1
|
Faried A, Tatang Y, Wibawa GA, Widowati W, Distya AP. Traumatic Axonal Injury Successfully Treated with Secretome Followed by Mesenchymal Stem Cells Therapy. Eur J Case Rep Intern Med 2025; 12:005111. [PMID: 40270671 PMCID: PMC12013209 DOI: 10.12890/2025_005111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 02/11/2025] [Indexed: 04/25/2025] Open
Abstract
Introduction Traumatic axonal injury (TAI), a head injury condition formerly known as diffuse axonal injury, results from direct mechanical forces causing multiple scattered lesions, either haemorrhagic or non-haemorrhagic, within brain tissue. Despite its clinical significance, no prior research has explored the use of stem cells in a TAI inpatient setting. This case presents the efficacy of stem cell therapy for TAI. Case description A 17-year-old boy sustained severe head injuries from repeated blows, resulting in a coma. Initial CT and MRI scans showed cerebral oedema without haemorrhagic lesions. T2-weighted axial FLAIR imaging showed two hyperintensity lesions in the corpus callosum, consistent with diffuse axonal injury grade II. Secretome and umbilical cord mesenchymal stem cell (UCMSC) therapy were administered. The patient showed improvement in motor function and speaking and was discharged without neurological deficits. Discussion The pathophysiology of TAI remains unclear because of a lack of unifying theory. It is theorised that not only is direct mechanical injury the cause of primary damage but biochemical changes in neuronal metabolism also play a role as secondary damage. Two main therapeutic options can be recognised. Treatment approaches fall into two categories: secondary axotomy-targeted therapy and promotion of neural regeneration. Multiple treatment options promote both microenvironment correction and neuronal regeneration, including cell and stem cell therapy along with its metabolite. Conclusion Stem cell therapy is promising as an alternative treatment modality in a case where there was no other optional therapy for TAI. LEARNING POINTS A traumatic axonal head injury (TAI) patient in a coma for one month responded within four days of secretome therapy and further improved and became fully alert four days after mesenchymal stem cell treatment.
Collapse
Affiliation(s)
- Ahmad Faried
- Department of Neurosurgery, Mayapada Hospital Bandung, West Java, Indonesia
- Department of Neurosurgery, Faculty of Medicine, Padjadjaran University Hospital, Jatinangor, West Java, Indonesia
| | - Yeremia Tatang
- Department of Neurology, Mayapada Hospital Kuningan, Jakarta, Indonesia
| | - Gibran A Wibawa
- Department of Neurosurgery, Mayapada Hospital Kuningan, Jakarta, Indonesia
| | - Wahyu Widowati
- Medical Research Center, Faculty of Medicine, Maranatha Christian University, Bandung, West Java, Indonesia
| | - Anindita P Distya
- Biomolecular and Biomedical Research Center, Aretha Medika Utama, Bandung, West Java, Indonesia
| |
Collapse
|
2
|
Elzaitony AS, Al-Najjar AH, Gomaa AA, Eraque AMS, Sallam AS. Re-positioning of low dose paclitaxel against depressive-like behavior and neuroinflammation induced by lipopolysaccharide in rats: Crosstalk between NLRP3/caspase-1/IL-1β and Sphk1/S1P/ NF-κB signaling pathways. Toxicol Appl Pharmacol 2024; 490:117043. [PMID: 39059506 DOI: 10.1016/j.taap.2024.117043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
AIMS Depression is a potentially fatal illness affecting millions of individuals worldwide, across all age groups. Neuroinflammation is a key factor in depression development. Paclitaxel (PXL), a well-known chemotherapeutic agent has been used as therapy for several types of cancer. This study aims to evaluate the ameliorative effect of low-dose PXL against lipopolysaccharide (LPS)-induced depression in rats. MATERIALS AND METHODS Adult male Sprague-Dawley rats were administrated a single dose of LPS (5 mg/kg, i.p.); 2 h later, rats received PXL (0.3 mg/kg, i.p. three times/week) for one week. KEY FINDINGS Low-dose PXL alleviated LPS-induced depressive-like behavior in rats as evidenced by significantly improving behavioral changes in both forced swim test (FST) and open field test (OFT), successfully mitigated depletion of monoamines (serotonin, norepinephrine, and dopamine), in addition to markedly decreasing lipid peroxidation with antioxidant levels elevation in brain tissues. Low-dose PXL substantially decreased inflammation triggered by LPS in brain tissue via repressing the expression of NLRP3 and its downstream markers level, caspase-1 and IL-1β jointly with a corresponding decrease in proinflammatory cytokine levels (TNF-α). Furthermore, low-dose PXL remarkably down-regulated Sphk1/S1P signaling pathway. Concurrent with these biochemical findings, there was a noticeable improvement in the brain tissue's histological changes. SIGNIFICANCE These findings prove the role of low-dose PXL in treatment of LPS-induced neuroinflammation and depressive-like behavior through their anti-depressant, antioxidant and anti-inflammatory actions. The suggested molecular mechanism may entail focusing the interconnection among Sphk1/S1P, and NLRP3/caspase-1/IL-1β signaling pathways. Hence PXL could be used as a novel treatment against LPS-induced depression.
Collapse
Affiliation(s)
- Asmaa S Elzaitony
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Aya H Al-Najjar
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt.
| | - Asmaa A Gomaa
- Department of pharmacology and Toxicology, Faculty of pharmacy, Ahram Canadian University, Egypt
| | - Ayat M S Eraque
- Biochemistry department, Faculty of Medicine for girls, Al -Azhar University, Cairo, Egypt
| | - Amany Said Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| |
Collapse
|
3
|
Katzenberger RJ, Ganetzky B, Wassarman DA. Lissencephaly-1 mutations enhance traumatic brain injury outcomes in Drosophila. Genetics 2023; 223:iyad008. [PMID: 36683334 PMCID: PMC9991514 DOI: 10.1093/genetics/iyad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/14/2022] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
Traumatic brain injury (TBI) outcomes vary greatly among individuals, but most of the variation remains unexplained. Using a Drosophila melanogaster TBI model and 178 genetically diverse lines from the Drosophila Genetic Reference Panel (DGRP), we investigated the role that genetic variation plays in determining TBI outcomes. Following injury at 20-27 days old, DGRP lines varied considerably in mortality within 24 h ("early mortality"). Additionally, the disparity in early mortality resulting from injury at 20-27 vs 0-7 days old differed among DGRP lines. These data support a polygenic basis for differences in TBI outcomes, where some gene variants elicit their effects by acting on aging-related processes. Our genome-wide association study of DGRP lines identified associations between single nucleotide polymorphisms in Lissencephaly-1 (Lis-1) and Patronin and early mortality following injury at 20-27 days old. Lis-1 regulates dynein, a microtubule motor required for retrograde transport of many cargoes, and Patronin protects microtubule minus ends against depolymerization. While Patronin mutants did not affect early mortality, Lis-1 compound heterozygotes (Lis-1x/Lis-1y) had increased early mortality following injury at 20-27 or 0-7 days old compared with Lis-1 heterozygotes (Lis-1x/+), and flies that survived 24 h after injury had increased neurodegeneration but an unaltered lifespan, indicating that Lis-1 affects TBI outcomes independently of effects on aging. These data suggest that Lis-1 activity is required in the brain to ameliorate TBI outcomes through effects on axonal transport, microtubule stability, and other microtubule proteins, such as tau, implicated in chronic traumatic encephalopathy, a TBI-associated neurodegenerative disease in humans.
Collapse
Affiliation(s)
- Rebeccah J Katzenberger
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Barry Ganetzky
- Department of Genetics, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David A Wassarman
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
4
|
Alle T, Varricchio C, Yao Y, Lucero B, Nzou G, Demuro S, Muench M, Vuong KD, Oukoloff K, Cornec AS, Francisco KR, Caffrey CR, Lee VMY, Smith AB, Brancale A, Brunden KR, Ballatore C. Microtubule-Stabilizing 1,2,4-Triazolo[1,5- a]pyrimidines as Candidate Therapeutics for Neurodegenerative Disease: Matched Molecular Pair Analyses and Computational Studies Reveal New Structure-Activity Insights. J Med Chem 2023; 66:435-459. [PMID: 36534051 PMCID: PMC9841533 DOI: 10.1021/acs.jmedchem.2c01411] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Indexed: 12/23/2022]
Abstract
Microtubule (MT)-stabilizing 1,2,4-triazolo[1,5-a]pyrimidines (TPDs) hold promise as candidate therapeutics for Alzheimer's disease (AD) and other neurodegenerative conditions. However, depending on the choice of substituents around the TPD core, these compounds can elicit markedly different cellular phenotypes that likely arise from the interaction of TPD congeners with either one or two spatially distinct binding sites within tubulin heterodimers (i.e., the seventh site and the vinca site). In the present study, we report the design, synthesis, and evaluation of a series of new TPD congeners, as well as matched molecular pair analyses and computational studies, that further elucidate the structure-activity relationships of MT-active TPDs. These studies led to the identification of novel MT-normalizing TPD candidates that exhibit favorable ADME-PK, including brain penetration and oral bioavailability, as well as brain pharmacodynamic activity.
Collapse
Affiliation(s)
- Thibault Alle
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Carmine Varricchio
- Cardiff
School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF103NB, U.K.
| | - Yuemang Yao
- Center
for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, 3600 Spruce St., Philadelphia, Pennsylvania 19104, United States
| | - Bobby Lucero
- Department
of Chemistry & Biochemistry, University
of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Goodwell Nzou
- Center
for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, 3600 Spruce St., Philadelphia, Pennsylvania 19104, United States
| | - Stefania Demuro
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Megan Muench
- Center
for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, 3600 Spruce St., Philadelphia, Pennsylvania 19104, United States
| | - Khoa D. Vuong
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Killian Oukoloff
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Anne-Sophie Cornec
- Department
of Chemistry, School of Arts and Sciences, University of Pennsylvania, 231 South 34th St., Philadelphia, Pennsylvania 19104-6323, United States
| | - Karol R. Francisco
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Conor R. Caffrey
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Virginia M.-Y. Lee
- Center
for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, 3600 Spruce St., Philadelphia, Pennsylvania 19104, United States
| | - Amos B. Smith
- Department
of Chemistry, School of Arts and Sciences, University of Pennsylvania, 231 South 34th St., Philadelphia, Pennsylvania 19104-6323, United States
| | - Andrea Brancale
- Cardiff
School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF103NB, U.K.
| | - Kurt R. Brunden
- Center
for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, 3600 Spruce St., Philadelphia, Pennsylvania 19104, United States
| | - Carlo Ballatore
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
5
|
Huo BB, Zheng MX, Hua XY, Wu JJ, Xing XX, Ma J, Fang M, Xu JG. Effect of aging on the cerebral metabolic mechanism of electroacupuncture treatment in rats with traumatic brain injury. Front Neurosci 2023; 17:1081515. [PMID: 37113153 PMCID: PMC10128857 DOI: 10.3389/fnins.2023.1081515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Objective Aging has great influence on the clinical treatment effect of cerebrovascular diseases, and evidence suggests that the effect may be associated with age-related brain plasticity. Electroacupuncture is an effective alternative treatment for traumatic brain injury (TBI). In the present study, we aimed to explore the effect of aging on the cerebral metabolic mechanism of electroacupuncture to provide new evidence for developing age-specific rehabilitation strategies. Methods Both aged (18 months) and young (8 weeks) rats with TBI were analyzed. Thirty-two aged rats were randomly divided into four groups: aged model, aged electroacupuncture, aged sham electroacupuncture, and aged control group. Similarly, 32 young rats were also divided into four groups: young model, young electroacupuncture, young sham electroacupuncture, and young control group. Electroacupuncture was applied to "Bai hui" (GV20) and "Qu chi" (LI11) for 8 weeks. CatWalk gait analysis was then performed at 3 days pre- and post-TBI, and at 1, 2, 4, and 8 weeks after intervention to observe motor function recovery. Positron emission computed tomography (PET/CT) was performed at 3 days pre- and post-TBI, and at 2, 4, and 8 weeks after intervention to detect cerebral metabolism. Results Gait analysis showed that electroacupuncture improved the forepaw mean intensity in aged rats after 8 weeks of intervention, but after 4 weeks of intervention in young rats. PET/CT revealed increased metabolism in the left (the injured ipsilateral hemisphere) sensorimotor brain areas of aged rats during the electroacupuncture intervention, and increased metabolism in the right (contralateral to injury hemisphere) sensorimotor brain areas of young rats. Results This study demonstrated that aged rats required a longer electroacupuncture intervention duration to improve motor function than that of young rats. The influence of aging on the cerebral metabolism of electroacupuncture treatment was mainly focused on a particular hemisphere.
Collapse
Affiliation(s)
- Bei-Bei Huo
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mou-Xiong Zheng
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- Department of Traumatology and Orthopedics, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- Department of Traumatology and Orthopedics, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Jia Wu
- Department of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiang-Xin Xing
- Department of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Ma
- Department of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Fang
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- *Correspondence: Jian-Guang Xu,
| |
Collapse
|
6
|
Kulkarni R, Thakur A, Kumar H. Microtubule Dynamics Following Central and Peripheral Nervous System Axotomy. ACS Chem Neurosci 2022; 13:1358-1369. [PMID: 35451811 DOI: 10.1021/acschemneuro.2c00189] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Disturbance in the neuronal network leads to instability in the microtubule (MT) railroad of axons, causing hindrance in the intra-axonal transport and making it difficult to re-establish the broken network. Peripheral nervous system (PNS) neurons can stabilize their MTs, leading to the formation of regeneration-promoting structures called "growth cones". However, central nervous system (CNS) neurons lack this intrinsic reparative capability and, instead, form growth-incompetent structures called "retraction bulbs", which have a disarrayed MT network. It is evident from various studies that although axonal regeneration depends on both cell-extrinsic and cell-intrinsic factors, any therapy that aims at axonal regeneration ultimately converges onto MTs. Understanding the neuronal MT dynamics will help develop effective therapeutic strategies in diseases where the MT network gets disrupted, such as spinal cord injury, traumatic brain injury, multiple sclerosis, and amyotrophic lateral sclerosis. It is also essential to know the factors that aid or inhibit MT stabilization. In this review, we have discussed the MT dynamics postaxotomy in the CNS and PNS, and factors that can directly influence MT stability in various diseases.
Collapse
Affiliation(s)
- Riya Kulkarni
- National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat 382355, India
| | - Akshata Thakur
- National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat 382355, India
| | - Hemant Kumar
- National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
7
|
Walter J, Kovalenko O, Younsi A, Grutza M, Unterberg AW, Zweckberger K. Interleukin-4 reduces lesion volume and improves neurological function in the acute phase after experimental traumatic brain injury in mice. J Neurotrauma 2022; 39:1262-1272. [PMID: 35505616 DOI: 10.1089/neu.2021.0497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Little is known about the impact of Interleukin-4 (IL-4) on secondary brain damage in the acute phase after experimental traumatic brain injury (TBI). Therefore, we evaluated the effect of IL-4-Knockout on structural damage as well as functional impairment in the acute phase after experimental TBI in mice. 28 C57Bl/6 wildtype and 20 C57BL/6-Il4tm1Nnt/J Interleukin-4-Knockout (IL-4-KO) mice were subjected to Controlled Cortical Impact (CCI). Contusion volumes, body weight and functional outcome (Video Open Field Test (VOF), Hole Board Test (HB), CatWalkXT®) were determined on postoperative days one (D1), three (D3) and seven (D7). Contusion volume (13.45 +/- 0.88 mm³ vs. 9.50 +/- 0.97 mm³, p=0.015) and weight loss (-2.92 +/- 0.52% vs. -0.85 +/- 0.67%, p=0.027) were significantly higher and exploration behavior significantly more impaired (e.g., 150.44 +/- 18.71 fields explored vs. 211.56 +/- 18.90 fields explored, p=0.028 in the VOF; 23.31 +/- 2.03 holes explored vs. 35.65 +/- 1.93 holes explored, p<0.001 in the HB) in IL-4-KO mice on D1. Gait impairment was significantly more pronounced in IL-4-KO mice throughout the first week after CCI (e.g., 0.07 +/- 0.01s vs. 0.00 +/- 0.01s, p=0.047 for right hindpaw Swing on D1; -1.76 +/- 1.34 U vs. 2.53 +/- 0.90 U, p=0.01 for right forepaw Mean Intensity on D3; -0.01 +/- 0.01cm² vs. 0.05 +/- 0.01cm², p=0.015 for left forepaw Mean Area on D7). In conclusion, IL-4 reduces structural damage and improves functional outcome in the acute phase after CCI. Neurobehavioral outcome assessment in IL-4-related studies should focus on motor function on the first three days after trauma induction.
Collapse
Affiliation(s)
- Johannes Walter
- University of Heidelberg, Department of Neurosurgery, Heidelberg, Germany;
| | - Olga Kovalenko
- University of Heidelberg, Department of Neurosurgery, Heidelberg, Germany;
| | - Alexander Younsi
- University of Heidelberg, Department of Neurosurgery, Heidelberg, Germany;
| | - Martin Grutza
- University of Heidelberg, Department of Neurosurgery, Heidelberg, Germany;
| | | | - Klaus Zweckberger
- University of Heidelberg, Department of Neurosurgery, Heidelberg, Germany;
| |
Collapse
|
8
|
Walter J, Mende J, Hutagalung S, Grutza M, Younsi A, Zheng G, Unterberg AW, Zweckberger K. Focal lesion size poorly correlates with motor function after experimental traumatic brain injury in mice. PLoS One 2022; 17:e0265448. [PMID: 35294482 PMCID: PMC8926209 DOI: 10.1371/journal.pone.0265448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/01/2022] [Indexed: 11/18/2022] Open
Abstract
Background It remains unclear whether neurobehavioral testing adds significant information to histologic assessment of experimental traumatic brain injury (TBI) and if automated gait assessment using the CatWalk XT®, while shown to be effective in in the acute phase, is also effective in the chronic phase after experimental TBI. Therefore, we evaluated the correlation of CatWalk XT® parameters with histologic lesion volume and analyzed their temporal and spatial patterns over four weeks after trauma induction. Methods C57Bl/6 mice were subjected to controlled cortical impact (CCI). CatWalk XT® analysis was performed one day prior to surgery and together with the histological evaluation of lesion volume on postoperative days one, three, seven, 14 and 28. Temporal and spatial profiles of gait impairment were analyzed and a total of 100 CatWalk XT® parameters were correlated to lesion size. Results While in the first week after CCI, there was significant impairment of nearly all CatWalk XT® parameters, impairment of paw prints, intensities and dynamic movement parameters resolved thereafter; however, impairment of dynamic single paw parameters persisted up to four weeks. Correlation of the CatWalk XT® parameters with lesion volume was poor at all timepoints. Conclusion As CatWalk XT® parameters do not correlate with focal lesion size after CCI, gait assessment using the CatWalk XT® might add valuable information to solitary histologic evaluation of the injury site. While all CatWalk XT® parameters can be used for gait assessments in the first week after CCI, dynamic single paw parameters might be more relevant in the chronic phase after experimental TBI.
Collapse
Affiliation(s)
- Johannes Walter
- Department of Neurosurgery, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| | - Jannis Mende
- Department of Neurosurgery, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Samuel Hutagalung
- Department of Neurosurgery, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Martin Grutza
- Department of Neurosurgery, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Alexander Younsi
- Department of Neurosurgery, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Guoli Zheng
- Department of Neurosurgery, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Andreas W. Unterberg
- Department of Neurosurgery, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Klaus Zweckberger
- Department of Neurosurgery, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
9
|
Traumatic Brain Injury: An Age-Dependent View of Post-Traumatic Neuroinflammation and Its Treatment. Pharmaceutics 2021; 13:pharmaceutics13101624. [PMID: 34683918 PMCID: PMC8537402 DOI: 10.3390/pharmaceutics13101624] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability all over the world. TBI leads to (1) an inflammatory response, (2) white matter injuries and (3) neurodegenerative pathologies in the long term. In humans, TBI occurs most often in children and adolescents or in the elderly, and it is well known that immune responses and the neuroregenerative capacities of the brain, among other factors, vary over a lifetime. Thus, age-at-injury can influence the consequences of TBI. Furthermore, age-at-injury also influences the pharmacological effects of drugs. However, the post-TBI inflammatory, neuronal and functional consequences have been mostly studied in experimental young adult animal models. The specificity and the mechanisms underlying the consequences of TBI and pharmacological responses are poorly understood in extreme ages. In this review, we detail the variations of these age-dependent inflammatory responses and consequences after TBI, from an experimental point of view. We investigate the evolution of microglial, astrocyte and other immune cells responses, and the consequences in terms of neuronal death and functional deficits in neonates, juvenile, adolescent and aged male animals, following a single TBI. We also describe the pharmacological responses to anti-inflammatory or neuroprotective agents, highlighting the need for an age-specific approach to the development of therapies of TBI.
Collapse
|
10
|
Cross DJ, Huber BR, Silverman MA, Cline MM, Gill TB, Cross CG, Cook DG, Minoshima S. Intranasal Paclitaxel Alters Alzheimer's Disease Phenotypic Features in 3xTg-AD Mice. J Alzheimers Dis 2021; 83:379-394. [PMID: 34308901 DOI: 10.3233/jad-210109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Microtubule stabilizing drugs, commonly used as anti-cancer therapeutics, have been proposed for treatment of Alzheimer's disease (AD); however, many do not cross the blood-brain barrier. OBJECTIVE This research investigated if paclitaxel (PTX) delivered via the intranasal (IN) route could alter the phenotypic progression of AD in 3xTg-AD mice. METHODS We administered intranasal PTX in 3XTg-AD mice (3xTg-AD n = 15, 10 weeks and n = 10, 44 weeks, PTX: 0.6 mg/kg or 0.9%saline (SAL)) at 2-week intervals. After treatment, 3XTg-AD mice underwent manganese-enhanced magnetic resonance imaging to measure in vivo axonal transport. In a separate 3XTg-AD cohort, PTX-treated mice were tested in a radial water tread maze at 52 weeks of age after four treatments, and at 72 weeks of age, anxiety was assessed by an elevated-plus maze after 14 total treatments. RESULTS PTX increased axonal transport rates in treated 3XTg-AD compared to controls (p≤0.003). Further investigation using an in vitro neuron model of Aβ-induced axonal transport disruption confirmed PTX prevented axonal transport deficits. Confocal microscopy after treatment found fewer phospho-tau containing neurons (5.25±3.8 versus 8.33±2.5, p < 0.04) in the CA1, altered microglia, and reduced reactive astrocytes. PTX improved performance of 3xTg-AD on the water tread maze compared to controls and not significantly different from WT (Day 5, 143.8±43 versus 91.5±77s and Day 12, 138.3±52 versus 107.7±75s for SAL versus PTX). Elevated plus maze revealed that PTX-treated 3xTg-AD mice spent more time exploring open arms (Open arm 129.1±80 versus 20.9±31s for PTX versus SAL, p≤0.05). CONCLUSION Taken collectively, these findings indicate that intranasal-administered microtubule-stabilizing drugs may offer a potential therapeutic option for treating AD.
Collapse
Affiliation(s)
- Donna J Cross
- Department of Radiology and Imaging Sciences>, University of Utah, Salt Lake City, UT, USA
| | - Bertrand R Huber
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA.,Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Michael A Silverman
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada.,Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Marcella M Cline
- The Geriatric Research, Education, and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA.,Departments of Medicine, Pharmacology, Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Trevor B Gill
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Chloe G Cross
- Department of Radiology and Imaging Sciences>, University of Utah, Salt Lake City, UT, USA
| | - David G Cook
- The Geriatric Research, Education, and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA.,Departments of Medicine, Pharmacology, Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Satoshi Minoshima
- Department of Radiology and Imaging Sciences>, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
11
|
Liu D, Shen H, Shen Y, Long G, He X, Zhao Y, Yang Z, Dai J, Li X. Dual-Cues Laden Scaffold Facilitates Neurovascular Regeneration and Motor Functional Recovery After Complete Spinal Cord Injury. Adv Healthc Mater 2021; 10:e2100089. [PMID: 33739626 DOI: 10.1002/adhm.202100089] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/24/2021] [Indexed: 12/26/2022]
Abstract
Complete transection spinal cord injury (SCI) severely disrupts the integrity of both neural circuits and the microvasculature system. Hence, fabricating a functional bio-scaffold that could coordinate axonal regeneration and vascular reconstruction in the lesion area may emerge as a new paradigm for complete SCI repair. In this study, a photosensitive hydrogel scaffold loaded with collagen-binding stromal cell-derived factor-1a and Taxol liposomes is capable of inducing migration of endothelial cells and promoting neurite outgrowth of neurons in vitro. In addition, when implanted into a rat T8 complete transection SCI model, the above dual-cues laden scaffold exhibits a synergistic effect on facilitating axon and vessel regeneration in the lesion area within 10 days after injury. Moreover, long-term therapeutic effects are also observed after dual-cues laden scaffold implantation, including revascularization, descending and propriospinal axonal regeneration, fibrotic scar reduction, electrophysiological recovery, and motor function improvement. In summary, the dual-cues laden scaffold has good clinical application potential for patients with severe SCI.
Collapse
Affiliation(s)
- Dingyang Liu
- Department of Neurosurgery Xiangya Hospital Central South University Changsha Hunan Province 410008 China
- Key Laboratory of Organ Injury Aging and Regenerative Medicine of Hunan Province Changsha Hunan Province 410008 China
- Department of Spine Surgery Xiangya Hospital Central South University Changsha Hunan Province 410008 China
| | - He Shen
- Key Laboratory for Nano‐Bio Interface Research Division of Nanobiomedicine Suzhou Institute of Nano‐Tech and Nano‐Bionics Chinese Academy of Sciences Suzhou 215123 China
| | - Yeyu Shen
- Department of Neurosurgery Xiangya Hospital Central South University Changsha Hunan Province 410008 China
- Key Laboratory of Organ Injury Aging and Regenerative Medicine of Hunan Province Changsha Hunan Province 410008 China
- Department of Spine Surgery Xiangya Hospital Central South University Changsha Hunan Province 410008 China
| | - Ge Long
- Department of Anesthesia The Third Xiangya Hospital Central South University Changsha Hunan Province 410008 China
| | - Xinghui He
- Department of Neurosurgery Xiangya Hospital Central South University Changsha Hunan Province 410008 China
- Key Laboratory of Organ Injury Aging and Regenerative Medicine of Hunan Province Changsha Hunan Province 410008 China
- Department of Spine Surgery Xiangya Hospital Central South University Changsha Hunan Province 410008 China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing 100101 China
| | - Zhiquan Yang
- Department of Neurosurgery Xiangya Hospital Central South University Changsha Hunan Province 410008 China
- Key Laboratory of Organ Injury Aging and Regenerative Medicine of Hunan Province Changsha Hunan Province 410008 China
- Department of Spine Surgery Xiangya Hospital Central South University Changsha Hunan Province 410008 China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing 100101 China
| | - Xing Li
- Department of Neurosurgery Xiangya Hospital Central South University Changsha Hunan Province 410008 China
- Key Laboratory of Organ Injury Aging and Regenerative Medicine of Hunan Province Changsha Hunan Province 410008 China
- Department of Spine Surgery Xiangya Hospital Central South University Changsha Hunan Province 410008 China
| |
Collapse
|
12
|
Liu D, Shu M, Liu W, Shen Y, Long G, Zhao Y, Hou X, Xiao Z, Dai J, Li X. Binary scaffold facilitates in situ regeneration of axons and neurons for complete spinal cord injury repair. Biomater Sci 2021; 9:2955-2971. [PMID: 33634811 DOI: 10.1039/d0bm02212h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The limited regrowth of transected axons and insufficient regeneration of lost neurons in adult mammals collectively hinder complete spinal cord injury (SCI) repair. Hence, designing an ideal bio-scaffold which could coordinate the regeneration of axons and neurons in situ might be able to effectively facilitate the reconstruction of neural circuits and the recovery of nerve function after complete SCI. In this study, a sponge-like collagen scaffold with good drug release characteristics and good nerve cell compatibility was prepared and used as a drug delivery platform. When doubly modified with Taxol liposomes and collagen-binding neurotrophic factor 3, the scaffold dually alleviated myelin-derived inhibition on neurite outgrowth of neurons and neuronal differentiation of neural stem cells in vitro. Meanwhile, the binary-drug modified scaffold was also able to simultaneously promote both axonal and neuronal regeneration when implanted into a complete transected SCI model. Additionally, the regenerated axons and neurons throughout the lesion site formed extensive synaptic connections. Finally, complete SCI rats that received binary scaffold implantation exhibited optimal neuroelectrophysiological recovery and hindlimb locomotor improvement. Taken together, implantation of the binary scaffold can establish neural bridging networks for functional recovery, representing a clinically promising strategy for complete SCI repair.
Collapse
Affiliation(s)
- Dingyang Liu
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, 410008, Hunan Province, China.
| | - Muya Shu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiyuan Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yeyu Shen
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410008, Hunan Province, China and Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Ge Long
- Department of Anesthesia, the Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xianglin Hou
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xing Li
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, 410008, Hunan Province, China. and Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410008, Hunan Province, China and Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| |
Collapse
|
13
|
Bruggeman GF, Haitsma IK, Dirven CMF, Volovici V. Traumatic axonal injury (TAI): definitions, pathophysiology and imaging-a narrative review. Acta Neurochir (Wien) 2021; 163:31-44. [PMID: 33006648 PMCID: PMC7778615 DOI: 10.1007/s00701-020-04594-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/22/2020] [Indexed: 01/01/2023]
Abstract
Introduction Traumatic axonal injury (TAI) is a condition defined as multiple, scattered, small hemorrhagic, and/or non-hemorrhagic lesions, alongside brain swelling, in a more confined white matter distribution on imaging studies, together with impaired axoplasmic transport, axonal swelling, and disconnection after traumatic brain injury (TBI). Ever since its description in the 1980s and the grading system by Adams et al., our understanding of the processes behind this entity has increased. Methods We performed a scoping systematic, narrative review by interrogating Ovid MEDLINE, Embase, and Google Scholar on the pathophysiology, biomarkers, and diagnostic tools of TAI patients until July 2020. Results We underline the misuse of the Adams classification on MRI without proper validation studies, and highlight the hiatus in the scientific literature and areas needing more research. In the past, the theory behind the pathophysiology relied on the inertial force exerted on the brain matter after severe TBI inducing a primary axotomy. This theory has now been partially abandoned in favor of a more refined theory involving biochemical processes such as protein cleavage and DNA breakdown, ultimately leading to an inflammation cascade and cell apoptosis, a process now described as secondary axotomy. Conclusion The difference in TAI definitions makes the comparison of studies that report outcomes, treatments, and prognostic factors a daunting task. An even more difficult task is isolating the outcomes of isolated TAI from the outcomes of severe TBI in general. Targeted bench-to-bedside studies are required in order to uncover further pathways involved in the pathophysiology of TAI and, ideally, new treatments.
Collapse
Affiliation(s)
- Gavin F Bruggeman
- Department of Neurosurgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Iain K Haitsma
- Department of Neurosurgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Clemens M F Dirven
- Department of Neurosurgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Victor Volovici
- Department of Neurosurgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
14
|
Walter J, Kovalenko O, Younsi A, Grutza M, Unterberg A, Zweckberger K. The CatWalk XT® is a valid tool for objective assessment of motor function in the acute phase after controlled cortical impact in mice. Behav Brain Res 2020; 392:112680. [DOI: 10.1016/j.bbr.2020.112680] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/15/2020] [Accepted: 04/27/2020] [Indexed: 01/01/2023]
|
15
|
Cross DJ, Meabon JS, Cline MM, Richards TL, Stump AJ, Cross CG, Minoshima S, Banks WA, Cook DG. Paclitaxel Reduces Brain Injury from Repeated Head Trauma in Mice. J Alzheimers Dis 2020; 67:859-874. [PMID: 30664506 DOI: 10.3233/jad-180871] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Repetitive mild traumatic brain injury (rmTBI) is known to disturb axonal integrity and may play an important role in the pathogenic cascades leading to neurodegeneration. One critical approach to reduce the future onset of neurodegeneration is to intervene in this process at an early stage following a brain injury. Previously we showed that direct application of the microtubule-stabilizing drug, paclitaxel, on the brain following controlled cortical impact improved motor function and reduced lesion size. Herein, we extended these findings to a model of mild brain injury induced by repeated closed-skull impacts. Paclitaxel was administered intranasally to circumvent its poor transport across the blood-brain barrier. Mice received five mild closed-skull impacts (one per day for five days). Intranasal paclitaxel was administered once only, immediately after the first impact. We found that paclitaxel prevented injury-induced deficits in a spatial memory task in a water tread maze. In vivo magnetic resonance imaging (MRI) and positron emission tomography with 18F-flurodeoxyglucose (FDG-PET) revealed that paclitaxel prevented structural injury and hypometabolism. On MRI, apparent, injury-induced microbleeds were observed in 100% of vehicle-treated rmTBI mice, but not in paclitaxel-treated subjects. FDG-PET revealed a 42% increase in whole brain glucose metabolism in paclitaxel-treated mice as compared to vehicle-treated rmTBI. Immunohistochemistry found reduced evidence of axonal injury and synaptic loss. Our results indicate that intranasal paclitaxel administration imparts neuroprotection against brain injury and cognitive impairment in mice. The results from this study support the idea that microtubule-stabilization strategies hold therapeutic promise in mitigating traumatic brain injury.
Collapse
Affiliation(s)
- Donna J Cross
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - James S Meabon
- The Mental Illness Research Education and Clinical Center (MIRECC), and VA Puget Sound Health Care System, Seattle, WA, USA.,Department of Psychiatry, University of Washington, Seattle, WA, USA
| | - Marcella M Cline
- Geriatric Research Education and Clinical Center (GRECC) and VA Puget Sound Health Care System, Seattle, WA, USA.,Department of Molecular and Cellular Biology, University of Washington, Seattle, WA, USA
| | - Todd L Richards
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Amanda J Stump
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Chloe G Cross
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Satoshi Minoshima
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - William A Banks
- Geriatric Research Education and Clinical Center (GRECC) and VA Puget Sound Health Care System, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| | - David G Cook
- Geriatric Research Education and Clinical Center (GRECC) and VA Puget Sound Health Care System, Seattle, WA, USA.,Department of Pharmacology, University of Washington, Seattle, WA, USA
| |
Collapse
|
16
|
Zhu Z, Chuckowree JA, Musgrove R, Dickson TC, Blizzard CA. The pathologic outcomes and efficacy of epothilone treatment following traumatic brain injury is determined by age. Neurobiol Aging 2020; 93:85-96. [PMID: 32480164 DOI: 10.1016/j.neurobiolaging.2020.03.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 02/05/2023]
Abstract
Traumatic brain injury (TBI) can affect individuals at any age, with the potential of causing lasting neurologic consequences. The lack of effective therapeutic solutions and recommendations for patients that acquire a TBI can be attributed, at least in part, to an inability to confidently predict long-term outcomes following TBI, and how the response of the brain differs across the life span. The purpose of this study was to determine how age specifically affects TBI outcomes in a preclinical model. Male Thy1-YFPH mice, that express yellow fluorescent protein in the cytosol of a subset of Layer V pyramidal neurons in the neocortex, were subjected to a lateral fluid percussion injury over the right parietal cortex at distinct time points throughout the life span (1.5, 3, and 12 months of age). We found that the degree of neuronal injury, astrogliosis, and microglial activation differed depending on the age of the animal when the injury occurred. Furthermore, age affected the initial injury response and how it resolved over time. Using the microtubule stabilizing agent Epothilone D, to potentially protect against these pathologic outcomes, we found that the neuronal response was different depending on age. This study clearly shows that age must be taken into account in neurologic studies and preclinical trials involving TBI, and that future therapeutic interventions must be tailored to age.
Collapse
Affiliation(s)
- Zhendan Zhu
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Jyoti A Chuckowree
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Ruth Musgrove
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Tracey C Dickson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Catherine A Blizzard
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.
| |
Collapse
|
17
|
Liu D, Li X, Xiao Z, Yin W, Zhao Y, Tan J, Chen B, Jiang X, Dai J. Different functional bio-scaffolds share similar neurological mechanism to promote locomotor recovery of canines with complete spinal cord injury. Biomaterials 2019; 214:119230. [PMID: 31174066 DOI: 10.1016/j.biomaterials.2019.119230] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 12/27/2022]
Abstract
Many studies have shown that rodents exhibit a certain degree of spontaneous motor function recovery even if they suffer from spinal cord complete transection injury. However, the characteristics of spontaneous locomotor recovery and its associated neurobiological mechanisms are unclear. In this study, we observed that spontaneous locomotor function recovery of hind limbs could also be detected in a canine thoracic (T8) spinal cord complete transection model. In addition, the spontaneous locomotor recovery of canines could be further promoted by chronic implantation of Taxol- or human bone marrow mesenchymal stem cell-modified bio-scaffolds. Moreover, functional bio-scaffolds implantation promoted locomotor outcome could be significantly weakened (drop to the spontaneous recovery level) but not totally abolished by resection in the lesion site. The neurological mechanism for functional bio-scaffolds improved locomotor outcome was primarily dependent on the formation of neuronal bridging but not the long-distance regeneration of descending motor axons throughout the lesion gap. Besides that, we found that spontaneously achieved locomotor recovery of hind limbs was unable to be weaken by repetitive resection of the lesion area, indicating the mechanism for spontaneous locomotor recovery was independent on functional neurological bridging throughout the lesion gap.
Collapse
Affiliation(s)
- Dingyang Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Xing Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410008, Hunan Province, China; Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China.
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen Yin
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Tan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xingjun Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China.
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
18
|
Llufriu-Dabén G, Meffre D, Massaad C, Jafarian-Tehrani M. A novel model of trauma-induced cerebellar injury and myelin loss in mouse organotypic cerebellar slice cultures using live imaging. J Neurosci Methods 2019; 311:385-393. [DOI: 10.1016/j.jneumeth.2018.09.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/13/2018] [Accepted: 09/18/2018] [Indexed: 12/16/2022]
|
19
|
Li X, Fan C, Xiao Z, Zhao Y, Zhang H, Sun J, Zhuang Y, Wu X, Shi J, Chen Y, Dai J. A collagen microchannel scaffold carrying paclitaxel-liposomes induces neuronal differentiation of neural stem cells through Wnt/β-catenin signaling for spinal cord injury repair. Biomaterials 2018; 183:114-127. [DOI: 10.1016/j.biomaterials.2018.08.037] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 08/09/2018] [Accepted: 08/20/2018] [Indexed: 01/16/2023]
|
20
|
Chuckowree JA, Zhu Z, Brizuela M, Lee KM, Blizzard CA, Dickson TC. The Microtubule-Modulating Drug Epothilone D Alters Dendritic Spine Morphology in a Mouse Model of Mild Traumatic Brain Injury. Front Cell Neurosci 2018; 12:223. [PMID: 30104961 PMCID: PMC6077201 DOI: 10.3389/fncel.2018.00223] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/09/2018] [Indexed: 12/27/2022] Open
Abstract
Microtubule dynamics underpin a plethora of roles involved in the intricate development, structure, function, and maintenance of the central nervous system. Within the injured brain, microtubules are vulnerable to misalignment and dissolution in neurons and have been implicated in injury-induced glial responses and adaptive neuroplasticity in the aftermath of injury. Unfortunately, there is a current lack of therapeutic options for treating traumatic brain injury (TBI). Thus, using a clinically relevant model of mild TBI, lateral fluid percussion injury (FPI) in adult male Thy1-YFPH mice, we investigated the potential therapeutic effects of the brain-penetrant microtubule-stabilizing agent, epothilone D. At 7 days following a single mild lateral FPI the ipsilateral hemisphere was characterized by mild astroglial activation and a stereotypical and widespread pattern of axonal damage in the internal and external capsule white matter tracts. These alterations occurred in the absence of other overt signs of trauma: there were no alterations in cortical thickness or in the number of cortical projection neurons, axons or dendrites expressing YFP. Interestingly, a single low dose of epothilone D administered immediately following FPI (and sham-operation) caused significant alterations in the dendritic spines of layer 5 cortical projection neurons, while the astroglial response and axonal pathology were unaffected. Specifically, spine length was significantly decreased, whereas the density of mushroom spines was significantly increased following epothilone D treatment. Together, these findings have implications for the use of microtubule stabilizing agents in manipulating injury-induced synaptic plasticity and indicate that further study into the viability of microtubule stabilization as a therapeutic strategy in combating TBI is warranted.
Collapse
Affiliation(s)
- Jyoti A. Chuckowree
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Zhendan Zhu
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Mariana Brizuela
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- Centre for Neuroscience, School of Medicine, Flinders University, Adelaide, SA, Australia
| | - Ka M. Lee
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Catherine A. Blizzard
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Tracey C. Dickson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
21
|
Schönfeld LM, Dooley D, Jahanshahi A, Temel Y, Hendrix S. Evaluating rodent motor functions: Which tests to choose? Neurosci Biobehav Rev 2017; 83:298-312. [PMID: 29107829 DOI: 10.1016/j.neubiorev.2017.10.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/18/2017] [Accepted: 10/23/2017] [Indexed: 01/11/2023]
Abstract
Damage to the motor cortex induced by stroke or traumatic brain injury (TBI) can result in chronic motor deficits. For the development and improvement of therapies, animal models which possess symptoms comparable to the clinical population are used. However, the use of experimental animals raises valid ethical and methodological concerns. To decrease discomfort by experimental procedures and to increase the quality of results, non-invasive and sensitive rodent motor tests are needed. A broad variety of rodent motor tests are available to determine deficits after stroke or TBI. The current review describes and evaluates motor tests that fall into three categories: Tests to evaluate fine motor skills and grip strength, tests for gait and inter-limb coordination and neurological deficit scores. In this review, we share our thoughts on standardized data presentation to increase data comparability between studies. We also critically evaluate current methods and provide recommendations for choosing the best behavioral test for a new research line.
Collapse
Affiliation(s)
- Lisa-Maria Schönfeld
- Comparative Psychology, Institute of Experimental Psychology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| | - Dearbhaile Dooley
- Health Science Centre, School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Ali Jahanshahi
- Department of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Yasin Temel
- Department of Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Sven Hendrix
- Department of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium.
| |
Collapse
|
22
|
Hilton BJ, Bradke F. Can injured adult CNS axons regenerate by recapitulating development? Development 2017; 144:3417-3429. [PMID: 28974639 DOI: 10.1242/dev.148312] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the adult mammalian central nervous system (CNS), neurons typically fail to regenerate their axons after injury. During development, by contrast, neurons extend axons effectively. A variety of intracellular mechanisms mediate this difference, including changes in gene expression, the ability to form a growth cone, differences in mitochondrial function/axonal transport and the efficacy of synaptic transmission. In turn, these intracellular processes are linked to extracellular differences between the developing and adult CNS. During development, the extracellular environment directs axon growth and circuit formation. In adulthood, by contrast, extracellular factors, such as myelin and the extracellular matrix, restrict axon growth. Here, we discuss whether the reactivation of developmental processes can elicit axon regeneration in the injured CNS.
Collapse
Affiliation(s)
- Brett J Hilton
- Laboratory for Axon Growth and Regeneration, German Centre for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Frank Bradke
- Laboratory for Axon Growth and Regeneration, German Centre for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| |
Collapse
|
23
|
Zhao J, Yuan Q, Cai W, Sun P, Ding L, Jin F. Formulation, Optimization, Characterization, and Pharmacokinetics of Progesterone Intravenous Lipid Emulsion for Traumatic Brain Injury Therapy. AAPS PharmSciTech 2017; 18:1475-1487. [PMID: 27796907 DOI: 10.1208/s12249-016-0637-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/21/2016] [Indexed: 11/30/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of mortality and disability throughout the world. Progesterone (PROG) plays an important role in neurologic treatment. The aim of this study was to develop a progesterone formulation with good physical and chemical stability. Progesterone intravenous lipid emulsion (PILE) was prepared based on one-factor-at-a-time experiments and orthogonal design. The optimal PILE was evaluated for mean particle size, particle size distribution, zeta potential, morphology, pH, osmolarity, entrapment efficiency, storage stability, and pharmacokinetics in ICR mice compared with the commercial progesterone products. The droplets of PILE had the smallest possible diameters of 218.0 ± 1.8 nm and adequate zeta potential of -41.1 ± 0.9 mV. The volume percentage of droplets exceeding 5 μm (PFAT5) of PILE was 0.003 ± 0.0015% and much less than the specified standard. The TEM imaging proved that emulsion droplets had a smooth spherical appearance. Chemically and physically stable PILE was obtained with excellent entrapment efficiency that was up to 95.23%, with suitable pH at 7.15 ± 0.01 and osmolarity at 301.3 ± 1.2 mOsmol/l. Storage stability tests indicated that the emulsion was stable long term under ambient temperature conditions. Animal studies demonstrated that the emulsion was more effective with the higher progesterone concentration in the brain compared with commercial products. Therefore, the optimized PILE would offer great promise as a means of progesterone delivery for TBI therapy.
Collapse
|
24
|
Schönfeld LM, Jahanshahi A, Lemmens E, Schipper S, Dooley D, Joosten E, Temel Y, Hendrix S. Long-Term Motor Deficits after Controlled Cortical Impact in Rats Can Be Detected by Fine Motor Skill Tests but Not by Automated Gait Analysis. J Neurotrauma 2017; 34:505-516. [DOI: 10.1089/neu.2016.4440] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Lisa-Maria Schönfeld
- Department of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
- Department of Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Ali Jahanshahi
- Department of Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Evi Lemmens
- Department of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
| | - Sandra Schipper
- Department of Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Dearbhaile Dooley
- Department of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
| | - Elbert Joosten
- Department of Anesthesiology and Pain Management, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Yasin Temel
- Department of Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Sven Hendrix
- Department of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
| |
Collapse
|
25
|
Janickova H, Rosborough K, Al-Onaizi M, Kljakic O, Guzman MS, Gros R, Prado MAM, Prado VF. Deletion of the vesicular acetylcholine transporter from pedunculopontine/laterodorsal tegmental neurons modifies gait. J Neurochem 2017; 140:787-798. [DOI: 10.1111/jnc.13910] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 11/04/2016] [Accepted: 11/24/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Helena Janickova
- Robarts Research Institute; Schulich School of Medicine & Dentistry; University of Western Ontario; London Ontario Canada
| | - Kaie Rosborough
- Robarts Research Institute; Schulich School of Medicine & Dentistry; University of Western Ontario; London Ontario Canada
- Department of Anatomy and Cell Biology; Schulich School of Medicine & Dentistry; University of Western Ontario; London Ontario Canada
| | - Mohammed Al-Onaizi
- Robarts Research Institute; Schulich School of Medicine & Dentistry; University of Western Ontario; London Ontario Canada
- Department of Anatomy and Cell Biology; Schulich School of Medicine & Dentistry; University of Western Ontario; London Ontario Canada
| | - Ornela Kljakic
- Robarts Research Institute; Schulich School of Medicine & Dentistry; University of Western Ontario; London Ontario Canada
- Department of Anatomy and Cell Biology; Schulich School of Medicine & Dentistry; University of Western Ontario; London Ontario Canada
| | - Monica S. Guzman
- Robarts Research Institute; Schulich School of Medicine & Dentistry; University of Western Ontario; London Ontario Canada
- Department of Anatomy and Cell Biology; Schulich School of Medicine & Dentistry; University of Western Ontario; London Ontario Canada
| | - Robert Gros
- Robarts Research Institute; Schulich School of Medicine & Dentistry; University of Western Ontario; London Ontario Canada
- Department of Physiology and Pharmacology; Schulich School of Medicine & Dentistry; University of Western Ontario; London Ontario Canada
| | - Marco A. M. Prado
- Robarts Research Institute; Schulich School of Medicine & Dentistry; University of Western Ontario; London Ontario Canada
- Department of Anatomy and Cell Biology; Schulich School of Medicine & Dentistry; University of Western Ontario; London Ontario Canada
- Department of Physiology and Pharmacology; Schulich School of Medicine & Dentistry; University of Western Ontario; London Ontario Canada
| | - Vania F. Prado
- Robarts Research Institute; Schulich School of Medicine & Dentistry; University of Western Ontario; London Ontario Canada
- Department of Anatomy and Cell Biology; Schulich School of Medicine & Dentistry; University of Western Ontario; London Ontario Canada
- Department of Physiology and Pharmacology; Schulich School of Medicine & Dentistry; University of Western Ontario; London Ontario Canada
| |
Collapse
|
26
|
Brunden KR, Lee VMY, Smith AB, Trojanowski JQ, Ballatore C. Altered microtubule dynamics in neurodegenerative disease: Therapeutic potential of microtubule-stabilizing drugs. Neurobiol Dis 2016; 105:328-335. [PMID: 28012891 DOI: 10.1016/j.nbd.2016.12.021] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/12/2016] [Accepted: 12/21/2016] [Indexed: 02/04/2023] Open
Abstract
Many neurodegenerative diseases are characterized by deficiencies in neuronal axonal transport, a process in which cellular cargo is shuttled with the aid of molecular motors from the cell body to axonal termini and back along microtubules (MTs). Proper axonal transport is critical to the normal functioning of neurons, and impairments in this process could contribute to the neuronal damage and death that is characteristic of neurodegenerative disease. Although the causes of axonal transport abnormalities may vary among the various neurodegenerative conditions, in many cases it appears that the transport deficiencies result from a diminution of axonal MT stability. Here we review the evidence of MT abnormalities in a number of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and traumatic brain injury, and highlight the potential benefit of MT-stabilizing agents in improving axonal transport and nerve function in these diseases. Moreover, we discuss the challenges associated with the utilization of MT-stabilizing drugs as therapeutic candidates for neurodegenerative conditions.
Collapse
Affiliation(s)
- Kurt R Brunden
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | - Virginia M-Y Lee
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Amos B Smith
- Department of Chemistry, School of Arts and Science, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Carlo Ballatore
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, United States
| |
Collapse
|
27
|
Cline MM, Yumul JC, Hysa L, Murra D, Garwin GG, Cook DG, Ladiges WC, Minoshima S, Cross DJ. Novel application of a Radial Water Tread maze can distinguish cognitive deficits in mice with traumatic brain injury. Brain Res 2016; 1657:140-147. [PMID: 27923635 DOI: 10.1016/j.brainres.2016.11.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 01/02/2023]
Abstract
INTRODUCTION The use of forced-swim, rat-validated cognition tests in mouse models of traumatic brain injury (TBI) raises methodological concerns; such models are vulnerable to a number of confounding factors including impaired motor function and stress-induced non-compliance (failure to swim). This study evaluated the ability of a Radial Water Tread (RWT) maze, designed specifically for mice, that requires no swimming to distinguish mice with controlled cortical impact (CCI) induced TBI and Sham controls. METHODS Ten-week-old, male C57BL6/J mice were randomly assigned to receive either Sham (n=14) or CCI surgeries (n=15). Mice were tested for sensorimotor deficits via Gridwalk test and Noldus CatWalk gait analysis at 1 and 32days post-injury. Mice received RWT testing at either 11days (early time point) or 35days (late time point) post-injury. RESULTS Compared to Sham-treated animals, CCI-induced TBI resulted in significant impairment in RWT maze performance. Additionally, CCI injured mice displayed significant deficits on the Gridwalk test at both 1day and 32days post-injury, and impairment in the CatWalk task at 1day, but not 32days, compared to Shams. CONCLUSIONS The Radial Water Tread maze capitalizes on the natural tendency of mice to avoid open areas in favor of hugging the edges of an apparatus (thigmotaxis), and replaces a forced-swim model with water shallow enough that the animal is not required to swim, but aversive enough to motivate escape. Our findings indicate the RWT task is a sensitive species-appropriate behavioral test for evaluating spatial memory impairment in a mouse model of TBI.
Collapse
Affiliation(s)
- Marcella M Cline
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Josh C Yumul
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Lisa Hysa
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Dalia Murra
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Gregory G Garwin
- Department of Radiology, University of Washington, Seattle, WA, USA; Department of Radiology, University of Utah, Salt Lake City, UT, USA
| | - David G Cook
- Department of Pharmacology, University of Washington, Seattle, WA, USA; Geriatric Research Education and Clinical Center (GRECC), VA Puget Sound Health Care System, Seattle, WA, USA
| | - Warren C Ladiges
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Satoshi Minoshima
- Department of Radiology, University of Washington, Seattle, WA, USA; Department of Radiology, University of Utah, Salt Lake City, UT, USA
| | - Donna J Cross
- Department of Radiology, University of Washington, Seattle, WA, USA; Department of Radiology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
28
|
Traumatic Axonal Injury: Mechanisms and Translational Opportunities. Trends Neurosci 2016; 39:311-324. [PMID: 27040729 PMCID: PMC5405046 DOI: 10.1016/j.tins.2016.03.002] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/06/2016] [Accepted: 03/07/2016] [Indexed: 12/22/2022]
Abstract
Traumatic axonal injury (TAI) is an important pathoanatomical subgroup of traumatic brain injury (TBI) and a major driver of mortality and functional impairment. Experimental models have provided insights into the effects of mechanical deformation on the neuronal cytoskeleton and the subsequent processes that drive axonal injury. There is also increasing recognition that axonal or white matter loss may progress for years post-injury and represent one mechanistic framework for progressive neurodegeneration after TBI. Previous trials of novel therapies have failed to make an impact on clinical outcome, in both TBI in general and TAI in particular. Recent advances in understanding the cellular and molecular mechanisms of injury have the potential to translate into novel therapeutic targets. Multiple therapeutic targets are emerging that offer the potential to reduce secondary brain injury at a cellular level. These include cytoskeletal and membrane stabilisation, control of calcium flux and calpain activation, optimisation of cellular energetics, and modulation of the inflammatory response. Wallerian degeneration, as occurs following an axonal injury, is an active, cell-autonomous death pathway that involves failure of axonal transport to deliver key enzymes involved in NAD biosynthesis. Chronic microglial activation occurs following traumatic brain injury (TBI) and may persist for decades afterwards. This ongoing response has been linked to long-term neurodegeneration, particularly of white matter tracts. Phagoptosis is the process whereby physiologically stressed but otherwise viable neurons are phagocytosed by microglia in response to a range of eat-me signals induced by tissue injury.
Collapse
|