1
|
Mills BD, Grayson DS, Shunmugavel A, Miranda-Dominguez O, Feczko E, Earl E, Neve KA, Fair DA. Correlated Gene Expression and Anatomical Communication Support Synchronized Brain Activity in the Mouse Functional Connectome. J Neurosci 2018; 38:5774-5787. [PMID: 29789379 PMCID: PMC6010566 DOI: 10.1523/jneurosci.2910-17.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 05/07/2018] [Accepted: 05/10/2018] [Indexed: 01/13/2023] Open
Abstract
Cognition and behavior depend on synchronized intrinsic brain activity that is organized into functional networks across the brain. Research has investigated how anatomical connectivity both shapes and is shaped by these networks, but not how anatomical connectivity interacts with intra-areal molecular properties to drive functional connectivity. Here, we present a novel linear model to explain functional connectivity by integrating systematically obtained measurements of axonal connectivity, gene expression, and resting-state functional connectivity MRI in the mouse brain. The model suggests that functional connectivity arises from both anatomical links and inter-areal similarities in gene expression. By estimating these effects, we identify anatomical modules in which correlated gene expression and anatomical connectivity support functional connectivity. Along with providing evidence that not all genes equally contribute to functional connectivity, this research establishes new insights regarding the biological underpinnings of coordinated brain activity measured by BOLD fMRI.SIGNIFICANCE STATEMENT Efforts at characterizing the functional connectome with fMRI have risen exponentially over the last decade. Yet despite this rise, the biological underpinnings of these functional measurements are still primarily unknown. The current report begins to fill this void by investigating the molecular underpinnings of the functional connectome through an integration of systematically obtained structural information and gene expression data throughout the rodent brain. We find that both white matter connectivity and similarity in regional gene expression relate to resting-state functional connectivity. The current report furthers our understanding of the biological underpinnings of the functional connectome and provides a linear model that can be used to streamline preclinical animal studies of disease.
Collapse
Affiliation(s)
| | - David S Grayson
- Department of Behavioral Neuroscience
- The MIND Institute, University of California Davis, Sacramento, California 95817, and
- Center for Neuroscience, University of California Davis, Davis, California 95616
| | | | | | | | - Eric Earl
- Department of Behavioral Neuroscience
| | - Kim A Neve
- Department of Behavioral Neuroscience
- Research Service, VA Portland Health Care System, United States Department of Veterans Affairs, Portland, Oregon 97239
| | - Damien A Fair
- Department of Behavioral Neuroscience,
- Advanced Imaging Research Center
- Department of Psychiatry, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|
2
|
Correia SS, McGrath AG, Lee A, Graybiel AM, Goosens KA. Amygdala-ventral striatum circuit activation decreases long-term fear. eLife 2016; 5:e12669. [PMID: 27671733 PMCID: PMC5039029 DOI: 10.7554/elife.12669] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 08/14/2016] [Indexed: 12/18/2022] Open
Abstract
In humans, activation of the ventral striatum, a region associated with reward processing, is associated with the extinction of fear, a goal in the treatment of fear-related disorders. This evidence suggests that extinction of aversive memories engages reward-related circuits, but a causal relationship between activity in a reward circuit and fear extinction has not been demonstrated. Here, we identify a basolateral amygdala (BLA)-ventral striatum (NAc) pathway that is activated by extinction training. Enhanced recruitment of this circuit during extinction learning, either by pairing reward with fear extinction training or by optogenetic stimulation of this circuit during fear extinction, reduces the return of fear that normally follows extinction training. Our findings thus identify a specific BLA-NAc reward circuit that can regulate the persistence of fear extinction and point toward a potential therapeutic target for disorders in which the return of fear following extinction therapy is an obstacle to treatment.
Collapse
Affiliation(s)
- Susana S Correia
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Anna G McGrath
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Allison Lee
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Ann M Graybiel
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Ki A Goosens
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
3
|
Bastle RM, Peartree NA, Goenaga J, Hatch KN, Henricks A, Scott S, Hood LE, Neisewander JL. Immediate early gene expression reveals interactions between social and nicotine rewards on brain activity in adolescent male rats. Behav Brain Res 2016; 313:244-254. [PMID: 27435419 DOI: 10.1016/j.bbr.2016.07.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/12/2016] [Accepted: 07/15/2016] [Indexed: 01/27/2023]
Abstract
Smoking initiation predominantly occurs during adolescence, often in the presence of peers. Therefore, understanding the neural mechanisms underlying the rewarding effects of nicotine and social stimuli is vital. Using the conditioned place preference (CPP) procedure, we measured immediate early gene (IEG) expression in animals following exposure either to a reward-conditioned environment or to the unconditioned stimuli (US). Adolescent, male rats were assigned to the following CPP US conditions: (1) Saline+Isolated, (2) Nicotine+Isolated, (3) Saline+Social, or (4) Nicotine+Social. For Experiment 1, brain tissue was collected 90min following the CPP expression test and processed for Fos immunohistochemistry. We found that rats conditioned with nicotine with or without a social partner exhibited CPP; however, we found no group differences in Fos expression in any brain region analyzed, with the exception of the nucleus accumbens core that exhibited a social-induced attenuation in Fos expression. For Experiment 2, brain tissue was collected 90min following US exposure during the last conditioning session. We found social reward-induced increases in IEG expression in striatal and amydalar subregions. In contrast, nicotine reduced IEG expression in prefrontal and striatal subregions. Reward interactions were also found in the dorsolateral striatum, basolateral amygdala, and ventral tegmental area where nicotine alone attenuated IEG expression and social reward reversed this effect. These results suggest that in general social rewards enhance, whereas nicotine attenuates, activation of mesocorticolimbic regions; however, the rewards given together interact to enhance activation in some regions. The findings contribute to knowledge of how a social environment influences nicotine effects.
Collapse
Affiliation(s)
- Ryan M Bastle
- Department of Psychology, Arizona State University, Tempe, AZ 85287-4501, United States; School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, United States
| | - Natalie A Peartree
- Department of Psychology, Arizona State University, Tempe, AZ 85287-4501, United States
| | - Julianna Goenaga
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, United States
| | - Kayla N Hatch
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, United States
| | - Angela Henricks
- Department of Psychology, Arizona State University, Tempe, AZ 85287-4501, United States
| | - Samantha Scott
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, United States
| | - Lauren E Hood
- Department of Psychology, Arizona State University, Tempe, AZ 85287-4501, United States
| | - Janet L Neisewander
- Department of Psychology, Arizona State University, Tempe, AZ 85287-4501, United States; School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, United States.
| |
Collapse
|
4
|
Smith ML, Li J, Cote DM, Ryabinin AE. Effects of isoflurane and ethanol administration on c-Fos immunoreactivity in mice. Neuroscience 2015; 316:337-43. [PMID: 26742790 DOI: 10.1016/j.neuroscience.2015.12.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/17/2015] [Accepted: 12/25/2015] [Indexed: 11/19/2022]
Abstract
Noninvasive functional imaging holds great promise for the future of translational research, due to the ability to directly compare between preclinical and clinical models of psychiatric disorders. Despite this potential, concerns have been raised regarding the necessity to anesthetize rodent and monkey subjects during these procedures, because anesthetics may alter neuronal activity. For example, in studies on drugs of abuse and alcohol, it is not clear to what extent anesthesia can interfere with drug-induced neural activity. Therefore, the current study investigated whole-brain c-Fos activation following isoflurane anesthesia as well as ethanol-induced activation of c-Fos in anesthetized mice. In the first experiment, we examined effects of one or three sessions of gaseous isoflurane on c-Fos activation across the brain in male C57BL/6J mice. Isoflurane administration led to c-Fos activation in several areas, including the piriform cortex and lateral septum. Lower or similar levels of activation in these areas were detected after three sessions of isoflurane, suggesting that multiple exposures may eliminate some of the enhanced neuronal activation caused by acute isoflurane. In the second experiment, we investigated the ability of ethanol injection (1.5 or 2.5g/kgi.p.) to induce c-Fos activation under anesthesia. Following three sessions of isoflurane, 1.5g/kg of ethanol induced c-Fos in the central nucleus of amygdala and the centrally-projecting Edinger-Westphal nucleus (EWcp). This induction was lower after 2.5g/kg of ethanol. These results demonstrate that ethanol-induced neural activation can be detected in the presence of isoflurane anesthesia. They also suggest, that while habituation to isoflurane helps reduce neuronal activation, interaction between effects of anesthesia and alcohol can occur. Studies using fMRI imaging could benefit from using habituated animals and dose-response analyses.
Collapse
Affiliation(s)
- M L Smith
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Mail Code L470, Portland, OR 97239, USA
| | - J Li
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Mail Code L470, Portland, OR 97239, USA
| | - D M Cote
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Mail Code L470, Portland, OR 97239, USA
| | - A E Ryabinin
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Mail Code L470, Portland, OR 97239, USA; Portland Alcohol Research Center, Portland, OR, USA.
| |
Collapse
|
5
|
DePoy LM, Gourley SL. Synaptic Cytoskeletal Plasticity in the Prefrontal Cortex Following Psychostimulant Exposure. Traffic 2015; 16:919-40. [PMID: 25951902 DOI: 10.1111/tra.12295] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 04/30/2015] [Accepted: 04/30/2015] [Indexed: 02/01/2023]
Abstract
Addiction is characterized by maladaptive decision-making, a loss of control over drug consumption and habit-like drug seeking despite adverse consequences. These cognitive changes may reflect the effects of drugs of abuse on prefrontal cortical neurobiology. Here, we review evidence that amphetamine and cocaine fundamentally remodel the structure of excitatory neurons in the prefrontal cortex. We summarize evidence in particular that these psychostimulants have opposing effects in the medial and orbital prefrontal cortices ('mPFC' and 'oPFC', respectively). For example, amphetamine and cocaine increase dendrite length and spine density in the mPFC, while dendrites are impoverished and dendritic spines are eliminated in the oPFC. We will discuss evidence that certain cytoskeletal regulatory proteins expressed in the oPFC and implicated in postnatal (adolescent) neural development also regulate behavioral sensitivity to cocaine. These findings potentially open a window of opportunity for the identification of novel pharmacotherapeutic targets in the treatment of drug abuse disorders in adults, as well as in drug-vulnerable adolescent populations. Finally, we will discuss the behavioral implications of drug-related dendritic spine elimination in the oPFC, with regard to reversal learning tasks and tasks that assess the development of reward-seeking habits, both used to model aspects of addiction in rodents.
Collapse
Affiliation(s)
- Lauren M DePoy
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.,Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, USA.,Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.,Graduate Program in Neuroscience, Emory University, Atlanta, GA, USA
| | - Shannon L Gourley
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.,Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, USA.,Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.,Graduate Program in Neuroscience, Emory University, Atlanta, GA, USA
| |
Collapse
|