveals a lack of sexual dimorphism in human amygdala volume. Neuroimage 2016; 147:282-294. [PMID: 27956206 DOI: 10.1016/j.neuroimage.2016.12.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/27/2016] [Accepted: 12/08/2016] [Indexed: 12/31/2022] Open
Abstract
The amygdala plays a key role in many affective behaviors and psychiatric disorders that differ between men and women. To test whether human amygdala volume (AV) differs reliably between the sexes, we performed a systematic review and meta-analysis of AVs reported in MRI studies of age-matched healthy male and female groups. Using four search strategies, we identified 46 total studies (58 matched samples) from which we extracted effect sizes for the sex difference in AV. All data were converted to Hedges g values and pooled effect sizes were calculated using a random-effects model. Each dataset was further meta-regressed against study year and average participant age. We found that uncorrected amygdala volume is about 10% larger in males, with pooled sex difference effect sizes of g=0.581 for right amygdala (κ=28, n=2022), 0.666 for left amygdala (κ=28, n=2006), and 0.876 for bilateral amygdala (κ=16, n=1585) volumes (all p values < 0.001). However, this difference is comparable to the sex differences in intracranial volume (ICV; g=1.186, p<.001, 11.9% larger in males, κ=11) and total brain volume (TBV; g=1.278, p<0.001, 11.5% larger in males, κ=15) reported in subsets of the same studies, suggesting the sex difference in AV is a product of larger brain size in males. Among studies reporting AVs normalized for ICV or TBV, sex difference effect sizes were small and not statistically significant: g=0.171 for the right amygdala (p=0.206, κ=13, n=1560); 0.233 for the left amygdala (p=0.092, κ=12, n=1512); and 0.257 for bilateral volume (p=0.131, κ=5, n=1629). These values correspond to less than 0.1% larger corrected right AV and 2.5% larger corrected left AV in males compared to females. In summary, AV is not selectively enhanced in human males, as often claimed. Although we cannot rule out subtle male-female group differences, it is not accurate to refer to the human amygdala as "sexually dimorphic."
Collapse
Affiliation(s)
- Dhruv Marwha
- Department of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine & Science, United States
| | - Meha Halari
- Department of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine & Science, United States
| | - Lise Eliot
- Department of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine & Science, United States.
| |
Collapse
|
8
|
Development-dependent behavioral change toward pups and synaptic transmission in the rhomboid nucleus of the bed nucleus of the stria terminalis. Behav Brain Res 2016; 325:131-137. [PMID: 27793732 DOI: 10.1016/j.bbr.2016.10.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/03/2016] [Accepted: 10/19/2016] [Indexed: 11/22/2022]
Abstract
Sexually naïve male C57BL/6 mice aggressively bite unfamiliar pups. This behavior, called infanticide, is considered an adaptive reproductive strategy of males of polygamous species. We recently found that the rhomboid nucleus of the bed nucleus of the stria terminalis (BSTrh) is activated during infanticide and that the bilateral excitotoxic lesions of BSTrh suppress infanticidal behavior. Here we show that 3-week-old male C57BL/6 mice rarely engaged in infanticide and instead, provided parental care toward unfamiliar pups, consistent with observations in rats and other rodent species. This inhibition of infanticide at the periweaning period is functional because the next litter will be born at approximately the time of weaning of the previous litter through maternal postpartum ovulation. However, the mechanism of this age-dependent behavioral change is unknown. Therefore, we performed whole-cell patch clamp recordings of BSTrh and compared evoked neurotransmission in response to the stimulation of the stria terminalis of adult and 3-week-old male mice. Although we were unable to detect a significant difference in the amplitudes of inhibitory neurotransmission, the amplitudes and the paired-pulse ratio of evoked excitatory postsynaptic currents differed between adult and 3-week-old mice. These data suggest that maturation of the synaptic terminal in BSTrh that occurred later than 3 weeks after birth may mediate by the adaptive change from parental to infanticidal behavior in male mice.
Collapse
|
9
|
The densities of calbindin and parvalbumin, but not calretinin neurons, are sexually dimorphic in the amygdala of the guinea pig. Brain Res 2015; 1604:84-97. [DOI: 10.1016/j.brainres.2015.01.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/19/2015] [Accepted: 01/28/2015] [Indexed: 11/23/2022]
|
10
|
Koss WA, Belden CE, Hristov AD, Juraska JM. Dendritic remodeling in the adolescent medial prefrontal cortex and the basolateral amygdala of male and female rats. Synapse 2013; 68:61-72. [PMID: 24105875 DOI: 10.1002/syn.21716] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/31/2013] [Indexed: 12/12/2022]
Abstract
There is recent evidence of continuing development throughout adolescence in two neural areas involved in emotion and cognition, the basolateral amygdala (BLN) and the medial prefrontal cortex (mPFC). Previous research from our laboratory has demonstrated a cellular loss in both of these brain regions in rats between postnatal day (P) 35 and 90. This study investigates dendritic changes in pyramidal neurons of the BLN and Layer 5 of the mPFC at P20 (juvenile), 35 (puberty), and 90 (adulthood) in hooded rats of both sexes. Dendritic branching and dendritic spines were quantified in Golgi-Cox impregnated tissue. Between P20 and 35, dendritic length and complexity, as well as the density of dendritic spines, increased in both structures. Between P35 and 90, dendritic spines in the mPFC neurons significantly decreased in both sexes, while a loss of basilar dendrites was only detected in females. In the BLN, there was an increase in the number of branches between P35 and 90 without an increase in the total length of the dendritic tree. BLN spine density also remained stable during this period. These results show that the dendritic tree grows prior to puberty while dendritic remodeling and pruning occurs after puberty in both of these neural areas. This late development may lead to susceptibilities to psychopathologies and addictions that often develop at this time.
Collapse
Affiliation(s)
- Wendy A Koss
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, Illinois, 61820
| | | | | | | |
Collapse
|