1
|
Ahulló-Fuster MA, Ortiz T, Varela-Donoso E, Nacher J, Sánchez-Sánchez ML. The Parietal Lobe in Alzheimer’s Disease and Blindness. J Alzheimers Dis 2022; 89:1193-1202. [DOI: 10.3233/jad-220498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The progressive aging of the population will notably increase the burden of those diseases which leads to a disabling situation, such as Alzheimer’s disease (AD) and ophthalmological diseases that cause a visual impairment (VI). Eye diseases that cause a VI raise neuroplastic processes in the parietal lobe. Meanwhile, the aforementioned lobe suffers a severe decline throughout AD. From this perspective, diving deeper into the particularities of the parietal lobe is of paramount importance. In this article, we discuss the functions of the parietal lobe, review the parietal anatomical and pathophysiological peculiarities in AD, and also describe some of the changes in the parietal region that occur after VI. Although the alterations in the hippocampus and the temporal lobe have been well documented in AD, the alterations of the parietal lobe have been less thoroughly explored. Recent neuroimaging studies have revealed that some metabolic and perfusion impairments along with a reduction of the white and grey matter could take place in the parietal lobe during AD. Conversely, it has been speculated that blinding ocular diseases induce a remodeling of the parietal region which is observable through the improvement of the integration of multimodal stimuli and in the increase of the volume of this cortical region. Based on current findings concerning the parietal lobe in both pathologies, we hypothesize that the increased activity of the parietal lobe in people with VI may diminish the neurodegeneration of this brain region in those who are visually impaired by oculardiseases.
Collapse
Affiliation(s)
- Mónica Alba Ahulló-Fuster
- Department of Radiology, Rehabilitation and Physiotherapy, Faculty of Nursing, Physiotherapy and Podiatry, University Complutense of Madrid, Spain
| | - Tomás Ortiz
- Department of Legal Medicine, Psychiatry and Pathology, Faculty of Medicine, University Complutense of Madrid, Spain
| | - Enrique Varela-Donoso
- Department of Radiology, Rehabilitation and Physiotherapy, Faculty of Nursing, Physiotherapy and Podiatry, University Complutense of Madrid, Spain
| | - Juan Nacher
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
- CIBERSAM, Spanish National Network for Research in Mental Health, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| | - M. Luz Sánchez-Sánchez
- Physiotherapy in Motion, Multispeciality Research Group (PTinMOTION), Department of Physiotherapy, University of Valencia, Valencia, Spain
| |
Collapse
|
2
|
Longin L, Deroy O. Augmenting perception: How artificial intelligence transforms sensory substitution. Conscious Cogn 2022; 99:103280. [PMID: 35114632 DOI: 10.1016/j.concog.2022.103280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 11/26/2021] [Accepted: 01/12/2022] [Indexed: 01/28/2023]
Abstract
What happens when artificial sensors are coupled with the human senses? Using technology to extend the senses is an old human dream, on which sensory substitution and other augmentation technologies have already delivered. Laser tactile canes, corneal implants and magnetic belts can correct or extend what individuals could otherwise perceive. Here we show why accommodating intelligent sensory augmentation devices not just improves but also changes the way of thinking and classifying former sensory augmentation devices. We review the benefits in terms of signal processing and show why non-linear transformation is more than a mere improvement compared to classical linear transformation.
Collapse
Affiliation(s)
- Louis Longin
- Faculty of Philosophy, Philosophy of Science and the Study of Religion, LMU-Munich, Geschwister-Scholl-Platz 1, 80359 Munich, Germany.
| | - Ophelia Deroy
- Faculty of Philosophy, Philosophy of Science and the Study of Religion, LMU-Munich, Geschwister-Scholl-Platz 1, 80359 Munich, Germany; Munich Center for Neurosciences-Brain & Mind, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany; Institute of Philosophy, School of Advanced Study, University of London, London WC1E 7HU, United Kingdom
| |
Collapse
|
3
|
Performing Simulated Basic Life Support without Seeing: Blind vs. Blindfolded People. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010724. [PMID: 34682471 PMCID: PMC8536197 DOI: 10.3390/ijerph182010724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/24/2021] [Accepted: 10/04/2021] [Indexed: 01/08/2023]
Abstract
Previous pilot experience has shown the ability of visually impaired and blind people (BP) to learn basic life support (BLS), but no studies have compared their abilities with blindfolded people (BFP) after participating in the same instructor-led, real-time feedback training. Twenty-nine BP and 30 BFP participated in this quasi-experimental trial. Training consisted of a 1 h theoretical and practical training session with an additional 30 min afterwards, led by nurses with prior experience in BLS training of various collectives. Quantitative quality of chest compressions (CC), AED use and BLS sequence were evaluated by means of a simulation scenario. BP’s median time to start CC was less than 35 s. Global and specific components of CC quality were similar between groups, except for compression rate (BFP: 123.4 + 15.2 vs. BP: 110.8 + 15.3 CC/min; p = 0.002). Mean compression depth was below the recommended target in both groups, and optimal CC depth was achieved by 27.6% of blind and 23.3% of blindfolded people (p = 0.288). Time to discharge was significantly longer in BFP than BP (86.0 + 24.9 vs. 66.0 + 27.0 s; p = 0.004). Thus, after an adapted and short training program, blind people were revealed to have abilities comparable to those of blindfolded people in learning and performing the BLS sequence and CC.
Collapse
|
4
|
Flesher SN, Downey JE, Weiss JM, Hughes CL, Herrera AJ, Tyler-Kabara EC, Boninger ML, Collinger JL, Gaunt RA. A brain-computer interface that evokes tactile sensations improves robotic arm control. Science 2021; 372:831-836. [PMID: 34016775 PMCID: PMC8715714 DOI: 10.1126/science.abd0380] [Citation(s) in RCA: 230] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 03/25/2021] [Indexed: 12/14/2022]
Abstract
Prosthetic arms controlled by a brain-computer interface can enable people with tetraplegia to perform functional movements. However, vision provides limited feedback because information about grasping objects is best relayed through tactile feedback. We supplemented vision with tactile percepts evoked using a bidirectional brain-computer interface that records neural activity from the motor cortex and generates tactile sensations through intracortical microstimulation of the somatosensory cortex. This enabled a person with tetraplegia to substantially improve performance with a robotic limb; trial times on a clinical upper-limb assessment were reduced by half, from a median time of 20.9 to 10.2 seconds. Faster times were primarily due to less time spent attempting to grasp objects, revealing that mimicking known biological control principles results in task performance that is closer to able-bodied human abilities.
Collapse
Affiliation(s)
- Sharlene N Flesher
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - John E Downey
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Organismal Biology, University of Chicago, Chicago, IL, USA
| | - Jeffrey M Weiss
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Christopher L Hughes
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Angelica J Herrera
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | | | - Michael L Boninger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- VA Center of Excellence, Department of Veterans Affairs, Pittsburgh, PA, USA
| | - Jennifer L Collinger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
- VA Center of Excellence, Department of Veterans Affairs, Pittsburgh, PA, USA
| | - Robert A Gaunt
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Blindness and the Reliability of Downwards Sensors to Avoid Obstacles: A Study with the EyeCane. SENSORS 2021; 21:s21082700. [PMID: 33921202 PMCID: PMC8070041 DOI: 10.3390/s21082700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 11/17/2022]
Abstract
Vision loss has dramatic repercussions on the quality of life of affected people, particularly with respect to their orientation and mobility. Many devices are available to help blind people to navigate in their environment. The EyeCane is a recently developed electronic travel aid (ETA) that is inexpensive and easy to use, allowing for the detection of obstacles lying ahead within a 2 m range. The goal of this study was to investigate the potential of the EyeCane as a primary aid for spatial navigation. Three groups of participants were recruited: early blind, late blind, and sighted. They were first trained with the EyeCane and then tested in a life-size obstacle course with four obstacles types: cube, door, post, and step. Subjects were requested to cross the corridor while detecting, identifying, and avoiding the obstacles. Each participant had to perform 12 runs with 12 different obstacles configurations. All participants were able to learn quickly to use the EyeCane and successfully complete all trials. Amongst the various obstacles, the step appeared to prove the hardest to detect and resulted in more collisions. Although the EyeCane was effective for detecting obstacles lying ahead, its downward sensor did not reliably detect those on the ground, rendering downward obstacles more hazardous for navigation.
Collapse
|
6
|
Paré S, Bleau M, Djerourou I, Malotaux V, Kupers R, Ptito M. Spatial navigation with horizontally spatialized sounds in early and late blind individuals. PLoS One 2021; 16:e0247448. [PMID: 33635892 PMCID: PMC7909643 DOI: 10.1371/journal.pone.0247448] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/07/2021] [Indexed: 12/02/2022] Open
Abstract
Blind individuals often report difficulties to navigate and to detect objects placed outside their peri-personal space. Although classical sensory substitution devices could be helpful in this respect, these devices often give a complex signal which requires intensive training to analyze. New devices that provide a less complex output signal are therefore needed. Here, we evaluate a smartphone-based sensory substitution device that offers navigation guidance based on strictly spatial cues in the form of horizontally spatialized sounds. The system uses multiple sensors to either detect obstacles at a distance directly in front of the user or to create a 3D map of the environment (detection and avoidance mode, respectively), and informs the user with auditory feedback. We tested 12 early blind, 11 late blind and 24 blindfolded-sighted participants for their ability to detect obstacles and to navigate in an obstacle course. The three groups did not differ in the number of objects detected and avoided. However, early blind and late blind participants were faster than their sighted counterparts to navigate through the obstacle course. These results are consistent with previous research on sensory substitution showing that vision can be replaced by other senses to improve performance in a wide variety of tasks in blind individuals. This study offers new evidence that sensory substitution devices based on horizontally spatialized sounds can be used as a navigation tool with a minimal amount of training.
Collapse
Affiliation(s)
- Samuel Paré
- École d’Optométrie, Université de Montréal, Québec, Canada
| | - Maxime Bleau
- École d’Optométrie, Université de Montréal, Québec, Canada
| | | | - Vincent Malotaux
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Ron Kupers
- École d’Optométrie, Université de Montréal, Québec, Canada
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
- Institute of Neuroscience and Pharmacology (INF), University of Copenhagen, Copenhagen, Denmark
| | - Maurice Ptito
- École d’Optométrie, Université de Montréal, Québec, Canada
- Institute of Neuroscience and Pharmacology (INF), University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
7
|
Kvansakul J, Hamilton L, Ayton LN, McCarthy C, Petoe MA. Sensory augmentation to aid training with retinal prostheses. J Neural Eng 2020; 17:045001. [PMID: 32554868 DOI: 10.1088/1741-2552/ab9e1d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Retinal prosthesis recipients require rehabilitative training to learn the non-intuitive nature of prosthetic 'phosphene vision'. This study investigated whether the addition of auditory cues, using The vOICe sensory substitution device (SSD), could improve functional performance with simulated phosphene vision. APPROACH Forty normally sighted subjects completed two visual tasks under three conditions. The phosphene condition converted the image to simulated phosphenes displayed on a virtual reality headset. The SSD condition provided auditory information via stereo headphones, translating the image into sound. Horizontal information was encoded as stereo timing differences between ears, vertical information as pitch, and pixel intensity as audio intensity. The third condition combined phosphenes and SSD. Tasks comprised light localisation from the Basic Assessment of Light and Motion (BaLM) and the Tumbling-E from the Freiburg Acuity and Contrast Test (FrACT). To examine learning effects, twenty of the forty subjects received SSD training prior to assessment. MAIN RESULTS Combining phosphenes with auditory SSD provided better light localisation accuracy than either phosphenes or SSD alone, suggesting a compound benefit of integrating modalities. Although response times for SSD-only were significantly longer than all other conditions, combined condition response times were as fast as phosphene-only, highlighting that audio-visual integration provided both response time and accuracy benefits. Prior SSD training provided a benefit to localisation accuracy and speed in SSD-only (as expected) and Combined conditions compared to untrained SSD-only. Integration of the two modalities did not improve spatial resolution task performance, with resolution limited to that of the higher resolution modality (SSD). SIGNIFICANCE Combining phosphene (visual) and SSD (auditory) modalities was effective even without SSD training and led to an improvement in light localisation accuracy and response times. Spatial resolution performance was dominated by auditory SSD. The results suggest there may be a benefit to including auditory cues when training vision prosthesis recipients.
Collapse
Affiliation(s)
- Jessica Kvansakul
- Bionics Institute, East Melbourne, VIC, Australia. Department of Medical Bionics, University of Melbourne, Parkville, VIC, Australia
| | | | | | | | | |
Collapse
|
8
|
Ortiz T, Ortiz-Teran L, Turrero A, Poch-Broto J, de Erausquin GA. A N400 ERP Study in letter recognition after passive tactile stimulation training in blind children and sighted controls. Restor Neurol Neurosci 2020; 37:197-206. [PMID: 31227674 DOI: 10.3233/rnn-180838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND We previously demonstrated that using a sensory substitution device (SSD) for one week, tactile stimulation results in faster activation of lateral occipital complex in blind children than in seeing controls. OBJECTIVE We used long-term haptic tactile stimulation training with an SSD to test if it results in stable cross-modal reassignment of visual pathways after six months, to provide high level processing of tactile semantic content. METHODS We enrolled 12 blind and 12 sighted children. The SSD transforms images to a stimulation matrix in contact with the dominant hand. Subjects underwent twice-daily training sessions, 5 days/week for six months. Children were asked to describe line orientation, name letters, and read words. ERP sessions were performed at baseline and 6 months to analyze the N400 ERP component and reaction times (RT). N400 sources were estimated with Low Resolution Electromagnetic Tomography (LORETA). SPM8 was used to make population-level inferences. RESULTS We found no group differences in RTs, accuracy of identifications, N400 latencies or distributions with the line task at 1 week or at 6 months. RTs on the letter recognition task were also similar. After 6 months, behavioral training increased accurate letter identification in both seeing and blind children (Chi 2 = 11906.934, p = 0.000), but the increase was larger in blind children (Chi 2 = 8.272, p = 0.004). Behavioral training shifted peak N400 amplitude to left occipital and bilateral parietal cortices in blind children, but to left precentral and postcentral and bilateral occipital cortices in sighted controls. CONCLUSIONS Blind children learn to recognize SSD-delivered letters better than seeing controls and had greater N400 amplitude in the occipital region. To the best of our knowledge, our results provide the first published example of standard letter recognition (not Braille) by children with blindness using a tactile delivery system.
Collapse
Affiliation(s)
- Tomas Ortiz
- Department of Psychiatry, Faculty of Medicine Universidad Complutense, Madrid, Spain
| | - Laura Ortiz-Teran
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital Harvard University, Boston, USA
| | - Agustin Turrero
- Department of Biostatistics, Faculty of Medicine Universidad Complutense, Madrid, Spain
| | - Joaquin Poch-Broto
- Department of Ear, Nose and Throat, Hospital Clínico Universitario San Carlos, Madrid, Spain
| | - Gabriel A de Erausquin
- Department of Psychiatry and Neurology, Institute of Neuroscience, University of Texas Rio Grande Valley School of Medicine, Harlingen, USA
| |
Collapse
|
9
|
Chan KC, Murphy MC, Bang JW, Sims J, Kashkoush J, Nau AC. Functional MRI of Sensory Substitution in the Blind. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:5519-5522. [PMID: 30441587 DOI: 10.1109/embc.2018.8513622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Visual cortex functionality in the blind has been shown to shift away from sensory networks toward task-positive networks that are involved in top-down modulation. However, how such modulation is shaped by experience and reflected behaviorally remains unclear. This study evaluates the visual cortex activity and functional connectivity among congenitally blind, acquired blind, and sighted subjects using blood-oxygenation-level-dependent functional MRI during sensory substitution tasks and at rest. We found that primary visual cortex activity due to active interpretation not only depends on the blindness duration, but also negatively associates with behavioral reaction time. In addition, alterations in visual and task-positive functional connectivity progress over the duration of blindness. In summary, this work suggests that functional plasticity in the primary visual cortex can be reshaped in the blind over time, even in the adult stage. Furthermore, the degree of top-down activity in the primary visual cortex may reflect the speed of performance during sensory substitution.
Collapse
|
10
|
Stronks HC. MacPherson, F. (Ed.). Sensory Substitution and Augmentation. Perception 2019. [DOI: 10.1177/0301006619865349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Zhang D, Gao Z, Liang B, Li J, Cai Y, Wang Z, Gao M, Jiao B, Huang R, Liu M. Eyes Closed Elevates Brain Intrinsic Activity of Sensory Dominance Networks: A Classifier Discrimination Analysis. Brain Connect 2019; 9:221-230. [DOI: 10.1089/brain.2018.0644] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Delong Zhang
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, China
| | - Zhenni Gao
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Bishan Liang
- Guangdong Polytechnic Normal University, Guangzhou, China
| | - Junchao Li
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, China
| | - Yuxuan Cai
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, China
| | - Zengjian Wang
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, China
| | - Mengxia Gao
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, Hong Kong
| | - Bingqing Jiao
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, China
| | - Ruiwang Huang
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, China
| | - Ming Liu
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, China
| |
Collapse
|
12
|
Voss P. Brain (re)organization following visual loss. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2018; 10:e1468. [PMID: 29878533 DOI: 10.1002/wcs.1468] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 11/10/2022]
Abstract
The study of the neural consequences of sensory loss provides a unique window into the brain's functional and organizational principles. Although the blind visual cortex has been implicated in the cross-modal processing of nonvisual inputs for quite some time, recent research has shown that certain cortical organizational principles are preserved even in the case of complete sensory loss. Furthermore, a growing body of work has shown that markers of neuroplasticity extend to neuroanatomical metrics that include cortical thickness and myelinization. Although our understanding of the mechanisms that underlie sensory deprivation-driven cross-modal plasticity is improving, several critical questions remain unanswered. The specific pathways that underlie the rerouting of nonvisual information, for instance, have not been fully elucidated. The fact that important cross-modal recruitment occurs following transient deprivation in sighted individuals suggests that significant rewiring following blindness may not be required. Furthermore, there are marked individual differences regarding the magnitude and functional relevance of the cross-modal reorganization. It is also not clear to what extent precise environmental factors may play a role in establishing the degree of reorganization across individuals, as opposed to factors that might specifically relate to the cause or the nature of the visual loss. In sum, although many unresolved questions remain, sensory deprivation continues to be an excellent model for studying the plastic nature of the brain. This article is categorized under: Psychology > Brain Function and Dysfunction Psychology > Perception and Psychophysics Neuroscience > Plasticity.
Collapse
Affiliation(s)
- Patrice Voss
- Montreal Neurological Institute, McGill University, Montreal, Canada
| |
Collapse
|
13
|
Stronks HC, Parker DJ, Stacey A, Barnes N. Psychophysical Evaluation of a Tactile Display Based on Coin Motors. Artif Organs 2018; 42:1224-1233. [PMID: 29761832 DOI: 10.1111/aor.13134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 01/21/2018] [Accepted: 02/02/2018] [Indexed: 11/28/2022]
Abstract
Tactile vision substitution devices present visual images as tactile representations on the skin. In this study we have tested the performance of a prototype 96-tactor vibrotactile using a subset of 64 tactors. We have determined the tactile spatial acuity and intensity discrimination in 14 naïve subjects. Spatial acuity was determined using a grating acuity task. Subjects could successfully identify the orientation of horizontal and vertical gratings with an average psychophysical threshold of 120 mm. When diagonal gratings were included in the analysis, the median performance dropped below psychophysical threshold, but was still significantly above chance at gratings of 142 mm wide. Intensity discrimination yielded an average Weber fraction of 0.44, corresponding to 13 discernable "gray levels" in the available dynamic range. Interleaved stimulation of the motors did not significantly affect spatial acuity or intensity discrimination.
Collapse
Affiliation(s)
- H Christiaan Stronks
- Department of Computer Vision, Data61 CSIRO, Canberra, Australia.,Department of Otorhinolaryngology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Neuroscience, Australian National University, Canberra, Australia
| | - Daniel J Parker
- Department of Computer Vision, Data61 CSIRO, Canberra, Australia
| | - Ashley Stacey
- Department of Computer Vision, Data61 CSIRO, Canberra, Australia
| | - Nick Barnes
- Department of Computer Vision, Data61 CSIRO, Canberra, Australia.,Research School of Engineering, Australian National University, Canberra, Australia
| |
Collapse
|
14
|
Review of rehabilitation and habilitation strategies for children and young people with homonymous visual field loss caused by cerebral vision impairment. BRITISH JOURNAL OF VISUAL IMPAIRMENT 2017. [DOI: 10.1177/0264619617706100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Partial and homonymous visual field loss (HVFL) is a common consequence of post-chiasmatic injury to the primary visual pathway or injury to the primary visual cortex. Different approaches to rehabilitation have been reported for older adults with HVFL and there is evidence to support the use of compensatory training over other proposed therapies. We reviewed the literature to investigate the current state of the art of rehabilitation and habilitation strategies for children and young people with HVFL, and whether there is enough evidence to support the use of these strategies in the paediatric population. We have provided an overview of the existing literature on children and young people with HVFL, a brief overview of rehabilitation strategies for adults with HVFL, and evidence on whether these different interventions have been applied with children and young people effectively. We found that there have been very few studies to investigate these strategies with children and young people, and the quality of evidence is currently low. New research is required to evaluate which strategies are effective for children and young people with HVFL and whether new strategies need to be developed.
Collapse
|
15
|
Stronks HC, Walker J, Parker DJ, Barnes N. Training Improves Vibrotactile Spatial Acuity and Intensity Discrimination on the Lower Back Using Coin Motors. Artif Organs 2017; 41:1059-1070. [DOI: 10.1111/aor.12882] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 08/10/2016] [Accepted: 09/21/2016] [Indexed: 11/27/2022]
Affiliation(s)
- H. Christiaan Stronks
- NICTAComputer Vision Research GroupCanberra Australia
- Department of Neuroscience, The John Curtin School of Medical ResearchAustralian National UniversityCanberra Australia
| | - Janine Walker
- NICTAComputer Vision Research GroupCanberra Australia
- Centre for Mental Health ResearchAustralian National UniversityCanberra Australia
| | | | - Nick Barnes
- NICTAComputer Vision Research GroupCanberra Australia
- College of Engineering and Computer ScienceAustralian National UniversityCanberra Australia
| |
Collapse
|
16
|
Stronks HC, Mitchell EB, Nau AC, Barnes N. Visual task performance in the blind with the BrainPort V100 Vision Aid. Expert Rev Med Devices 2016; 13:919-931. [DOI: 10.1080/17434440.2016.1237287] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- H. Christiaan Stronks
- Department of Otorhinolaryngology, Leiden University Medical Centre, Leiden, The Netherlands
- Smart Vision Systems Research Group, Data61, CSIRO, Canberra, Australia
- Department of Neuroscience, The John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Ellen B. Mitchell
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | | | - Nick Barnes
- Smart Vision Systems Research Group, Data61, CSIRO, Canberra, Australia
- Research School of Engineering, College of Engineering and Computer Science, Australian National University, Canberra, Australia
| |
Collapse
|
17
|
Kristjánsson Á, Moldoveanu A, Jóhannesson ÓI, Balan O, Spagnol S, Valgeirsdóttir VV, Unnthorsson R. Designing sensory-substitution devices: Principles, pitfalls and potential1. Restor Neurol Neurosci 2016; 34:769-87. [PMID: 27567755 PMCID: PMC5044782 DOI: 10.3233/rnn-160647] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
An exciting possibility for compensating for loss of sensory function is to augment deficient senses by conveying missing information through an intact sense. Here we present an overview of techniques that have been developed for sensory substitution (SS) for the blind, through both touch and audition, with special emphasis on the importance of training for the use of such devices, while highlighting potential pitfalls in their design. One example of a pitfall is how conveying extra information about the environment risks sensory overload. Related to this, the limits of attentional capacity make it important to focus on key information and avoid redundancies. Also, differences in processing characteristics and bandwidth between sensory systems severely constrain the information that can be conveyed. Furthermore, perception is a continuous process and does not involve a snapshot of the environment. Design of sensory substitution devices therefore requires assessment of the nature of spatiotemporal continuity for the different senses. Basic psychophysical and neuroscientific research into representations of the environment and the most effective ways of conveying information should lead to better design of sensory substitution systems. Sensory substitution devices should emphasize usability, and should not interfere with other inter- or intramodal perceptual function. Devices should be task-focused since in many cases it may be impractical to convey too many aspects of the environment. Evidence for multisensory integration in the representation of the environment suggests that researchers should not limit themselves to a single modality in their design. Finally, we recommend active training on devices, especially since it allows for externalization, where proximal sensory stimulation is attributed to a distinct exterior object.
Collapse
Affiliation(s)
- Árni Kristjánsson
- Laboratory of Visual Perception and Visuomotor control, University of Iceland, Faculty of Psychology, School of Health Sciences, Reykjavik, Iceland
| | - Alin Moldoveanu
- University Politehnica of Bucharest, Faculty of Automatic Control and Computers, Computer Science and Engineering Department, Bucharest, Romania
| | - Ómar I. Jóhannesson
- Laboratory of Visual Perception and Visuomotor control, University of Iceland, Faculty of Psychology, School of Health Sciences, Reykjavik, Iceland
| | - Oana Balan
- University Politehnica of Bucharest, Faculty of Automatic Control and Computers, Computer Science and Engineering Department, Bucharest, Romania
| | - Simone Spagnol
- Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, School of Engineering and Natural Sciences, Reykjavik, Iceland
| | - Vigdís Vala Valgeirsdóttir
- Laboratory of Visual Perception and Visuomotor control, University of Iceland, Faculty of Psychology, School of Health Sciences, Reykjavik, Iceland
| | - Rúnar Unnthorsson
- Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, School of Engineering and Natural Sciences, Reykjavik, Iceland
| |
Collapse
|
18
|
Jeong GY, Yu KH. Multi-Section Sensing and Vibrotactile Perception for Walking Guide of Visually Impaired Person. SENSORS 2016; 16:s16071070. [PMID: 27420060 PMCID: PMC4970117 DOI: 10.3390/s16071070] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/24/2016] [Accepted: 07/06/2016] [Indexed: 11/16/2022]
Abstract
Electronic Travel Aids (ETAs) improve the mobility of visually-impaired persons, but it is not easy to develop an ETA satisfying all the factors needed for reliable object detection, effective notification, and actual usability. In this study, the authors developed an easy-to-use ETA having the function of reliable object detection and its successful feedback to the user by tactile stimulation. Seven ultrasonic sensors facing in different directions detect obstacles in the walking path, while vibrators in the tactile display stimulate the hand according to the distribution of obstacles. The detection of ground drop-offs activates the electromagnetic brakes linked to the rear wheels. To verify the feasibility of the developed ETA in the outdoor environment, walking tests by blind participants were performed, and the evaluation of safety to ground drop-offs was carried out. From the experiment, the feasibility of the developed ETA was shown to be sufficient if the sensor ranges for hanging obstacle detection is improved and learning time is provided for the ETA. Finally, the light-weight and low cost ETA designed and assembled based on the evaluation of the developed ETA is introduced to show the improvement of portability and usability, and is compared with the previously developed ETAs.
Collapse
Affiliation(s)
- Gu-Young Jeong
- Center for Healthcare Technology Development, Chonbuk National University, Jeonju 54896, Korea.
| | - Kee-Ho Yu
- Department of Aerospace Engineering, Chonbuk National University, Jeonju 54896, Korea.
| |
Collapse
|
19
|
Improving training for sensory augmentation using the science of expertise. Neurosci Biobehav Rev 2016; 68:234-244. [PMID: 27264831 DOI: 10.1016/j.neubiorev.2016.05.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 05/04/2016] [Accepted: 05/23/2016] [Indexed: 11/20/2022]
Abstract
Sensory substitution and augmentation devices (SSADs) allow users to perceive information about their environment that is usually beyond their sensory capabilities. Despite an extensive history, SSADs are arguably not used to their fullest, both as assistive technology for people with sensory impairment or as research tools in the psychology and neuroscience of sensory perception. Studies of the non-use of other assistive technologies suggest one factor is the balance of benefits gained against the costs incurred. We argue that improving the learning experience would improve this balance, suggest three ways in which it can be improved by leveraging existing cognitive science findings on expertise and skill development, and acknowledge limitations and relevant concerns. We encourage the systematic evaluation of learning programs, and suggest that a more effective learning process for SSADs could reduce the barrier to uptake and allow users to reach higher levels of overall capacity.
Collapse
|
20
|
Blindfolded Balance Training in Patients with Parkinson's Disease: A Sensory-Motor Strategy to Improve the Gait. PARKINSONS DISEASE 2016; 2016:7536862. [PMID: 26977334 PMCID: PMC4763005 DOI: 10.1155/2016/7536862] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/23/2015] [Accepted: 01/06/2016] [Indexed: 11/17/2022]
Abstract
Aim. Recent evidence suggested that the use of treadmill training may improve gait parameters. Visual deprivation could engage alternative sensory strategies to control dynamic equilibrium and stabilize gait based on vestibulospinal reflexes (VSR). We aimed to investigate the efficacy of a blindfolded balance training (BBT) in the improvement of stride phase percentage reliable gait parameters in patients with Parkinson's Disease (PD) compared to patients treated with standard physical therapy (PT). Methods. Thirty PD patients were randomized in two groups of 15 patients, one group treated with BBT during two weeks and another group treated with standard PT during eight weeks. We evaluated gait parameters before and after BBT and PT interventions, in terms of double stance, swing, and stance phase percentage. Results. BBT induced an improvement of double stance phase as revealed (decreased percentage of double stance phase during the gait cycle) in comparison to PT. The other gait parameters swing and stance phase did not differ between the two groups. Discussion. These results support the introduction of complementary rehabilitative strategies based on sensory-motor stimulation in the traditional PD patient's rehabilitation. Further studies are needed to investigate the neurophysiological circuits and mechanism underlying clinical and motor modifications.
Collapse
|