1
|
Formica C, Gjonaj E, Bonanno L, Quercia A, Cartella E, Romeo L, Quartarone A, Marino S, De Salvo S. The role of high-density EEG in diagnosis and prognosis of neurological diseases: A systematic review. Clin Neurophysiol 2025; 174:37-47. [PMID: 40203500 DOI: 10.1016/j.clinph.2025.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 03/05/2025] [Accepted: 03/12/2025] [Indexed: 04/11/2025]
Abstract
OBJECTIVE The use of High-Density Electroencephalography (HD-EEG) increased in neurological disorders, due to analysis of brain connectivity. This method is able to create a detailed brain mapping. The aim is to investigate studies that employed HD-EEG in neurological and neurodegenerative filed. METHODS This systematic review was conducted and reported in accordance with the PRISMA. A research terms was conducted for: (1) dementia, (2) Multiple Sclerosis (MS), (3) Parkinson Disease (PD), (4) stroke, (5) epilepsy. RESULTS The study included a total of 89 articles: 22 dementia; 33 epilepsy; 5 MS; 24 PD; 5 S. Articles were discussed for each neurological disorder and for different types of EEG analysis: analysis of event-related potentials, specific EEG features at resting state, spectral and connectivity analysis, time-frequency analysis and EEG recordings combined with other types of intervention. DISCUSSION HD-EEG recordings provide evidence about the evaluation of early markers of the disease onset, mapping of cortical activity distribution of neurological disorders. SIGNIFICANCE HD-EEG demonstrated it effectiveness in detection of biomarkers for the diagnosis and prognosis. In dementia contributed to misdiagnosis between different subtype and identifying markers of cognitive decline, investigating motor and cognitive networks dynamics in stroke, PD and MS, and to detect task-specific network reorganization.
Collapse
Affiliation(s)
| | - Elvira Gjonaj
- RCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy
| | - Lilla Bonanno
- RCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy.
| | - Angelica Quercia
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università of Messina, Italy
| | | | | | | | - Silvia Marino
- RCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy
| | | |
Collapse
|
2
|
Arulchelvan E, Vanneste S. Pathological forgetting from a predictive processing perspective. Neurosci Biobehav Rev 2025; 172:106109. [PMID: 40132756 DOI: 10.1016/j.neubiorev.2025.106109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/11/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025]
Abstract
Recent research suggests that natural forgetting is beneficial, allowing the brain to prioritize relevant information and disregard the irrelevant, thus aiding decision-making and mental health. Conversely, pathological conditions may arise from disruptions in these memory control processes. Without adequate memory control capacities, individuals can suffer from conditions like PTSD or addiction (where unwanted or addiction-related memories persist) on one end of the scale, to conditions such as dementia, Parkinson's disease or traumatic brain injury, which are characterised by heightened rates of forgetting on the other side. This review will explore the concept of predictive processing as a potential mechanism underlying pathological forgetting. It will summarise the neurobiological basis of predictive processing and how it influences what we remember or forget. As evident in the emerging literature, this has distinct implications for understanding pathological forgetting in psychological disorders. Finally, this review will highlight therapeutic interventions that have recently targeted predictive processes and consequently improved symptoms related to forgetting, suggesting translational applications for treatment approaches in these conditions.
Collapse
Affiliation(s)
- Elva Arulchelvan
- Lab for Clinical and Integrative Neuroscience, Trinity Institute for Neuroscience, School of Psychology, Trinity College Dublin, Ireland
| | - Sven Vanneste
- Lab for Clinical and Integrative Neuroscience, Trinity Institute for Neuroscience, School of Psychology, Trinity College Dublin, Ireland; Global Brain Health Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
3
|
Lv Z, Yu S, Jin X, Liu X, Dai M, Yun L, Chen Z. EEG reveals key features of binocular color fusion and rivalry. Brain Cogn 2025; 184:106268. [PMID: 39808956 DOI: 10.1016/j.bandc.2025.106268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/22/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
Differences in the brain sensitivity to color responses may cause significant differences in the latency and amplitude of the electroencephalographic (EEG) component. This paper investigated the electroencephalography features of binocular color fusion and binocular color rivalry when watching stereoscopic three-dimensional (3D) displays. EEG experiments were conducted on a conventional 3D display platform. Eight subjects were involved to analyze differences in the event-related potential (ERP) and power spectrum when the brain perceived binocular color fusion and binocular color rivalry. Results show that: 1) the latencies of ERP components N1 and P2 of binocular color fusion were shorter than that of binocular color rivalry, 2) the amplitudes of the ERP components P2 and P3 of binocular color fusion were greater than that that of color rivalry, and 3) the left hemisphere was dominant for binocular color rivalry while the right hemisphere was greater involved in binocular color fusion. These results indicate that during the initial and mid-term cognitive processing, the brain response to binocular color fusion is faster than binocular color rivalry. Both binocular color fusion and rivalry involve visual post-processing, but binocular color fusion requires a greater allocation of neural resources. Power spectrum analysis revealed the cerebral lateralization in binocular color fusion and rivalry, it suggested that the way the brain processes this binocular input can have effects on its function.
Collapse
Affiliation(s)
- Zhineng Lv
- Yunnan Key Laboratory of Optoelectronic Information Technology, Kunming, China; Yuxi Key Laboratory of Mental Health Examination, Yuxi 653100, Yunnan, China; Engineering Research Center of Computer Vision and Intelligent Control Technology, Department of Education of Yunnan Province, Kunming, China
| | - Shisheng Yu
- School of Information Science and Technology, Yunnan Normal University, Kunming, China
| | - Xuesong Jin
- Yuxi Key Laboratory of Mental Health Examination, Yuxi 653100, Yunnan, China; Engineering Research Center of Computer Vision and Intelligent Control Technology, Department of Education of Yunnan Province, Kunming, China
| | - Xiang Liu
- Yunnan Key Laboratory of Optoelectronic Information Technology, Kunming, China; Yuxi Key Laboratory of Mental Health Examination, Yuxi 653100, Yunnan, China
| | - Mengshi Dai
- Yunnan Key Laboratory of Optoelectronic Information Technology, Kunming, China
| | - Lijun Yun
- Yuxi Key Laboratory of Mental Health Examination, Yuxi 653100, Yunnan, China; Engineering Research Center of Computer Vision and Intelligent Control Technology, Department of Education of Yunnan Province, Kunming, China
| | - Zaiqing Chen
- School of Information Science and Technology, Yunnan Normal University, Kunming, China; Yuxi Key Laboratory of Mental Health Examination, Yuxi 653100, Yunnan, China; Engineering Research Center of Computer Vision and Intelligent Control Technology, Department of Education of Yunnan Province, Kunming, China.
| |
Collapse
|
4
|
Qela B, Damiani S, De Santis S, Groppi F, Pichiecchio A, Asteggiano C, Brondino N, Monteleone AM, Grassi L, Politi P, Fusar-Poli P, Fusar-Poli L. Predictive coding in neuropsychiatric disorders: A systematic transdiagnostic review. Neurosci Biobehav Rev 2025; 169:106020. [PMID: 39828236 DOI: 10.1016/j.neubiorev.2025.106020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/27/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
The predictive coding framework postulates that the human brain continuously generates predictions about the environment, maximizing successes and minimizing failures based on prior experiences and beliefs. This PRISMA-compliant systematic review aims to comprehensively and transdiagnostically examine the differences in predictive coding between individuals with neuropsychiatric disorders and healthy controls. We included 72 articles including case-control studies investigating predictive coding as the primary outcome and reporting behavioral, neuroimaging, or electrophysiological findings. Thirty-three studies investigated predictive coding in the schizophrenia spectrum, 33 in neurodevelopmental disorders, 5 in mood disorders, 4 in neurocognitive disorders, 1 in post-traumatic stress disorder, and 1 in substance use disorders. Oddball and oddball-like paradigms were most frequently used to quantify predictive coding performance. Evidence showed heterogeneous impairments in the predictive coding abilities of the brain across neuropsychiatric disorders, particularly in schizophrenia and autism. Patients within the schizophrenia spectrum showed a consistent pattern of impaired non-social predictive coding. Conversely, predictive coding deficits were more selective for social cues in the autism spectrum. Predictive coding impairments were correlated with clinical symptom severity. These findings underscore the potential utility of predictive coding as a framework for understanding cognitive dysfunctions in the neuropsychiatric population, even though more evidence is needed on underexplored conditions, also considering potential confounders such as medication use and sex/gender. The potential role of predictive coding as a determinant of treatment response may also be considered to tailor personalized interventions.
Collapse
Affiliation(s)
- Brendon Qela
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - Stefano Damiani
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - Samanta De Santis
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | | | - Anna Pichiecchio
- Department of Brain and Behavioral Sciences, University of Pavia, Italy; Neuroradiology Department, Advanced imaging and artificial intelligence, IRCCS Mondino Foundation, Pavia, Italy
| | - Carlo Asteggiano
- Department of Brain and Behavioral Sciences, University of Pavia, Italy; Neuroradiology Department, Advanced imaging and artificial intelligence, IRCCS Mondino Foundation, Pavia, Italy
| | - Natascia Brondino
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | | | - Luigi Grassi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Italy
| | - Pierluigi Politi
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - Paolo Fusar-Poli
- Department of Brain and Behavioral Sciences, University of Pavia, Italy; Early Psychosis: Interventions and Clinical-detection (EPIC) Laboratory, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; Outreach and Support in South-London (OASIS) service, South London and Maudsley (SLaM) NHS Foundation Trust, United Kingdom; Department of Psychiatry and Psychotherapy, Section for Neurodiagnostic Applications, Ludwig-Maximilian University, Munich, Germany
| | - Laura Fusar-Poli
- Department of Brain and Behavioral Sciences, University of Pavia, Italy.
| |
Collapse
|
5
|
Mohamed M, Mohamed N, Kim JG. P300 Latency with Memory Performance: A Promising Biomarker for Preclinical Stages of Alzheimer's Disease. BIOSENSORS 2024; 14:616. [PMID: 39727881 DOI: 10.3390/bios14120616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024]
Abstract
Detecting and tracking the preclinical stages of Alzheimer's disease (AD) is now of particular interest due to the aging of the world's population. AD is the most common cause of dementia, affecting the daily lives of those afflicted. Approaches in development can accelerate the evaluation of the preclinical stages of AD and facilitate early treatment and the prevention of symptom progression. Shifts in P300 amplitude and latency, together with neuropsychological assessments, could serve as biomarkers in the early screening of declines in cognitive abilities. In this study, we investigated the ability of the P300 indices evoked during a visual oddball task to differentiate pre-clinically diagnosed participants from normal healthy adults (HCs). Two preclinical stages, named asymptomatic AD (AAD) and prodromal AD (PAD), were included in this study, and a total of 79 subjects participated, including 35 HCs, 22 AAD patients, and 22 PAD patients. A mixed-design ANOVA test was performed to compare the P300 indices among groups during the processing of the target and non-target stimuli. Additionally, the correlation between these neurophysiological variables and the neuropsychological tests was evaluated. Our results revealed that neither the peak amplitude nor latency of P300 can distinguish AAD from HCs. Conversely, the peak latency of P300 can be used as a biomarker to differentiate PAD from AAD and HCs. The correlation results revealed a significant relationship between the peak latency of P300 and memory domain tasks, showing that less time-demanding neuropsychological assessments can be used. In summary, our findings showed that a combination of P300 latency and memory-requiring tasks can be used as an efficient biomarker to differentiate individuals with AAD from HCs.
Collapse
Affiliation(s)
- Manal Mohamed
- Biomedical Science and Engineering Department, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Nourelhuda Mohamed
- Biomedical Science and Engineering Department, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jae Gwan Kim
- Biomedical Science and Engineering Department, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
6
|
Costanzo M, Cutrona C, Leodori G, Malimpensa L, D'antonio F, Conte A, Belvisi D. Exploring easily accessible neurophysiological biomarkers for predicting Alzheimer's disease progression: a systematic review. Alzheimers Res Ther 2024; 16:244. [PMID: 39497149 PMCID: PMC11533378 DOI: 10.1186/s13195-024-01607-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/19/2024] [Indexed: 11/06/2024]
Abstract
Alzheimer disease (AD) remains a significant global health concern. The progression from preclinical stages to overt dementia has become a crucial point of interest for researchers. This paper reviews the potential of neurophysiological biomarkers in predicting AD progression, based on a systematic literature search following PRISMA guidelines, including 55 studies. EEG-based techniques have been predominantly employed, whereas TMS studies are less common. Among the investigated neurophysiological measures, spectral power measurements and event-related potentials-based measures, including P300 and N200 latencies, have emerged as the most consistent and reliable biomarkers for predicting the likelihood of conversion to AD. In addition, TMS-based indices of cortical excitability and synaptic plasticity have also shown potential in assessing the risk of conversion to AD. However, concerns persist regarding the methodological discrepancies among studies, the accuracy of these neurophysiological measures in comparison to established AD biomarkers, and their immediate clinical applicability. Further research is needed to validate the predictive capabilities of EEG and TMS measures. Advancements in this area could lead to cost-effective, reliable biomarkers, enhancing diagnostic processes and deepening our understanding of AD pathophysiology.
Collapse
Affiliation(s)
- Matteo Costanzo
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, RM, Italy
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy
| | - Carolina Cutrona
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, RM, Italy
| | - Giorgio Leodori
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, RM, Italy
- IRCCS Neuromed, Via Atinense 18, Pozzilli, 86077, IS, Italy
| | | | - Fabrizia D'antonio
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, RM, Italy
| | - Antonella Conte
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, RM, Italy
- IRCCS Neuromed, Via Atinense 18, Pozzilli, 86077, IS, Italy
| | - Daniele Belvisi
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, RM, Italy.
- IRCCS Neuromed, Via Atinense 18, Pozzilli, 86077, IS, Italy.
| |
Collapse
|
7
|
Tanaka M, Yamada E, Mori F. Neurophysiological markers of early cognitive decline in older adults: a mini-review of electroencephalography studies for precursors of dementia. Front Aging Neurosci 2024; 16:1486481. [PMID: 39493278 PMCID: PMC11527679 DOI: 10.3389/fnagi.2024.1486481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024] Open
Abstract
The early detection of cognitive decline in older adults is crucial for preventing dementia. This mini-review focuses on electroencephalography (EEG) markers of early dementia-related precursors, including subjective cognitive decline, subjective memory complaints, and cognitive frailty. We present recent findings from EEG analyses identifying high dementia risk in older adults, with an emphasis on conditions that precede mild cognitive impairment. We also cover event-related potentials, quantitative EEG markers, microstate analysis, and functional connectivity approaches. Moreover, we discuss the potential of these neurophysiological markers for the early detection of cognitive decline as well as their correlations with related biomarkers. The integration of EEG data with advanced artificial intelligence technologies also shows promise for predicting the trajectory of cognitive decline in neurodegenerative disorders. Although challenges remain in its standardization and clinical application, EEG-based approaches offer non-invasive, cost-effective methods for identifying individuals at risk of dementia, which may enable earlier interventions and personalized treatment strategies.
Collapse
Affiliation(s)
- Mutsuhide Tanaka
- Department of Health and Welfare Occupational Therapy Course, Faculty of Health and Welfare, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Emi Yamada
- Department of Linguistics, Faculty of Humanities, Kyushu University, Fukuoka, Japan
| | - Futoshi Mori
- Department of Health and Welfare Occupational Therapy Course, Faculty of Health and Welfare, Prefectural University of Hiroshima, Hiroshima, Japan
| |
Collapse
|
8
|
Bae JH, Choi M, Lee JJ, Lee KH, Kim JU. Connectivity changes in two-channel prefrontal ERP associated with early cognitive decline in the elderly population: beta band responses to the auditory oddball stimuli. Front Aging Neurosci 2024; 16:1456169. [PMID: 39484363 PMCID: PMC11524914 DOI: 10.3389/fnagi.2024.1456169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/10/2024] [Indexed: 11/03/2024] Open
Abstract
Background This study utilized recent advancements in electroencephalography (EEG) technology that enable the measurement of prefrontal event-related potentials (ERPs) to facilitate the early detection of mild cognitive impairment (MCI). We investigated two-channel prefrontal ERP signals obtained from a large cohort of elderly participants and compare among cognitively normal (CN), subjective cognitive decline (SCD), amnestic MCI (aMCI), and nonamnestic MCI (naMCI) groups. Methods Signal processing and ERP component analyses, specifically adapted for two-channel prefrontal ERP signals evoked by the auditory oddball task, were performed on a total of 1,754 elderly participants. Connectivity analyses were conducted to assess brain synchronization, especially in the beta band involving the phase locking value (PLV) and coherence (COH). Time-frequency, time-trial, grand average, and further statistical analyses of the standard and target epochs were also conducted to explore differences among the cognition groups. Results The MCI group's response to target stimuli was characterized by greater response time variability (p < 0.001) and greater variability in the P300 latency (p < 0.05), leading to less consistent responses than those of the healthy control (HC) group (CN+SCD subgroups). In the connectivity analyses of PLV and COH waveforms, significant differences were observed, indicating a loss of synchronization in the beta band in response to standard stimuli in the MCI group. In addition, the absence of event-related desynchronization (ERD) indicated that information processing related to readiness and task performance in the beta band was not efficient in the MCI group. Furthermore, the observed decline in the P200 amplitude as the standard trials progressed suggests the impaired attention and inhibitory processes in the MCI group compared to the HC group. The aMCI subgroup showed high variability in COH values, while the naMCI subgroup showed impairments in their overall behavioral performance. Conclusion These findings highlight the variability and connectivity measures can be used as markers of early cognitive decline; such measures can be assessed with simple and fast two-channel prefrontal ERP signals evoked by both standard and target stimuli. Our study provides deeper insight of cognitive impairment and the potential use of the prefrontal ERP connectivity measures to assess early cognitive decline.
Collapse
Affiliation(s)
- Jang-Han Bae
- Digital Health Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
- Aging Convergence Research Center, Korea Research Institute of Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Minho Choi
- Digital Health Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Jang Jae Lee
- Asian Dementia Research Initiative, Chosun University, Gwangju, Republic of Korea
| | - Kun Ho Lee
- Asian Dementia Research Initiative, Chosun University, Gwangju, Republic of Korea
- Department of Biomedical Science, Chosun University, Gwangju, Republic of Korea
- Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jaeuk U. Kim
- Digital Health Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
- KM Convergence Science, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
9
|
Clemente L, La Rocca M, Paparella G, Delussi M, Tancredi G, Ricci K, Procida G, Introna A, Brunetti A, Taurisano P, Bevilacqua V, de Tommaso M. Exploring Aesthetic Perception in Impaired Aging: A Multimodal Brain-Computer Interface Study. SENSORS (BASEL, SWITZERLAND) 2024; 24:2329. [PMID: 38610540 PMCID: PMC11014209 DOI: 10.3390/s24072329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
In the field of neuroscience, brain-computer interfaces (BCIs) are used to connect the human brain with external devices, providing insights into the neural mechanisms underlying cognitive processes, including aesthetic perception. Non-invasive BCIs, such as EEG and fNIRS, are critical for studying central nervous system activity and understanding how individuals with cognitive deficits process and respond to aesthetic stimuli. This study assessed twenty participants who were divided into control and impaired aging (AI) groups based on MMSE scores. EEG and fNIRS were used to measure their neurophysiological responses to aesthetic stimuli that varied in pleasantness and dynamism. Significant differences were identified between the groups in P300 amplitude and late positive potential (LPP), with controls showing greater reactivity. AI subjects showed an increase in oxyhemoglobin in response to pleasurable stimuli, suggesting hemodynamic compensation. This study highlights the effectiveness of multimodal BCIs in identifying the neural basis of aesthetic appreciation and impaired aging. Despite its limitations, such as sample size and the subjective nature of aesthetic appreciation, this research lays the groundwork for cognitive rehabilitation tailored to aesthetic perception, improving the comprehension of cognitive disorders through integrated BCI methodologies.
Collapse
Affiliation(s)
- Livio Clemente
- Translational Biomedicine and Neuroscience (DiBraiN) Department, University of Bari, 70124 Bari, Italy; (L.C.); (G.P.); (M.D.); (G.T.); (K.R.); (G.P.); (A.I.); (P.T.)
| | - Marianna La Rocca
- Interateneo Department of Fisica ‘M. Merlin’, University of Bari, 70125 Bari, Italy;
- Laboratory of Neuroimaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| | - Giulia Paparella
- Translational Biomedicine and Neuroscience (DiBraiN) Department, University of Bari, 70124 Bari, Italy; (L.C.); (G.P.); (M.D.); (G.T.); (K.R.); (G.P.); (A.I.); (P.T.)
| | - Marianna Delussi
- Translational Biomedicine and Neuroscience (DiBraiN) Department, University of Bari, 70124 Bari, Italy; (L.C.); (G.P.); (M.D.); (G.T.); (K.R.); (G.P.); (A.I.); (P.T.)
| | - Giusy Tancredi
- Translational Biomedicine and Neuroscience (DiBraiN) Department, University of Bari, 70124 Bari, Italy; (L.C.); (G.P.); (M.D.); (G.T.); (K.R.); (G.P.); (A.I.); (P.T.)
| | - Katia Ricci
- Translational Biomedicine and Neuroscience (DiBraiN) Department, University of Bari, 70124 Bari, Italy; (L.C.); (G.P.); (M.D.); (G.T.); (K.R.); (G.P.); (A.I.); (P.T.)
| | - Giuseppe Procida
- Translational Biomedicine and Neuroscience (DiBraiN) Department, University of Bari, 70124 Bari, Italy; (L.C.); (G.P.); (M.D.); (G.T.); (K.R.); (G.P.); (A.I.); (P.T.)
| | - Alessandro Introna
- Translational Biomedicine and Neuroscience (DiBraiN) Department, University of Bari, 70124 Bari, Italy; (L.C.); (G.P.); (M.D.); (G.T.); (K.R.); (G.P.); (A.I.); (P.T.)
| | - Antonio Brunetti
- Electrical and Information Engineering Department, Polytechnic of Bari, 70125 Bari, Italy; (A.B.); (V.B.)
| | - Paolo Taurisano
- Translational Biomedicine and Neuroscience (DiBraiN) Department, University of Bari, 70124 Bari, Italy; (L.C.); (G.P.); (M.D.); (G.T.); (K.R.); (G.P.); (A.I.); (P.T.)
| | - Vitoantonio Bevilacqua
- Electrical and Information Engineering Department, Polytechnic of Bari, 70125 Bari, Italy; (A.B.); (V.B.)
| | - Marina de Tommaso
- Translational Biomedicine and Neuroscience (DiBraiN) Department, University of Bari, 70124 Bari, Italy; (L.C.); (G.P.); (M.D.); (G.T.); (K.R.); (G.P.); (A.I.); (P.T.)
| |
Collapse
|
10
|
Che J, Cheng N, Jiang B, Liu Y, Liu H, Li Y, Liu H. Executive function measures of participants with mild cognitive impairment: Systematic review and meta-analysis of event-related potential studies. Int J Psychophysiol 2024; 197:112295. [PMID: 38266685 DOI: 10.1016/j.ijpsycho.2023.112295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/19/2023] [Accepted: 12/30/2023] [Indexed: 01/26/2024]
Abstract
OBJECTIVE Objective measurements of executive functions using event-related potential (ERP) may be used as markers for differentiating healthy controls (HC) from patients with mild cognitive impairment (MCI). ERP is non-invasive, cost-effective, and affordable. Older adults with MCI demonstrate deteriorated executive function, serving as a potentially valid neurophysiological marker for identifying MCI. We aimed to review published ERP studies on executive function in older adults with MCI and summarize the performance differences by component between healthy older adults and older adults with MCI. METHODS Eight electronic databases (Web of Science, PubMed, ScienceDirect, American Psychological Association PsycNet, Cochrane Library, Scopus, Embase, and Ovid) were searched for the study. Articles published from January 1 to December 31, 2022, were considered for this review. A random-effects meta-analysis and between-study heterogeneity analysis were conducted using Comprehensive Meta-Analysis V3.0 software. RESULTS We identified 7829 articles of which 28 met the full inclusion criteria and were included in the systematic review and analyses. Our pooled analysis suggested that participants with MCI can be differentiated from HC by significant P200, P300, and N200 latencies. The P100 and P300 amplitudes were significantly smaller in participants with MCI when compared with those in the HCs, and the patients with MCI showed increased N200 amplitudes. Our findings provide new insights into potential electrophysiological biomarkers for diagnosing MCI.
Collapse
Affiliation(s)
- Jiajun Che
- Department of Psychology, Chengde Medical University, Chengde 067000, China
| | - Nan Cheng
- Department of Psychology, Chengde Medical University, Chengde 067000, China
| | - Bicong Jiang
- Department of Psychology, Chengde Medical University, Chengde 067000, China
| | - Yanli Liu
- Department of Biomedical Engineering, Chengde Medical University, Chengde 067000, China
| | - Haihong Liu
- Department of Psychology, Chengde Medical University, Chengde 067000, China; Natural University of Malaysia, Faculty of Social Sciences and Humanities, Centre for Psychology and Human Welfare, Bangui, Malaysia
| | - Yutong Li
- Department of Psychology, Chengde Medical University, Chengde 067000, China
| | - Haining Liu
- Department of Psychology, Chengde Medical University, Chengde 067000, China; Hebei Key Laboratory of Nerve Injury and Repair, Chengde Medical University, Chengde 067000, China.
| |
Collapse
|
11
|
Falkenstein M. Recent Advances in Clinical Applications of P300 and MMN. NEUROMETHODS 2024:1-21. [DOI: 10.1007/978-1-0716-3545-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Wei G, Tian X, Yang H, Luo Y, Liu G, Sun S, Wang X, Wen H. Adjunct Methods for Alzheimer's Disease Detection: A Review of Auditory Evoked Potentials. J Alzheimers Dis 2024; 97:1503-1517. [PMID: 38277292 DOI: 10.3233/jad-230822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
The auditory afferent pathway as a clinical marker of Alzheimer's disease (AD) has sparked interest in investigating the relationship between age-related hearing loss (ARHL) and AD. Given the earlier onset of ARHL compared to cognitive impairment caused by AD, there is a growing emphasis on early diagnosis and intervention to postpone or prevent the progression from ARHL to AD. In this context, auditory evoked potentials (AEPs) have emerged as a widely used objective auditory electrophysiological technique for both the clinical diagnosis and animal experimentation in ARHL due to their non-invasive and repeatable nature. This review focuses on the application of AEPs in AD detection and the auditory nerve system corresponding to different latencies of AEPs. Our objective was to establish AEPs as a systematic and non-invasive adjunct method for enhancing the diagnostic accuracy of AD. The success of AEPs in the early detection and prediction of AD in research settings underscores the need for further clinical application and study.
Collapse
Affiliation(s)
- Guoliang Wei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xuelong Tian
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Hong Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yinpei Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Guisong Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Shuqing Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xing Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Huizhong Wen
- Department of Neurobiology, School of Basic Medicine, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing, China
| |
Collapse
|
13
|
Eyamu J, Kim WS, Kim K, Lee KH, Kim JU. Prefrontal event-related potential markers in association with mild cognitive impairment. Front Aging Neurosci 2023; 15:1273008. [PMID: 37927335 PMCID: PMC10620700 DOI: 10.3389/fnagi.2023.1273008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023] Open
Abstract
Background Alzheimer's disease (AD) is among the leading contributors of dementia globally with approximately 60-70% of its cases. Current research is focused on the mild cognitive impairment (MCI), which is associated with cognitive decline but does not disrupt routine activities. Event-related potential (ERP) research is essential in screening patients with MCI. Low-density channel electroencephalography (EEG) is frequently used due to its convenience, portability, and affordability, making it suitable for resource-constrained environments. Despite extensive research on neural biomarkers for cognitive impairment, there is a considerable gap in understanding the effects on early stages of cognitive processes, particularly when combining physiological and cognitive markers using portable devices. The present study aimed to examine cognitive shortfalls and behavioral changes in patients with MCI using prefrontal selective attention ERP recorded from a prefrontal two-channel EEG device. Methods We assessed cognitive decline using the Mini-Mental State Examination (MMSE) and the Seoul Neuropsychological Screening Battery (SNSB). We administered auditory selective attention tasks to 598 elderly participants, including those with MCI (160) and cognitively normal (CN) individuals (407). We conducted statistical analyses such as independent t-tests, Pearson's correlations, and univariate and multiple logistic regression analyses to assess group differences and associations between neuropsychological tests, ERP measures, behavioral measures, and MCI prevalence. Results Our findings revealed that patients with MCI demonstrated slower information-processing abilities, and exhibited poorer task execution, characterized by reduced accuracy, increased errors, and higher variability in response time, compared to CN adults. Multiple logistic regression analyses confirmed the association between some ERP and behavioral measures with MCI prevalence, independent of demographic and neuropsychological factors. A relationship was observed between neuropsychological scores, ERP, and behavioral measures. Discussion The slower information processing abilities, and poor task execution in the MCI group compared to the CN individuals suggests flawed neurological changes and reduced attentional maintenance during cognitive processing, respectively. Hence, the utilization of portable EEG devices to capture prefrontal selective attention ERPs, in combination with behavioral assessments, holds promise for the identification of mild cognitive deficits and neural alterations in individuals with MCI. This approach could potentially augment the traditional neuropsychological tests during clinical screening for MCI.
Collapse
Affiliation(s)
- Joel Eyamu
- Digital Health Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
- KM Convergence Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Wuon-Shik Kim
- Digital Health Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Kahye Kim
- Digital Health Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Kun Ho Lee
- Gwangju Alzheimer’s Disease and Related Dementias (GARD) Cohort Research Center, Chosun University, Gwangju, Republic of Korea
- Department of Biomedical Science, Chosun University, Gwangju, Republic of Korea
- Dementia Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jaeuk U. Kim
- Digital Health Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
- KM Convergence Science, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
14
|
Saini F, Masina F, Wells J, Rosch R, Hamburg S, Startin C, Strydom A. The mismatch negativity as an index of cognitive abilities in adults with Down syndrome. Cereb Cortex 2023; 33:9639-9651. [PMID: 37401006 PMCID: PMC10431748 DOI: 10.1093/cercor/bhad233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 07/05/2023] Open
Abstract
Down syndrome (DS) is associated with an ultra-high risk of developing Alzheimer's disease (AD). Understanding variability in pre-AD cognitive abilities may help understand cognitive decline in this population. The mismatch negativity (MMN) is an event-related potential component reflecting the detection of deviant stimuli that is thought to represent underlying memory processes, with reduced MMN amplitudes being associated with cognitive decline. To further understand the MMN in adults with DS without AD, we explored the relationships between MMN, age, and cognitive abilities (memory, language, and attention) in 27 individuals (aged 17-51) using a passive auditory oddball task. Statistically significant MMN was present only in 18 individuals up to 41 years of age and the latency were longer than canonical parameters reported in the literature. Reduced MMN amplitude was associated with lower memory scores, while longer MMN latencies were associated with poorer memory, verbal abilities, and attention. Therefore, the MMN may represent a valuable index of cognitive abilities in DS. In combination with previous findings, we hypothesize that while MMN response and amplitude may be associated with AD-related memory loss, MMN latency may be associated with speech signal processing. Future studies may explore the potential impact of AD on MMN in people with DS.
Collapse
Affiliation(s)
- Fedal Saini
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London SE5 8AB, UK
| | - Fabio Masina
- IRCCS San Camillo Hospital, Via Alberoni, 70, 30126 Lido VE, Italy
| | - Jasmine Wells
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London SE5 8AB, UK
| | - Richard Rosch
- Department of Clinical Neurophysiology, King’s College Hospital NHS Foundation Trust, Golden Jubilee, Denmark Hill, London SE5 9RS, UK
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3AR, UK
| | - Sarah Hamburg
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London SE5 8AB, UK
- Division of Psychiatry, University College London, Maple House, 149 Tottenham Ct Rd, London W1T 7BN, UK
| | - Carla Startin
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London SE5 8AB, UK
- Division of Psychiatry, University College London, Maple House, 149 Tottenham Ct Rd, London W1T 7BN, UK
- School of Psychology, University of Roehampton, Grove House, Roehampton Lane, London, SW15 5PJ, UK
| | - André Strydom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London SE5 8AB, UK
- Division of Psychiatry, University College London, Maple House, 149 Tottenham Ct Rd, London W1T 7BN, UK
| |
Collapse
|
15
|
Antar M, Wang L, Tran A, White A, Williams P, Sylcott B, Mizelle JC, Kim S. Functional Connectivity Analysis of Visually Evoked ERPs for Mild Cognitive Impairment: Pilot Study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082904 DOI: 10.1109/embc40787.2023.10339999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Mild cognitive impairment (MCI) is considered the early stage of Alzheimer's disease, characterized as mild memory loss. A novel method of functional connectivity (FC) analysis can be used to detect MCI before memory is significantly impaired allowing for preventative measures to be taken. FC examines interactions between EEG channels to grant insight on underlying neural networks and analyze the effects of MCI. Applying FC method of weighted phase lag index (wPLI) to P300 ERPs provided insight on the link between the pathology of Alzheimer's disease and cognitive loss. wPLI was analyzed per frequency band (θ, α, μ, β) and by channel combination groups (intra-hemispheric short, intra-hemispheric long, inter-hemispheric short, inter-hemispheric long, transverse). MCI was found to have a statistically significant lower ΔwPLIP300 compared to normal controls in the μ intra-hemispheric short (p = 0.0286), μ intra-hemispheric long (p = 0.0477), μ inter-hemispheric short (p = 0.0018) and the α intra-hemispheric short (p = 0.0423). Results indicate a possible deficiency in the dorsal visual processing pathway among MCI subjects as well as an unbalanced coordination between the two hemispheres.
Collapse
|
16
|
Poskotinova L, Khasanova N, Kharak A, Krivonogova O, Krivonogova E. Parameters of Auditory Evoked Related Potentials P300 in Disorders of Different Cognitive Function Domains (Visuospatial/Executive and Memory) in Elderly Hypertensive Persons. Diagnostics (Basel) 2023; 13:diagnostics13091598. [PMID: 37174989 PMCID: PMC10178622 DOI: 10.3390/diagnostics13091598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
The neurophysiological correlates of certain types of cognitive impairment in relation to the spatial pattern of auditory cognitive evoked-related potentials (ERPs) in hypertensive persons remain unclear. The aim of this study was to determine the parameters of ERPs (N200, P300) in impaired different domains (visuospatial/executive and memory) of cognitive function in arterial hypertension, including cardiovascular ischemic events. A total of 46 patients (65-84 years) were observed. The clinical diagnosis of vascular dementia, the Montreal Cognitive Assessment Scale (MoCA test) and the spatial pattern of ERPs (N200, P300) were the parameters used to identify three groups: the Control Group without cognitive impairment (n = 13), the group with a leading memory disturbance (Memory Group, n = 20) and the group with a leading visuospatial/executive disturbance (VS/E Group, n = 13). In persons belonging to the Memory Group, N2 latency was prolonged in the central (C3 C4) and right parietal (P4) brain parts; latency of the motor component (P300) may remain similar to that of the ControlGroup. In persons belonging to theVS/E Group, maximal prolonged recognition time (N2), especially in the left central (C3), frontal-midline (Fz), right parietal (P3) and temporal (P4) brain parts, was observed; P300 latency in the central-midline (Cz) and left anterior-temporal (F7) brain parts among all the groups was revealed.
Collapse
Affiliation(s)
- Liliya Poskotinova
- N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences, 163020 Arkhangelsk, Russia
| | - Nina Khasanova
- Department of Family Medicine and Internal Medicine, Northern State Medical University, 163069 Arkhangelsk, Russia
| | - Anna Kharak
- Department of Family Medicine and Internal Medicine, Northern State Medical University, 163069 Arkhangelsk, Russia
| | - Olga Krivonogova
- N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences, 163020 Arkhangelsk, Russia
| | - Elena Krivonogova
- N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences, 163020 Arkhangelsk, Russia
| |
Collapse
|
17
|
Tarawneh HY, Jayakody DMP, Verma S, Doré V, Xia Y, Mulders WHAM, Martins RN, Sohrabi HR. Auditory Event-Related Potentials in Older Adults with Subjective Memory Complaints. J Alzheimers Dis 2023; 92:1093-1109. [PMID: 36847006 DOI: 10.3233/jad-221119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
BACKGROUND Auditory event-related potentials (AERPs) have been suggested as possible biomarkers for the early diagnosis of Alzheimer's disease (AD). However, no study has investigated AERP measures in individuals with subjective memory complaints (SMCs), who have been suggested to be at a pre-clinical stage of AD. OBJECTIVE This study investigated whether AERPs in older adults with SMC can be used to objectively identify those at high risk of developing AD. METHODS AERPs were measured in older adults. Presence of SMC was determined using the Memory Assessment Clinics Questionnaire (MAC-Q). Hearing thresholds using pure-tone audiometry, neuropsychological data, levels of amyloid-β burden and Apolipoprotein E (APOE)ɛ genotype were also obtained A classic two-tone discrimination (oddball) paradigm was used to elicit AERPs (i.e., P50, N100, P200, N200, and P300). RESULTS Sixty-two individuals (14 male, mean age 71.9±5.2 years) participated in this study, of which, 43 (11 male, mean age 72.4±5.5 years) were SMC and 19 (3 male, mean age 70.8±4.3 years) were non-SMC (controls). P50 latency was weakly but significantly correlated with MAC-Q scores. In addition, P50 latencies were significantly longer in Aβ+ individuals compared to Aβ- individuals. CONCLUSION Results suggest that P50 latencies may be a useful tool to identify individuals at higher risk (i.e., participants with high Aβ burden) of developing measurable cognitive decline. Further longitudinal and cross-sectional studies in a larger cohort on SMC individuals are warranted to determine if AERP measures could be of significance for the detection of pre-clinical AD.
Collapse
Affiliation(s)
- Hadeel Y Tarawneh
- School of Human Sciences, The University of Western Australia, Perth, Australia.,Ear Science Institute Australia, Perth, Australia
| | - Dona M P Jayakody
- Ear Science Institute Australia, Perth, Australia.,Ear Science Centre, School of Surgery, The University of Western Australia, Perth, Australia
| | - Shipra Verma
- Department of Geriatric Medicine, Fiona Stanley and Fremantle Hospital, Perth, Australia.,Department of Nuclear Medicine, Fiona Stanley and Royal Perth Hospital, Perth, Australia
| | - Vincent Doré
- The Australian e-Health Research Centre, CSIRO Health and Biosecurity, Melbourne, Victoria, Australia.,Department of Molecular Imaging & Therapy, Austin Health, Melbourne, Victoria, Australia
| | - Ying Xia
- The Australian e-Health Research Centre, CSIRO Health and Biosecurity, Brisbane, Queensland, Australia
| | | | - Ralph N Martins
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia.,Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Hamid R Sohrabi
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia.,Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.,Centre for Healthy Ageing, The Health Futures Institute, Murdoch University, Perth, Australia
| |
Collapse
|
18
|
English BA, Ereshefsky L. Experimental Medicine Approaches in Early-Phase CNS Drug Development. ADVANCES IN NEUROBIOLOGY 2023; 30:417-455. [PMID: 36928860 DOI: 10.1007/978-3-031-21054-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Traditionally, Phase 1 clinical trials were largely conducted in healthy normal volunteers and focused on collection of safety, tolerability, and pharmacokinetic data. However, in the CNS therapeutic area, with more drugs failing in later phase development, Phase 1 trials have undergone an evolution that includes incorporation of novel approaches involving novel study designs, inclusion of biomarkers, and early inclusion of patients to improve the pharmacologic understanding of novel CNS-active compounds early in clinical development with the hope of improving success in later phase pivotal trials. In this chapter, the authors will discuss the changing landscape of Phase 1 clinical trials in CNS, including novel trial methodology, inclusion of pharmacodynamic biomarkers, and experimental medicine approaches to inform early decision-making in clinical development.
Collapse
|
19
|
Wang C, Xu T, Yu W, Li T, Han H, Zhang M, Tao M. Early diagnosis of Alzheimer's disease and mild cognitive impairment based on electroencephalography: From the perspective of event related potentials and deep learning. Int J Psychophysiol 2022; 182:182-189. [DOI: 10.1016/j.ijpsycho.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
|
20
|
Predictive Power of Cognitive Biomarkers in Neurodegenerative Disease Drug Development: Utility of the P300 Event-Related Potential. Neural Plast 2022; 2022:2104880. [PMID: 36398135 PMCID: PMC9666049 DOI: 10.1155/2022/2104880] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/08/2022] [Indexed: 11/11/2022] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), and their associated deterioration of cognitive function are common causes of disability. The slowly developing pathology of neurodegenerative diseases necessitates early diagnosis and monitored long-term treatment. Lack of effective therapies coupled with an improved rate of early diagnosis in our aging population have created an urgent need for the development of novel drugs, as well as the need for reliable biomarkers for treatment response. These issues are especially relevant for AD, in which the rate of clinical trial drug failures has been very high. Frequently used biomarker evaluation procedures, such as positron emission tomography or cerebrospinal fluid measurements of phospho-tau and amyloid beta, are invasive and costly, and not universally available or accessible. This review considers the functionality of the event-related potential (ERP) P300 methodology as a surrogate biomarker for predicting the procognitive potential of drugs in clinical development for neurocognitive disorders. Through the application of standardized electroencephalography (EEG) described here, ERP P300 can be reliably measured. The P300 waveform objectively measures large-scale neuronal network functioning and working memory processes. Increased ERP P300 latency has been reported throughout the literature in disorders of cognition, supporting the potential utility of ERP P300 as a biomarker in many neurological and neuropsychiatric disorders, including AD. Specifically, evidence presented here supports ERP P300 latency as a quantitative, unbiased measure for detecting changes in cognition in patients with AD dementia through the progression from mild to moderate cognitive impairment and after drug treatment.
Collapse
|
21
|
Tarawneh HY, Jayakody DM, Sohrabi HR, Martins RN, Mulders WH. Understanding the Relationship Between Age-Related Hearing Loss and Alzheimer’s Disease: A Narrative Review. J Alzheimers Dis Rep 2022; 6:539-556. [PMID: 36275417 PMCID: PMC9535607 DOI: 10.3233/adr-220035] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/16/2022] [Indexed: 12/02/2022] Open
Abstract
Evidence suggests that hearing loss (HL), even at mild levels, increases the long-term risk of cognitive decline and incident dementia. Hearing loss is one of the modifiable risk factors for dementia, with approximately 4 million of the 50 million cases of dementia worldwide possibly attributed to untreated HL. This paper describes four possible mechanisms that have been suggested for the relationship between age-related hearing loss (ARHL) and Alzheimer’s disease (AD), which is the most common form of dementia. The first mechanism suggests mitochondrial dysfunction and altered signal pathways due to aging as a possible link between ARHL and AD. The second mechanism proposes that sensory degradation in hearing impaired people could explain the relationship between ARHL and AD. The occupation of cognitive resource (third) mechanism indicates that the association between ARHL and AD is a result of increased cognitive processing that is required to compensate for the degraded sensory input. The fourth mechanism is an expansion of the third mechanism, i.e., the function and structure interaction involves both cognitive resource occupation (neural activity) and AD pathology as the link between ARHL and AD. Exploring the specific mechanisms that provide the link between ARHL and AD has the potential to lead to innovative ideas for the diagnosis, prevention, and/or treatment of AD. This paper also provides insight into the current evidence for the use of hearing treatments as a possible treatment/prevention for AD, and if auditory assessments could provide an avenue for early detection of cognitive impairment associated with AD.
Collapse
Affiliation(s)
- Hadeel Y. Tarawneh
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia
- Ear Science Institute Australia, Subiaco, WA, Australia
| | - Dona M.P. Jayakody
- Ear Science Institute Australia, Subiaco, WA, Australia
- Centre of Ear Science, Medical School, The University of Western Australia, Crawley, WA, Australia
| | - Hamid R. Sohrabi
- Centre for Healthy Ageing, College of Science, Health, Engineering and Education, Murdoch University, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia
| | - Ralph N. Martins
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia
| | | |
Collapse
|
22
|
Andrade SM, Machado DGDS, Silva-Sauerc LD, Regis CT, Mendes CKTT, de Araújo JSS, de Araújo KDT, Costa LP, Queiroz MEBS, Leitão MM, Fernández-Calvo B. Effects of multisite anodal transcranial direct current stimulation combined with cognitive stimulation in patients with Alzheimer's disease and its neurophysiological correlates: A double-blind randomized clinical trial. Neurophysiol Clin 2022; 52:117-127. [PMID: 35339351 DOI: 10.1016/j.neucli.2022.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES We aimed to examine the effects of multisite anodal transcranial direct current stimulation (tDCS) combined with cognitive stimulation (CS) over 2 months on cognitive performance and brain activity, and the relationship between them, in patients with Alzheimer's disease (AD). METHODS Patients with AD were randomly assigned to an active tDCS+CS (n=18) or a sham tDCS+CS (n=18) group. Cognitive performance was assessed using the Alzheimer Disease Assessment Scale-cognitive subscale (ADAS-cog) and brain activity using EEG (spectral power and coherence analysis) before and after the intervention. Multisite anodal tDCS (2 mA, 30 min) was applied over six brain regions [left and right dorsolateral prefrontal cortex (F3 and F4), Broca's area (F5), Wernicke's area (CP5), left and right somatosensory association cortex (P3 and P4)] for 24 sessions (three times a week). Both groups performed CS during tDCS. RESULTS Anodal tDCS+CS delays cognitive decline (ADAS-cog change) to a greater extent than sham tDCS+CS (-3.4±1.1 vs. -1.7±0.4; p=.03). Bilateral EEG coherence at high and low frequencies was greater for the active tDCS+CS than sham+CS group for most electrode pairs assessed (p < .05). The post-intervention ADAS-cog change score was predictive for EEG coherence at different sites (R²=.59 to .68; p < .05) in the active but not in the sham tDCS+CS group. CONCLUSION Anodal tDCS+CS improved overall cognitive function and changed EEG brain activity compared to sham tDCS+CS. Changes in cognitive performance were associated with changes in EEG measures of brain activity. Anodal tDCS+CS appears to be a promising therapeutic strategy to modulate cortical activity and improve cognitive function in patients with AD.
Collapse
Affiliation(s)
| | | | - Leandro da Silva-Sauerc
- Laboratory of Aging and Neurodegenerative Disorder, Department of Psychology, Federal University of Paraíba, João Pessoa, Brazil
| | - Cláudio Teixeira Regis
- Aging and Neuroscience Laboratory, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | | | | | | - Larissa Pereira Costa
- Aging and Neuroscience Laboratory, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | | | | - Bernardino Fernández-Calvo
- Laboratory of Aging and Neurodegenerative Disorder, Department of Psychology, Federal University of Paraíba, João Pessoa, Brazil; Department of Psychology, Faculty of Educational Sciences and Psychology, University of Córdoba, Córdoba, Spain; Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain
| |
Collapse
|
23
|
Zhao L, Mao L, Liu Q, Chen X, Tang X, An D. Cognitive impairment in type 2 diabetes patients with and without diabetic peripheral neuropathy: a mismatch negativity study. Neuroreport 2021; 32:1223-1228. [PMID: 34406991 DOI: 10.1097/wnr.0000000000001716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To assess the cognitive impairment in patients with type 2 diabetes mellitus (T2DM) using mismatch negativity (MMN) and to explore the relationship between cognitive impairment and diabetic peripheral neuropathy (DPN). METHODS Sixty-six T2DM patients and 40 healthy controls were included. For each participant, mini-mental state examination (MMSE) was applied to assess the general cognitive function and MMN was elicited. T2DM patients were divided into two subgroups: subgroup DPN-, patients without DPN; subgroup DPN+, patients with DPN. The MMSE scores, MMN amplitudes and latencies were compared between the T2DM group and the control group using univariate analysis of variance procedures, and also among the controls, subgroup DPN- and subgroup DPN+. Pearson's correlation coefficients (r) were used to analyze potential confounding clinical factors associated with MMN. RESULTS T2DM patients had significantly lower MMSE scores compared with controls (23.25 ± 2.86 vs. 27.15 ± 1.83; P < 0.01), whereas those of the two subgroups were not significantly different. Both subgroup DPN+ and DPN- had longer latencies and lower amplitudes of MMN than the controls. The latencies of MMN were significantly longer in subgroup DPN+ compared with subgroup DPN-. The latency of MMN was positively correlated with the duration of the disease. CONCLUSION Cognitive decline exists in patients with T2DM irrespective of the presence of DPN. Patients with DPN may have more severe cognitive dysfunction than those without DPN. MMN may be a promising tool for evaluating cognitive function.
Collapse
Affiliation(s)
- Lili Zhao
- Department of Neurobiology and Neurology
| | - Limei Mao
- Department of Neurobiology and Neurology
| | - Qian Liu
- Department of Neurobiology and Neurology
| | | | | | - Dongmei An
- Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
24
|
Li H, Li N, Xing Y, Zhang S, Liu C, Cai W, Hong W, Zhang Q. P300 as a Potential Indicator in the Evaluation of Neurocognitive Disorders After Traumatic Brain Injury. Front Neurol 2021; 12:690792. [PMID: 34566838 PMCID: PMC8458648 DOI: 10.3389/fneur.2021.690792] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/12/2021] [Indexed: 11/29/2022] Open
Abstract
Few objective indices can be used when evaluating neurocognitive disorders after a traumatic brain injury (TBI). P300 has been widely studied in mental disorders, cognitive dysfunction, and brain injury. Daily life ability and social function are key indices in the assessment of neurocognitive disorders after a TBI. The present study focused on the correlation between P300 and impairment of daily living activity and social function. We enrolled 234 patients with neurocognitive disorders after a TBI according to ICD-10 and 277 age- and gender-matched healthy volunteers. The daily living activity and social function were assessed by the social disability screening schedule (SDSS) scale, activity of daily living (ADL) scale, and scale of personality change following a TBI. P300 was evoked by a visual oddball paradigm. The results showed that the scores of the ADL scale, SDSS scale, and scale of personality change in the patient group were significantly higher than those in the control group. The amplitudes of Fz, Cz, and Pz in the patient group were significantly lower than those in the control group and were negatively correlated with the scores of the ADL and SDSS scales. In conclusion, a lower P300 amplitude means a greater impairment of daily life ability and social function, which suggested more severity of neurocognitive disorders after a TBI. P300 could be a potential indicator in evaluating the severity of neurocognitive disorders after a TBI.
Collapse
Affiliation(s)
- Haozhe Li
- Shanghai Key Laboratory of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China
| | - Ningning Li
- Hongkou District Mental Health Center, Shanghai, China
| | - Yan Xing
- Shanghai Key Laboratory of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China
| | - Shengyu Zhang
- Shanghai Key Laboratory of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China
| | - Chao Liu
- Shanghai Key Laboratory of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China
| | - Weixiong Cai
- Shanghai Key Laboratory of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China
| | - Wu Hong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinting Zhang
- Shanghai Key Laboratory of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China
| |
Collapse
|
25
|
Mazrooei Rad E, Azarnoosh M, Ghoshuni M, Khalilzadeh MM. Diagnosis of mild Alzheimer's disease by EEG and ERP signals using linear and nonlinear classifiers. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.103049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Chen PY, Hsu HY, Chao YP, Nouchi R, Wang PN, Cheng CH. Altered mismatch response of inferior parietal lobule in amnestic mild cognitive impairment: A magnetoencephalographic study. CNS Neurosci Ther 2021; 27:1136-1145. [PMID: 34347358 PMCID: PMC8446215 DOI: 10.1111/cns.13691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/16/2021] [Accepted: 05/20/2021] [Indexed: 12/31/2022] Open
Abstract
Background Mismatch negativity (MMN) reflects the functional integrity of sensory memory function. With the advantages of independence of individual's focused attention and behavioral cooperation, this neurophysiological signal is particularly suitable for investigating elderly with cognitive decline such as amnestic mild cognitive impairment (aMCI). However, the existing results remain substantially inconsistent whether these patients show deficits of MMN. In order to reconcile the previous disputes, the present study used magnetoencephalography combined with distributed source imaging methods to determine the source‐level magnetic mismatch negativity (MMNm) in aMCI. Methods A total of 26 healthy controls (HC) and 26 patients with aMCI underwent an auditory oddball paradigm during the MEG recordings. MMNm amplitudes and latencies in the bilateral superior temporal gyrus, inferior frontal gyrus, and inferior parietal lobule (IPL) were compared between HC and aMCI groups. The correlations of MMNm responses with performance of auditory/verbal memory tests were examined. Finally, MMNm and its combination with verbal/auditory memory tests were submitted to receiver operating characteristic (ROC) curve analysis. Results Compared to HC, patients with aMCI showed significantly delayed MMNm latencies in the IPL. Among the patients with aMCI, longer MMNm latencies of left IPL were associated with lower scores of Chinese Version Verbal Learning Test (CVVLT). The ROC curve analysis revealed that the combination of MMNm latencies of left IPL and CVVLT scores yielded a moderate accuracy in the discrimination of aMCI from HC at an individual level. Conclusions Our data suggest dysfunctional MMNm in patients with aMCI, particularly in the IPL.
Collapse
Affiliation(s)
- Pin-Yu Chen
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan.,Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan
| | - Hui-Yun Hsu
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan.,Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan
| | - Yi-Ping Chao
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan.,Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Rui Nouchi
- Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan.,Smart Aging Research Center (S.A.R.C), Tohoku University, Sendai, Japan
| | - Pei-Ning Wang
- Division of General Neurology, Department of Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Neurology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Hsiung Cheng
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan.,Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|
27
|
Trinh TT, Tsai CF, Hsiao YT, Lee CY, Wu CT, Liu YH. Identifying Individuals With Mild Cognitive Impairment Using Working Memory-Induced Intra-Subject Variability of Resting-State EEGs. Front Comput Neurosci 2021; 15:700467. [PMID: 34421565 PMCID: PMC8373435 DOI: 10.3389/fncom.2021.700467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/30/2021] [Indexed: 11/22/2022] Open
Abstract
Individuals with mild cognitive impairment (MCI) are at high risk of developing into dementia (e. g., Alzheimer's disease, AD). A reliable and effective approach for early detection of MCI has become a critical challenge. Although compared with other costly or risky lab tests, electroencephalogram (EEG) seems to be an ideal alternative measure for early detection of MCI, searching for valid EEG features for classification between healthy controls (HCs) and individuals with MCI remains to be largely unexplored. Here, we design a novel feature extraction framework and propose that the spectral-power-based task-induced intra-subject variability extracted by this framework can be an encouraging candidate EEG feature for the early detection of MCI. In this framework, we extracted the task-induced intra-subject spectral power variability of resting-state EEGs (as measured by a between-run similarity) before and after participants performing cognitively exhausted working memory tasks as the candidate feature. The results from 74 participants (23 individuals with AD, 24 individuals with MCI, 27 HC) showed that the between-run similarity over the frontal and central scalp regions in the HC group is higher than that in the AD or MCI group. Furthermore, using a feature selection scheme and a support vector machine (SVM) classifier, the between-run similarity showed encouraging leave-one-participant-out cross-validation (LOPO-CV) classification performance for the classification between the MCI and HC (80.39%) groups and between the AD vs. HC groups (78%), and its classification performance is superior to other widely-used features such as spectral powers, coherence, and the complexity estimated by Katz's method extracted from single-run resting-state EEGs (a common approach in previous studies). The results based on LOPO-CV, therefore, suggest that the spectral-power-based task-induced intra-subject EEG variability extracted by the proposed feature extraction framework has the potential to serve as a neurophysiological feature for the early detection of MCI in individuals.
Collapse
Affiliation(s)
- Thanh-Tung Trinh
- Neural Engineering and Smart Systems Laboratory, Graduate Institute of Manufacturing Technology, College of Mechanical and Electrical Engineering, National Taipei University of Technology (Taipei Tech), Taipei, Taiwan
| | - Chia-Fen Tsai
- Department of Psychiatry, Division of Geriatric Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Tsung Hsiao
- Neural Engineering and Smart Systems Laboratory, Graduate Institute of Mechatronic Engineering, National Taipei University of Technology (Taipei Tech), Taipei, Taiwan
| | - Chun-Ying Lee
- Department of Mechanical Engineering, National Taipei University of Technology (Taipei Tech), Taipei, Taiwan
| | - Chien-Te Wu
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
| | - Yi-Hung Liu
- Department of Mechanical Engineering, National Taiwan University of Science and Technology (Taiwan Tech), Taipei, Taiwan
| |
Collapse
|
28
|
Yue T, Chen Y, Zheng Q, Xu Z, Wang W, Ni G. Screening Tools and Assessment Methods of Cognitive Decline Associated With Age-Related Hearing Loss: A Review. Front Aging Neurosci 2021; 13:677090. [PMID: 34335227 PMCID: PMC8316923 DOI: 10.3389/fnagi.2021.677090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
Strong links between hearing and cognitive function have been confirmed by a growing number of cross-sectional and longitudinal studies. Seniors with age-related hearing loss (ARHL) have a significantly higher cognitive impairment incidence than those with normal hearing. The correlation mechanism between ARHL and cognitive decline is not fully elucidated to date. However, auditory intervention for patients with ARHL may reduce the risk of cognitive decline, as early cognitive screening may improve related treatment strategies. Currently, clinical audiology examinations rarely include cognitive screening tests, partly due to the lack of objective quantitative indicators with high sensitivity and specificity. Questionnaires are currently widely used as a cognitive screening tool, but the subject's performance may be negatively affected by hearing loss. Numerous electroencephalogram (EEG) and magnetic resonance imaging (MRI) studies analyzed brain structure and function changes in patients with ARHL. These objective electrophysiological tools can be employed to reveal the association mechanism between auditory and cognitive functions, which may also find biological markers to be more extensively applied in assessing the progression towards cognitive decline and observing the effects of rehabilitation training for patients with ARHL. In this study, we reviewed clinical manifestations, pathological changes, and causes of ARHL and discussed their cognitive function effects. Specifically, we focused on current cognitive screening tools and assessment methods and analyzed their limitations and potential integration.
Collapse
Affiliation(s)
- Tao Yue
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Tianjin International Engineering Institute, Tianjin University, Tianjin, China
| | - Yu Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Qi Zheng
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Zihao Xu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Wei Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Guangjian Ni
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| |
Collapse
|
29
|
Susana CF, Mónica L, Fernando D. Event-related brain potential indexes provide evidence for some decline in healthy people with subjective memory complaints during target evaluation and response inhibition processing. Neurobiol Learn Mem 2021; 182:107450. [PMID: 33933631 DOI: 10.1016/j.nlm.2021.107450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 04/06/2021] [Accepted: 04/27/2021] [Indexed: 11/29/2022]
Abstract
In the preclinical stage of the Alzheimer's disease (AD) continuum, subjects report subjective memory complaints (SMCs), although with the absence of any objective decline, and have a higher risk of progressing to dementia than the general population. Early identification of this stage therefore constitutes a major focus of current AD research, to enable early intervention. In this study, healthy adult participants with high and low SMCs (HSMCs and LSMCs) performed a Go/NoGo task during electroencephalogram (EEG) recording. Relative to LSMC participants, HSMC participants performed the task slower (longer reaction times) and showed changes in the event-related potential (ERP) components associated with response preparation (lower readiness potential -RP- amplitude in the Go condition), and also related to response inhibition processes (lower N2-P3 amplitude in the NoGo condition). In addition, HSMC participants showed lower Go-N2 and NoGo-N2 peak-to-baseline amplitudes, however these results seem to be influenced by a negative tendency overlapping stimulus-related waveforms. The declines observed in this study are mostly consistent with those observed in aMCI participants, supporting the notion of the AD continuum regarding SMC state.
Collapse
|
30
|
Laptinskaya D, Küster OC, Fissler P, Thurm F, Von Arnim CAF, Kolassa IT. No Evidence That Cognitive and Physical Activities Are Related to Changes in EEG Markers of Cognition in Older Adults at Risk of Dementia. Front Aging Neurosci 2021; 13:610839. [PMID: 33815087 PMCID: PMC8017171 DOI: 10.3389/fnagi.2021.610839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/27/2021] [Indexed: 11/13/2022] Open
Abstract
An active lifestyle as well as cognitive and physical training (PT) may benefit cognition by increasing cognitive reserve, but the underlying neurobiological mechanisms of this reserve capacity are not well understood. To investigate these mechanisms of cognitive reserve, we focused on electrophysiological correlates of cognitive performance, namely on an event-related measure of auditory memory and on a measure of global coherence. Both measures have shown to be sensitive markers for cognition and might therefore be suitable to investigate potential training- and lifestyle-related changes. Here, we report on the results of an electrophysiological sub-study that correspond to previously published behavioral findings. Altogether, 65 older adults with subjective or objective cognitive impairment and aged 60-88 years were assigned to a 10-week cognitive (n = 19) or a 10-week PT (n = 21) or to a passive control group (n = 25). In addition, self-reported lifestyle was assessed at baseline. We did not find an effect of both training groups on electroencephalography (EEG) measures of auditory memory decay or global coherence (ps ≥ 0.29) and a more active lifestyle was not associated with improved global coherence (p = 0.38). Results suggest that a 10-week unimodal cognitive or PT and an active lifestyle in older adults at risk for dementia are not strongly related to improvements in electrophysiological correlates of cognition.
Collapse
Affiliation(s)
- Daria Laptinskaya
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
- Department of Psychology, University of Konstanz, Konstanz, Germany
| | - Olivia Caroline Küster
- Department of Neurology, Ulm University, Ulm, Germany
- Clinic for Neurogeriatrics and Neurological Rehabilitation, University- and Rehabilitation Hospital Ulm, Ulm, Germany
| | - Patrick Fissler
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
- Department of Neurology, Ulm University, Ulm, Germany
- Psychiatric Services of Thurgovia, Academic Teaching Hospital of Paracelsus Medical University Salzburg, Muensterlingen, Switzerland
| | - Franka Thurm
- Department of Psychology, University of Konstanz, Konstanz, Germany
- Faculty of Psychology, TU Dresden, Dresden, Germany
| | - Christine A. F. Von Arnim
- Department of Neurology, Ulm University, Ulm, Germany
- Division of Geriatrics, University Medical Center Göttingen, Göttingen, Germany
| | - Iris-Tatjana Kolassa
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
- Department of Psychology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
31
|
Santos Toural JE, Montoya Pedrón A, Marañón Reyes EJ. A new method for classification of subjects with major cognitive disorder, Alzheimer type, based on electroencephalographic biomarkers. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
32
|
Tarawneh HY, Mulders WH, Sohrabi HR, Martins RN, Jayakody DM. Investigating Auditory Electrophysiological Measures of Participants with Mild Cognitive Impairment and Alzheimer's Disease: A Systematic Review and Meta-Analysis of Event-Related Potential Studies. J Alzheimers Dis 2021; 84:419-448. [PMID: 34569950 PMCID: PMC8609695 DOI: 10.3233/jad-210556] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Objectively measuring auditory functions has been proposed as an avenue in differentiating normal age-related cognitive dysfunction from Alzheimer's disease (AD) and its prodromal states. Previous research has suggested auditory event-related potentials (AERPs) to be non-invasive, cost-effective, and efficient biomarkers for the diagnosis of AD. OBJECTIVE The objective of this paper is to review the published literature on AERPs measures in older adults diagnosed with AD and those at higher risk of developing AD, i.e., mild cognitive impairment (MCI) and subjective cognitive decline. METHODS The search was performed on six major electronic databases (Ovid MEDLINE, OVID EMBASE, PsycINFO, PubMed, Scopus, and CINAHL Plus). Articles identified prior to 7 May 2019 were considered for this review. A random effects meta-analysis and analysis of between study heterogeneity was conducted using the Comprehensive Meta-Analysis software. RESULTS The search identified 1,076 articles; 74 articles met the full inclusion criteria and were included in the systematic review, and 47 articles were included into the analyses. Pooled analysis suggests that AD participants can be differentiated from controls due to significant delays in ABR, N100, P200, N200, and P300 latencies. P300 amplitude was significantly smaller in AD participants compared to controls. P300 latencies differed significantly between MCI participants and controls based on the pooled analysis. CONCLUSION The findings of this review indicate that some AERPs may be valuable biomarkers of AD. In conjunction with currently available clinical and neuropsychological assessments, AERPs can aid in screening and diagnosis of prodromal AD.
Collapse
Affiliation(s)
- Hadeel Y. Tarawneh
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia
- Ear Science Institute Australia, Subiaco, WA, Australia
| | | | - Hamid R. Sohrabi
- Centre for Healthy Ageing, College of Science, Health, Engineering and Education, Murdoch University, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ralph N. Martins
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Dona M.P. Jayakody
- Ear Science Institute Australia, Subiaco, WA, Australia
- Ear Science Centre, School of Surgery, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
33
|
Koutlis C, Kimiskidis VK, Kugiumtzis D. Comparison of Causality Network Estimation in the Sensor and Source Space: Simulation and Application on EEG. FRONTIERS IN NETWORK PHYSIOLOGY 2021; 1:706487. [PMID: 36925583 PMCID: PMC10013050 DOI: 10.3389/fnetp.2021.706487] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022]
Abstract
The usage of methods for the estimation of the true underlying connectivity among the observed variables of a system is increasing, especially in the domain of neuroscience. Granger causality and similar concepts are employed for the estimation of the brain network from electroencephalogram (EEG) data. Also source localization techniques, such as the standardized low resolution electromagnetic tomography (sLORETA), are widely used for obtaining more reliable data in the source space. In this work, connectivity structures are estimated in the sensor and in the source space making use of the sLORETA transformation for simulated and for EEG data with episodes of spontaneous epileptiform discharges (ED). From the comparative simulation study on high-dimensional coupled stochastic and deterministic systems originating in the sensor space, we conclude that the structure of the estimated causality networks differs in the sensor space and in the source space. Moreover, different network types, such as random, small-world and scale-free, can be better discriminated on the basis of the data in the original sensor space than on the transformed data in the source space. Similarly, in EEG epochs containing epileptiform discharges, the discriminative ability of network topological indices was significantly better in the sensor compared to the source level. In conclusion, causality networks constructed at the sensor and source level, for both simulated and empirical data, exhibit significant structural differences. These observations indicate that further studies are warranted in order to clarify the exact relationship between data registered in the sensor and source space.
Collapse
Affiliation(s)
- Christos Koutlis
- Information Technologies Institute, Centre of Research and Technology Hellas, Thessaloniki, Greece
| | - Vasilios K Kimiskidis
- 1st Department of Neurology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitris Kugiumtzis
- Division of Electronics and Computing, Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
34
|
Bell KL, Lister JJ, Conter R, Harrison Bush AL, O'Brien J. Cognitive Event-Related Potential Responses Differentiate Older Adults with and without Probable Mild Cognitive Impairment. Exp Aging Res 2020; 47:145-164. [PMID: 33342371 DOI: 10.1080/0361073x.2020.1861838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Background: Older adults rarely seek cognitive assessment, but often visit other healthcare professionals (e.g., audiologists). Noninvasive clinical measures within the scopes of practice of those professions sensitive to cognitive impairment are needed. Purpose: This study examined the differences of probable mild cognitive impairment (MCI) on latency and mean amplitude of the P3b auditory event-related potential. Method: Fifty-four participants comprised two groups according to cognitive status (cognitively normal older adults [CNOA], n = 25; probable MCI, n = 29). P3b was recorded using an oddball paradigm for speech (/ba/, /da/) and non-speech (1000, 2000 Hz) stimuli. Amplitudes and latencies were compared from six electrodes (FPz, Fz, FCz, Cz, CPz, Pz) between groups across stimulus probability and type. Results: CNOA participants had larger P3b mean amplitudes for deviant stimuli than those with probable MCI. Group effects of latency were isolated to deviant stimuli at FCz only when those with unclear P3bs were included. Findings did not covary with age or education. Overall, CNOAs showed a large P3b oddball effect while those with probable MCI did not. Conclusions: P3b can be used to show electrophysiological differences between older adults with and without probable MCI. These results support the development of educational materials targeting professionals using auditory-evoked potentials.
Collapse
Affiliation(s)
- Karen L Bell
- Department of Communication Sciences and Disorders, University of South Florida , Tampa, Florida, USA
| | - Jennifer Jones Lister
- Department of Communication Sciences and Disorders, University of South Florida , Tampa, Florida, USA
| | - Rachel Conter
- Department of Communication Sciences and Disorders, University of South Florida , Tampa, Florida, USA
| | - Aryn L Harrison Bush
- Department of Communication Sciences and Disorders, University of South Florida , Tampa, Florida, USA.,Department of Brain Health and Cognition, Reliance Medical Centers , Lakeland, Florida, USA
| | - Jennifer O'Brien
- Department of Psychology, University of South Florida , Tampa, Florida, USA
| |
Collapse
|
35
|
Paitel ER, Samii MR, Nielson KA. A systematic review of cognitive event-related potentials in mild cognitive impairment and Alzheimer's disease. Behav Brain Res 2020; 396:112904. [PMID: 32941881 DOI: 10.1016/j.bbr.2020.112904] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/29/2020] [Accepted: 09/05/2020] [Indexed: 01/28/2023]
Abstract
This systematic review examined whether event-related potentials (ERPs) during higher cognitive processing can detect subtle, early signs of neurodegenerative disease. Original, empirical studies retrieved from PsycINFO and PubMed were reviewed if they analyzed patterns in cognitive ERPs (≥150 ms post-stimulus) differentiating mild cognitive impairment (MCI), Alzheimer's disease (AD), or cognitively intact elders who carry AD risk through the Apolipoprotein-E ε4 allele (ε4+) from healthy older adult controls (HC). The 100 studies meeting inclusion criteria (MCI = 47; AD = 47; ε4+ = 6) analyzed N200, P300, N400, and occasionally, later components. While there was variability across studies, patterns of reduced amplitude and delayed latency were apparent in pathological aging, consistent with AD-related brain atrophy and cognitive impairment. These effects were particularly evident in advanced disease progression (i.e., AD > MCI) and in later ERP components measured during complex tasks. Although ERP studies in intact ε4+ elders are thus far scarce, a similar pattern of delayed latency was notable, along with a contrasting pattern of increased amplitude, consistent with compensatory neural activation. This limited work suggests ERPs might be able to index early neural changes indicative of future cognitive decline in otherwise healthy elders. As ERPs are also accessible and affordable relative to other neuroimaging methods, their addition to cognitive assessment might substantively enhance early identification and characterization of neural dysfunction, allowing opportunity for earlier differential diagnosis and targeting of intervention. To evaluate this possibility there is urgent need for well-powered studies assessing late cognitive ERPs during complex tasks, particularly in healthy elders at risk for cognitive decline.
Collapse
Affiliation(s)
| | | | - Kristy A Nielson
- Marquette University, Department of Psychology, United States; Medical College of Wisconsin, Department of Neurology and the Center for Imaging Research, United States.
| |
Collapse
|
36
|
Auditory event-related potentials in individuals with subjective and mild cognitive impairment. Behav Brain Res 2020; 391:112700. [DOI: 10.1016/j.bbr.2020.112700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/19/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022]
|
37
|
Khatun S, Morshed BI, Bidelman GM. A Single-Channel EEG-Based Approach to Detect Mild Cognitive Impairment via Speech-Evoked Brain Responses. IEEE Trans Neural Syst Rehabil Eng 2019; 27:1063-1070. [PMID: 30998476 DOI: 10.1109/tnsre.2019.2911970] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mild cognitive impairment (MCI) is the preliminary stage of dementia, which may lead to Alzheimer's disease (AD) in the elderly people. Therefore, early detection of MCI has the potential to minimize the risk of AD by ensuring the proper mental health care before it is too late. In this paper, we demonstrate a single-channel EEG-based MCI detection method, which is cost-effective and portable, and thus suitable for regular home-based patient monitoring. We collected the scalp EEG data from 23 subjects, while they were stimulated with five auditory speech signals. The cognitive state of the subjects was evaluated by the Montreal cognitive assessment test (MoCA). We extracted 590 features from the event-related potential (ERP) of the collected EEG signals, which included time and spectral domain characteristics of the response. The top 25 features, ranked by the random forest method, were used for classification models to identify subjects with MCI. Robustness of our model was tested using leave-one-out cross-validation while training the classifiers. Best results (leave-one-out cross-validation accuracy 87.9%, sensitivity 84.8%, specificity 95%, and F score 85%) were obtained using support vector machine (SVM) method with radial basis kernel (RBF) (sigma = 10/cost = 102 ). Similar performances were also observed with logistic regression (LR), further validating the results. Our results suggest that single-channel EEG could provide a robust biomarker for early detection of MCI.
Collapse
|
38
|
Carbajal GV, Malmierca MS. The Neuronal Basis of Predictive Coding Along the Auditory Pathway: From the Subcortical Roots to Cortical Deviance Detection. Trends Hear 2019; 22:2331216518784822. [PMID: 30022729 PMCID: PMC6053868 DOI: 10.1177/2331216518784822] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In this review, we attempt to integrate the empirical evidence regarding stimulus-specific adaptation (SSA) and mismatch negativity (MMN) under a predictive coding perspective (also known as Bayesian or hierarchical-inference model). We propose a renewed methodology for SSA study, which enables a further decomposition of deviance detection into repetition suppression and prediction error, thanks to the use of two controls previously introduced in MMN research: the many-standards and the cascade sequences. Focusing on data obtained with cellular recordings, we explain how deviance detection and prediction error are generated throughout hierarchical levels of processing, following two vectors of increasing computational complexity and abstraction along the auditory neuraxis: from subcortical toward cortical stations and from lemniscal toward nonlemniscal divisions. Then, we delve into the particular characteristics and contributions of subcortical and cortical structures to this generative mechanism of hierarchical inference, analyzing what is known about the role of neuromodulation and local microcircuitry in the emergence of mismatch signals. Finally, we describe how SSA and MMN are occurring at similar time frame and cortical locations, and both are affected by the manipulation of N-methyl- D-aspartate receptors. We conclude that there is enough empirical evidence to consider SSA and MMN, respectively, as the microscopic and macroscopic manifestations of the same physiological mechanism of deviance detection in the auditory cortex. Hence, the development of a common theoretical framework for SSA and MMN is all the more recommendable for future studies. In this regard, we suggest a shared nomenclature based on the predictive coding interpretation of deviance detection.
Collapse
Affiliation(s)
- Guillermo V Carbajal
- 1 Auditory Neuroscience Laboratory (Lab 1), Institute of Neuroscience of Castile and León, University of Salamanca, Salamanca, Spain.,2 Salamanca Institute for Biomedical Research, Spain
| | - Manuel S Malmierca
- 1 Auditory Neuroscience Laboratory (Lab 1), Institute of Neuroscience of Castile and León, University of Salamanca, Salamanca, Spain.,2 Salamanca Institute for Biomedical Research, Spain.,3 Department of Cell Biology and Pathology, Faculty of Medicine, University of Salamanca, Spain
| |
Collapse
|
39
|
Cid-Fernández S, Lindín M, Díaz F. The importance of age in the search for ERP biomarkers of aMCI. Biol Psychol 2019; 142:108-115. [PMID: 30721717 DOI: 10.1016/j.biopsycho.2019.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 02/07/2023]
Abstract
Alzheimer's Disease (AD) has become a major health issue in recent decades, and there is now growing interest in amnestic mild cognitive impairment (aMCI), an intermediate stage between healthy aging and dementia, usually AD. Event-related brain potential (ERP) studies have sometimes failed to detect differences between aMCI and control participants in the Go-P3 (or P3b, related to target classification processes in a variety of tasks) and NoGo-P3 (related to response inhibition processes, mainly in Go/NoGo tasks) ERP components. The aim of the present study was to evaluate whether the age factor, which is not usually taken into account in ERP studies, modulates group differences in these components. With this aim, we divided two groups of volunteer participants, 34 subjects with aMCI (51-87 years) and 31 controls (52-86 years), into two age subgroups: 69 years or less and 70 years or more. We recorded brain activity while the participants performed a distraction-attention auditory-visual (AV) task. Task performance was poorer in the older than in the younger group, and aMCI participants produced fewer correct responses than the matched controls; but no interactions of the age and group factors on performance were found. On the other hand, Go-P3 and NoGo-N2 latencies were longer in aMCI participants than in controls only in the younger subgroup. Thus, the younger aMCI participants categorized the Go stimuli in working memory and processed the NoGo stimuli (which required response inhibition) slower than the corresponding controls. Finally, the combination of the number of hits, Go-P3 latency and NoGo-N2 latency yielded acceptable sensitivity and specificity scores (0.70 and 0.92, respectively) as regards distinguishing aMCI participants aged 69 years or less from the age-matched controls. The findings indicate age should be taken into account in the search for aMCI biomarkers.
Collapse
Affiliation(s)
- Susana Cid-Fernández
- Laboratorio de Neurociencia Cognitiva, Departamento de Psicoloxía Clínica e Psicobioloxía, Universidade de Santiago de Compostela, Galicia, Spain.
| | - Mónica Lindín
- Laboratorio de Neurociencia Cognitiva, Departamento de Psicoloxía Clínica e Psicobioloxía, Universidade de Santiago de Compostela, Galicia, Spain
| | - Fernando Díaz
- Laboratorio de Neurociencia Cognitiva, Departamento de Psicoloxía Clínica e Psicobioloxía, Universidade de Santiago de Compostela, Galicia, Spain
| |
Collapse
|
40
|
Electrophysiological assessment methodology of sensory processing dysfunction in schizophrenia and dementia of the Alzheimer type. Neurosci Biobehav Rev 2019; 97:70-84. [DOI: 10.1016/j.neubiorev.2018.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 12/26/2022]
|
41
|
Cholinergic Mechanisms of Target Oddball Stimuli Detection: The Late "P300-Like" Event-Related Potential in Rats. Neural Plast 2018; 2018:4270263. [PMID: 30410536 PMCID: PMC6206555 DOI: 10.1155/2018/4270263] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/27/2018] [Accepted: 07/16/2018] [Indexed: 11/22/2022] Open
Abstract
Event-related potentials (ERPs) and oscillations (EROs) provide powerful tools for studying the brain's synaptic function underlying information processing. The P300 component of ERPs indexing attention and working memory shows abnormal amplitude and latency in neurological and psychiatric diseases that are sensitive to pharmacological agents. In the active auditory oddball discriminant paradigm, behavior and auditory-evoked potentials (AEPs) were simultaneously recorded in awake rats to investigate whether P300-like potentials generated in rats responding to rare target oddball tones are sensitive to subcutaneous modulation of the cholinergic tone by donepezil (1 mg/kg) and scopolamine (0.64 mg/kg). After operant training, rats consistently discriminate rare target auditory stimuli from frequent irrelevant nontarget auditory stimuli by a higher level of correct lever presses (i.e., accuracy) in target trials associated with a food reward. Donepezil attenuated the disruptive effect of scopolamine on the level of accuracy and premature responses in target trials. Larger P300-like peaks with early and late components were revealed in correct rare target stimuli trials as compared to frequent tones. Donepezil enhanced the peak amplitude of the P300-like component to target stimuli and evoked slow theta and gamma oscillations, whereas scopolamine altered the amplitude of the P300-like component and EROs to target stimuli. Pretreatment with donepezil attenuated effects of scopolamine on the peak amplitude of the P300-like component and on EROs. This study provides evidence that AEP P300-like responses can be elicited by rats engaged in attentive and memory processing of target stimuli and outline the relevance of the cholinergic system in stimulus discrimination processing. The findings highlight the sensitivity of this translational index for investigating brain circuits and/or novel pharmacological agents, which modulate cholinergic transmission associated with increased allocation of attentional resources.
Collapse
|
42
|
Laptinskaya D, Thurm F, Küster OC, Fissler P, Schlee W, Kolassa S, von Arnim CAF, Kolassa IT. Auditory Memory Decay as Reflected by a New Mismatch Negativity Score Is Associated with Episodic Memory in Older Adults at Risk of Dementia. Front Aging Neurosci 2018; 10:5. [PMID: 29456500 PMCID: PMC5801314 DOI: 10.3389/fnagi.2018.00005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/08/2018] [Indexed: 12/20/2022] Open
Abstract
The auditory mismatch negativity (MMN) is an event-related potential (ERP) peaking about 100–250 ms after the onset of a deviant tone in a sequence of identical (standard) tones. Depending on the interstimulus interval (ISI) between standard and deviant tones, the MMN is suitable to investigate the pre-attentive auditory discrimination ability (short ISIs, ≤ 2 s) as well as the pre-attentive auditory memory trace (long ISIs, >2 s). However, current results regarding the MMN as an index for mild cognitive impairment (MCI) and dementia are mixed, especially after short ISIs: while the majority of studies report positive associations between the MMN and cognition, others fail to find such relationships. To elucidate these so far inconsistent results, we investigated the validity of the MMN as an index for cognitive impairment exploring the associations between different MMN indices and cognitive performance, more specifically with episodic memory performance which is among the most affected cognitive domains in the course of Alzheimer’s dementia (AD), at baseline and at a 5-year-follow-up. We assessed the amplitude of the MMN for short ISI (stimulus onset asynchrony, SOA = 0.05 s) and for long ISI (3 s) in a neuropsychologically well-characterized cohort of older adults at risk of dementia (subjective memory impairment, amnestic and non-amnestic MCI; n = 57). Furthermore, we created a novel difference score (ΔMMN), defined as the difference between MMNs to short and to long ISI, as a measure to assess the decay of the auditory memory trace, higher values indicating less decay. ΔMMN and MMN amplitude after long ISI, but not the MMN amplitude after short ISI, was associated with episodic memory at baseline (β = 0.38, p = 0.003; β = −0.27, p = 0.047, respectively). ΔMMN, but not the MMN for long ISIs, was positively associated with episodic memory performance at the 5-year-follow-up (β = 0.57, p = 0.013). The results suggest that the MMN after long ISI might be suitable as an indicator for the decline in episodic memory and indicate ΔMMN as a potential biomarker for memory impairment in older adults at risk of dementia.
Collapse
Affiliation(s)
- Daria Laptinskaya
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany.,Department of Psychology, University of Konstanz, Konstanz, Germany
| | - Franka Thurm
- Department of Psychology, University of Konstanz, Konstanz, Germany.,Faculty of Psychology, TU Dresden, Dresden, Germany
| | - Olivia C Küster
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany.,Department of Neurology, Ulm University, Ulm, Germany
| | - Patrick Fissler
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany.,Department of Neurology, Ulm University, Ulm, Germany
| | - Winfried Schlee
- Department for Psychiatry and Psychotherapy, University Hospital Regensburg, Regensburg, Germany
| | | | | | - Iris-Tatjana Kolassa
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany.,Department of Psychology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
43
|
Abstract
This chapter is intended as a primer to the most widely used neuroimaging methods available in the prediction, diagnosis and monitoring of the neurodegenerative diseases. We describe the imaging methods that allow us to examine brain structure, function and pathology and investigate neurodegenerative mechanisms in vivo. We describe methods to interrogate brain structure with magnetic resonance imaging (MRI), and brain function with molecular imaging, functional MRI and electro- and magneto-encephalography. We highlight the major neuroimaging advances, including brain stimulation and connectomics, which have brought new insights into a wide range of neurodegenerative diseases and describe some of the challenges in imaging clinical populations. Finally, we discuss the future of neuroimaging in neurodegenerative disease and its potential for generating predictive, diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Michele Veldsman
- Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, 245 Burgundy Street, Heidelberg, VIC, 3084, Australia.
| | - Natalia Egorova
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, 245 Burgundy Street, Heidelberg, VIC, 3084, Australia
| |
Collapse
|