1
|
Hooshmand M, Sadeghi MR, Asoodeh A, Pourbadie HG, Mehni MK, Sayyah M. Administration of monophosphoryl lipid A shortly after traumatic brain injury blocks the following spatial and avoidance memory loss and neuroinflammation. Sci Rep 2024; 14:29408. [PMID: 39592660 PMCID: PMC11599587 DOI: 10.1038/s41598-024-80331-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Traumatic brain injury (TBI) frequently leads to cognitive impairments. The toll-like receptor 4 (TLR4) ligand, Monophosphoryl lipid A (MPL), has shown promise in modulating neuroinflammatory responses after TBI. We investigated the effects of MPL on spatial memory, passive avoidance memory, neuronal survival, and inflammatory/anti-inflammatory cytokines in rat brain following mild-to-moderate TBI. Rats underwent a learning period in the Morris water maze and shuttle box, followed by TBI induction by controlled cortical impact. MPL was administered into the cerebral ventricle 20 min after TBI. Spatial memory was assessed 7 and 28 days later. Passive avoidance memory was assessed 2 and 6 days after TBI. MPL significantly improved the spatial memory deficit at 7 days but not 28 days after TBI. It also improved impairment of the avoidance memory at both 2 and 6 days after TBI. MPL prohibited the TBI-induced TNF-α increase and IL-10 decrease in the injured region at 7 days post-TBI period. MPL prevented the neuronal loss induced by TBI in the hippocampus. A single administration of MPL shortly after TBI alleviates short-term memory deficits, through anti-inflammatory and anti-cell loss activities. Repeated MPL administration may also inhibit the long-term memory deficits after TBI.
Collapse
Affiliation(s)
- Maryam Hooshmand
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Reza Sadeghi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
- Department of Biochemistry, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ahmad Asoodeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | | | - Mahbobeh Kamrani Mehni
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
- Department of Physiology, Faculty of Veterinary Medicine, Tehran University, Tehran, Iran
| | - Mohamad Sayyah
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
2
|
Rodkin S, Nwosu C, Kirichenko E. The Role of Hydrogen Sulfide in iNOS and APP Localization and Expression in Neurons and Glial Cells Under Traumatic Effects: An Experimental Study with Bioinformatics Analysis and Biomodeling. Int J Mol Sci 2024; 25:11892. [PMID: 39595962 PMCID: PMC11593695 DOI: 10.3390/ijms252211892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
Hydrogen sulfide (H2S) donors are emerging as promising candidates for neuroprotective agents. However, H2S-dependent neuroprotective mechanisms are not yet fully understood. We have demonstrated that an H2S donor (sodium sulfide, Na2S) reduces the expression of inducible NO synthase (iNOS) and amyloid-beta precursor protein (APP) in damaged neural tissue at 24 h and 7 days following traumatic brain injury (TBI). The application of aminooxyacetic acid (AOAA), an inhibitor of cystathionine β-synthase (CBS), produced the opposite effect. Seven days after TBI, iNOS expression was observed not only in the cytoplasm but also in some neuronal nuclei, while APP was exclusively localized in the cytoplasm and axons of damaged neurons. It was also shown that iNOS and APP were present in the cytoplasm of mechanoreceptor neurons (MRNs) in the crayfish, in axons, as well as in certain glial cells 8 h after axotomy. Na2S and AOAA had opposing effects on axotomized MRNs and ganglia in the ventral nerve cord (VNC). Multiple sequence alignments revealed a high degree of identity among iNOS and APP amino acid residues in various vertebrate and invertebrate species. In the final stage of this study, biomodeling identified unique binding sites for H2S, hydrosulfide anion (HS-), and thiosulfate (S2O32-) with iNOS and APP.
Collapse
Affiliation(s)
- Stanislav Rodkin
- Research Laboratory "Medical Digital Images Based on the Basic Model", Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, Rostov-on-Don 344000, Russia
| | | | | |
Collapse
|
3
|
Harris S, Chinnery HR, Semple BD, Mychasiuk R. Shaking Up Our Approach: The Need for Characterization and Optimization of Pre-clinical Models of Infant Abusive Head Trauma. J Neurotrauma 2024; 41:1853-1870. [PMID: 38497766 DOI: 10.1089/neu.2023.0598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Traumatic brain injuries (TBIs) are a large societal and individual burden. In the first year of life, the vast majority of these injuries are the result of inflicted abusive events by a trusted caregiver. Abusive head trauma (AHT) in infants, formerly known as shaken baby syndrome, is the leading cause of inflicted mortality and morbidity in this population. In this review we address clinical diagnosis, symptoms, prognosis, and neuropathology of AHT, emphasizing the burden of repetitive AHT. Next, we consider existing animal models of AHT, and we evaluate key features of an ideal model, highlighting important developmental milestones in children most vulnerable to AHT. We draw on insights from other injury models, such as repetitive, mild TBIs (RmTBIs), post-traumatic epilepsy (PTE), hypoxic-ischemic injuries, and maternal neglect, to speculate on key knowledge gaps and underline important new opportunities in pre-clinical AHT research. Finally, potential treatment options to facilitate healthy development in children following an AHT are considered. Together, this review aims to drive the field toward optimized, well-characterized animal models of AHT, which will allow for greater insight into the underlying neuropathological and neurobehavioral consequences of AHT.
Collapse
Affiliation(s)
- Sydney Harris
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Holly R Chinnery
- Department of Optometry and Vision Science, University of Melbourne, Parkville, Victoria, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Prahran, Victoria, Australia
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Parkville, Victoria, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Prahran, Victoria, Australia
| |
Collapse
|
4
|
Flavin WP, Hosseini H, Ruberti JW, Kavehpour HP, Giza CC, Prins ML. Traumatic brain injury and the pathways to cerebral tau accumulation. Front Neurol 2023; 14:1239653. [PMID: 37638180 PMCID: PMC10450935 DOI: 10.3389/fneur.2023.1239653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Tau is a protein that has received national mainstream recognition for its potential negative impact to the brain. This review succinctly provides information on the structure of tau and its normal physiological functions, including in hibernation and changes throughout the estrus cycle. There are many pathways involved in phosphorylating tau including diabetes, stroke, Alzheimer's disease (AD), brain injury, aging, and drug use. The common mechanisms for these processes are put into context with changes observed in mild and repetitive mild traumatic brain injury (TBI). The phosphorylation of tau is a part of the progression to pathology, but the ability for tau to aggregate and propagate is also addressed. Summarizing both the functional and dysfunctional roles of tau can help advance our understanding of this complex protein, improve our care for individuals with a history of TBI, and lead to development of therapeutic interventions to prevent or reverse tau-mediated neurodegeneration.
Collapse
Affiliation(s)
- William P. Flavin
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
- Steve Tisch BrainSPORT Program, Department of Pediatrics and Neurosurgery, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Helia Hosseini
- Department of Bioengineering, UCLA, Los Angeles, CA, United States
| | - Jeffrey W. Ruberti
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - H. Pirouz Kavehpour
- Department of Bioengineering, UCLA, Los Angeles, CA, United States
- Department of Mechanical and Aerospace Engineering, UCLA, Los Angeles, CA, United States
| | - Christopher C. Giza
- Steve Tisch BrainSPORT Program, Department of Pediatrics and Neurosurgery, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
- Department of Bioengineering, UCLA, Los Angeles, CA, United States
- Department of Neurosurgery, Brain Injury Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Mayumi L. Prins
- Steve Tisch BrainSPORT Program, Department of Pediatrics and Neurosurgery, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
- Department of Bioengineering, UCLA, Los Angeles, CA, United States
- Department of Neurosurgery, Brain Injury Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| |
Collapse
|
5
|
Juan SMA, Daglas M, Truong PH, Mawal C, Adlard PA. Alterations in iron content, iron-regulatory proteins and behaviour without tau pathology at one year following repetitive mild traumatic brain injury. Acta Neuropathol Commun 2023; 11:118. [PMID: 37464280 PMCID: PMC10353227 DOI: 10.1186/s40478-023-01603-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/12/2023] [Indexed: 07/20/2023] Open
Abstract
Repetitive mild traumatic brain injury (r-mTBI) has increasingly become recognised as a risk factor for the development of neurodegenerative diseases, many of which are characterised by tau pathology, metal dyshomeostasis and behavioural impairments. We aimed to characterise the status of tau and the involvement of iron dyshomeostasis in repetitive controlled cortical impact injury (5 impacts, 48 h apart) in 3-month-old C57Bl6 mice at the chronic (12-month) time point. We performed a battery of behavioural tests, characterised the status of neurodegeneration-associated proteins (tau and tau-regulatory proteins, amyloid precursor protein and iron-regulatory proteins) via western blot; and metal levels using bulk inductively coupled plasma-mass spectrometry (ICP-MS). We report significant changes in various ipsilateral iron-regulatory proteins following five but not a single injury, and significant increases in contralateral iron, zinc and copper levels following five impacts. There was no evidence of tau pathology or changes in tau-regulatory proteins following five impacts, although some changes were observed following a single injury. Five impacts resulted in significant gait deficits, mild anhedonia and mild cognitive deficits at 9-12 months post-injury, effects not seen following a single injury. To the best of our knowledge, we are the first to describe chronic changes in metals and iron-regulatory proteins in a mouse model of r-mTBI, providing a strong indication towards an overall increase in brain iron levels (and other metals) in the chronic phase following r-mTBI. These results bring to question the relevance of tau and highlight the involvement of iron dysregulation in the development and/or progression of neurodegeneration following injury, which may lead to new therapeutic approaches in the future.
Collapse
Affiliation(s)
- Sydney M A Juan
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Maria Daglas
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Phan H Truong
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Celeste Mawal
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Paul A Adlard
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.
| |
Collapse
|
6
|
Koza LA, Pena C, Russell M, Smith AC, Molnar J, Devine M, Serkova NJ, Linseman DA. Immunocal® limits gliosis in mouse models of repetitive mild-moderate traumatic brain injury. Brain Res 2023; 1808:148338. [PMID: 36966959 PMCID: PMC10258892 DOI: 10.1016/j.brainres.2023.148338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
Successive traumatic brain injuries (TBIs) exacerbate neuroinflammation and oxidative stress. No therapeutics exist for populations at high risk of repetitive mild TBIs (rmTBIs). We explored the preventative therapeutic effects of Immunocal®, a cysteine-rich whey protein supplement and glutathione (GSH) precursor, following rmTBI and repetitive mild-moderate TBI (rmmTBI). Populations that suffer rmTBIs largely go undiagnosed and untreated; therefore, we first examined the potential therapeutic effect of Immunocal® long-term following rmTBI. Mice were treated with Immunocal® prior to, during, and following rmTBI induced by controlled cortical impact until analysis at 2 weeks, 2 months, and 6 months following the last rmTBI. Astrogliosis and microgliosis were measured in cortex at each time point and edema and macrophage infiltration by MRI were analyzed at 2 months post-rmTBI. Immunocal® significantly reduced astrogliosis at 2 weeks and 2 months post-rmTBI. Macrophage activation was observed at 2 months post-rmTBI but Immunocal® had no significant effect on this endpoint. We did not observe significant microgliosis or edema after rmTBI. The dosing regimen was repeated in mice subjected to rmmTBI; however, using this experimental paradigm, we examined the preventative therapeutic effects of Immunocal® at a much earlier timepoint because populations that suffer more severe rmmTBIs are more likely to receive acute diagnosis and treatment. Increases in astrogliosis, microgliosis, and serum neurofilament light (NfL), as well as reductions in the GSH:GSSG ratio, were observed 72 h post-rmmTBI. Immunocal® only significantly reduced microgliosis after rmmTBI. In summary, we report that astrogliosis persists for 2 months post-rmTBI and that inflammation, neuronal damage, and altered redox homeostasis present acutely following rmmTBI. Immunocal® significantly limited gliosis in these models; however, its neuroprotection was partially overwhelmed by repetitive injury. Treatments that modulate distinct aspects of TBI pathophysiology, used in combination with GSH precursors like Immunocal®, may show more protection in these repetitive TBI models.
Collapse
Affiliation(s)
- Lilia A Koza
- University of Denver, Department of Biological Sciences, Denver, CO 80208, United States; University of Denver, Knoebel Institute for Healthy Aging, Denver, CO 80208, United States
| | - Claudia Pena
- University of Denver, Department of Biological Sciences, Denver, CO 80208, United States; University of Denver, Knoebel Institute for Healthy Aging, Denver, CO 80208, United States
| | - Madison Russell
- University of Denver, Department of Biological Sciences, Denver, CO 80208, United States; University of Denver, Knoebel Institute for Healthy Aging, Denver, CO 80208, United States
| | - Alec C Smith
- University of Denver, Department of Biological Sciences, Denver, CO 80208, United States; University of Denver, Knoebel Institute for Healthy Aging, Denver, CO 80208, United States
| | - Jacob Molnar
- University of Denver, Department of Biological Sciences, Denver, CO 80208, United States; University of Denver, Knoebel Institute for Healthy Aging, Denver, CO 80208, United States
| | - Maeve Devine
- University of Denver, Department of Biological Sciences, Denver, CO 80208, United States; University of Denver, Knoebel Institute for Healthy Aging, Denver, CO 80208, United States
| | - Natalie J Serkova
- University of Colorado Cancer Center, Department of Radiology, Aurora, CO 80045, United States
| | - Daniel A Linseman
- University of Denver, Department of Biological Sciences, Denver, CO 80208, United States; University of Denver, Knoebel Institute for Healthy Aging, Denver, CO 80208, United States.
| |
Collapse
|
7
|
Dunn CS, Ferreira LA, Venier SM, Ali SF, Wolchok JC, Balachandran K. Functional Analysis of the Cortical Transcriptome and Proteome Reveal Neurogenesis, Inflammation, and Cell Death after Repeated Traumatic Brain Injury In vivo. Neurotrauma Rep 2022; 3:224-239. [PMID: 35919509 PMCID: PMC9279125 DOI: 10.1089/neur.2021.0059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The pathological effects of repeated traumatic brain injuries (TBIs) are largely unknown. To gain a detailed understanding of the cortical tissue acute biological response after one or two TBIs, we utilized RNA-sequencing and protein mass spectrometry techniques. Using our previously validated C57Bl/6 weight-drop model, we administered one or two TBIs of a mild or moderate severity. Double injury conditions were spaced 7 days apart, and cortical tissue was isolated 24 h after final injury. Analysis was carried out through functional gene annotation, utilizing Gene Ontology, for both the proteome and transcriptome. Major themes across the four different conditions include: neurogenesis; inflammation and immune response; cell death; angiogenesis; protein modification; and cell communication. Proteins associated with neurogenesis were found to be upregulated after single injuries. Transcripts associated with angiogenesis were upregulated in the moderate single, mild double, and moderate double TBI conditions. Genes associated with inflammation and immune response were upregulated in every condition, with the moderate single condition reporting the most functional groups. Proteins or genes involved in cell death, or apoptosis, were upregulated in every condition. Our results emphasize the significant differences found in proteomic and transcriptomic changes in single versus double injuries. Further, cortical omics analysis offers important insights for future studies aiming to deepen current knowledge on the development of secondary injuries and neurobehavioral impairments after brain trauma.
Collapse
Affiliation(s)
- Celeste S. Dunn
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
| | - Laís A. Ferreira
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
| | - Sara M. Venier
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Syed F. Ali
- Neurochemistry Laboratory, Division of Neurotoxicology, National Center for Toxicological Research, Jefferson, Arkansas, USA
- Center for Integrativve Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, Arkansas, USA
| | - Jeffrey C. Wolchok
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Kartik Balachandran
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
8
|
Plumbagin Alleviates Intracerebroventricular-Quinolinic Acid Induced Depression-like Behavior and Memory Deficits in Wistar Rats. Molecules 2022; 27:molecules27061834. [PMID: 35335195 PMCID: PMC8955906 DOI: 10.3390/molecules27061834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023] Open
Abstract
Plumbagin, a hydroxy-1,4-naphthoquinone, confers neuroprotection via antioxidant and anti-inflammatory properties. The present study aimed to assess the effect of plumbagin on behavioral and memory deficits induced by intrahippocampal administration of Quinolinic acid (QA) in male Wistar rats and reveal the associated mechanisms. QA (300 nM/4 μL in Normal saline) was administered i.c.v. in the hippocampus. QA administration caused depression-like behavior (forced swim test and tail suspension tests), anxiety-like behavior (open field test and elevated plus maze), and elevated anhedonia behavior (sucrose preference test). Furthermore, oxidative–nitrosative stress (increased nitrite content and lipid peroxidation with reduction of GSH), inflammation (increased IL-1β), cholinergic dysfunction, and mitochondrial complex (I, II, and IV) dysfunction were observed in the hippocampus region of QA-treated rats as compared to normal controls. Plumbagin (10 and 20 mg/kg; p.o.) treatment for 21 days significantly ameliorated behavioral and memory deficits in QA-administered rats. Moreover, plumbagin treatment restored the GSH level and reduced the MDA and nitrite level in the hippocampus. Furthermore, QA-induced cholinergic dysfunction and mitochondrial impairment were found to be ameliorated by plumbagin treatment. In conclusion, our results suggested that plumbagin offers a neuroprotective potential that could serve as a promising pharmacological approach to mitigate neurobehavioral changes associated with neurodegeneration.
Collapse
|
9
|
Shi W, Dong P, Kuss MA, Gu L, Kievit F, Kim HJ, Duan B. Design and Evaluation of an In Vitro Mild Traumatic Brain Injury Modeling System Using 3D Printed Mini Impact Device on the 3D Cultured Human iPSC Derived Neural Progenitor Cells. Adv Healthc Mater 2021; 10:e2100180. [PMID: 33890428 PMCID: PMC8222191 DOI: 10.1002/adhm.202100180] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/15/2021] [Indexed: 12/13/2022]
Abstract
Despite significant progress in understanding the disease mechanism of traumatic brain injury (TBI), promising preclinical therapeutics have seldom been translated into successful clinical outcomes, partially because the model animals have physiological and functional differences in the central nervous system (CNS) compared to humans. Human relevant models are thus urgently required. Here, an in vitro mild TBI (mTBI) modeling system is reported based on 3D cultured human induced pluripotent stem cells (iPSC) derived neural progenitor cells (iPSC-NPCs) to evaluate consequences of single and repetitive mTBI using a 3D printed mini weight-drop impact device. Computational simulation is performed to understand the single/cumulative effects of weight-drop impact on the NPC differentiated neurospheres. Experimental results reveal that neurospheres show reactive astrogliosis and glial scar formation after repetitive (10 hits) mild impacts, while no astrocyte activation is found after one or two mild impacts. A 3D co-culture model of human microglia cells with neurospheres is further developed. It is found that astrocyte response is promoted even after two mild impacts, possibly caused by the chronic neuroinflammation after microglia activation. The in vitro mTBI modeling system recapitulates several hallmarks of the brain impact injury and might serve as a good platform for future drug screening.
Collapse
Affiliation(s)
- Wen Shi
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska, Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska, Medical Center, Omaha, NE, 68198, USA
| | - Pengfei Dong
- Department of Biomedical and Chemical Engineering and Science, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Mitchell A Kuss
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska, Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska, Medical Center, Omaha, NE, 68198, USA
| | - Linxia Gu
- Department of Biomedical and Chemical Engineering and Science, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Forrest Kievit
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Hyung Joon Kim
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska, Medical Center, Omaha, NE, 68198, USA
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska, Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska, Medical Center, Omaha, NE, 68198, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Mechanical Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
10
|
High-frequency head impact causes chronic synaptic adaptation and long-term cognitive impairment in mice. Nat Commun 2021; 12:2613. [PMID: 33972519 PMCID: PMC8110563 DOI: 10.1038/s41467-021-22744-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 03/24/2021] [Indexed: 02/03/2023] Open
Abstract
Repeated head impact exposure can cause memory and behavioral impairments. Here, we report that exposure to non-damaging, but high frequency, head impacts can alter brain function in mice through synaptic adaptation. High frequency head impact mice develop chronic cognitive impairments in the absence of traditional brain trauma pathology, and transcriptomic profiling of mouse and human chronic traumatic encephalopathy brain reveal that synapses are strongly affected by head impact. Electrophysiological analysis shows that high frequency head impacts cause chronic modification of the AMPA/NMDA ratio in neurons that underlie the changes to cognition. To demonstrate that synaptic adaptation is caused by head impact-induced glutamate release, we pretreated mice with memantine prior to head impact. Memantine prevents the development of the key transcriptomic and electrophysiological signatures of high frequency head impact, and averts cognitive dysfunction. These data reveal synapses as a target of high frequency head impact in human and mouse brain, and that this physiological adaptation in response to head impact is sufficient to induce chronic cognitive impairment in mice.
Collapse
|
11
|
Nikam RM, Yue X, Kandula VV, Paudyal B, Langhans SA, Averill LW, Choudhary AK. Unravelling neuroinflammation in abusive head trauma with radiotracer imaging. Pediatr Radiol 2021; 51:966-970. [PMID: 33999238 DOI: 10.1007/s00247-021-04995-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/07/2020] [Accepted: 01/27/2021] [Indexed: 01/07/2023]
Abstract
Abusive head trauma (AHT) is a leading cause of mortality and morbidity in child abuse, with a mortality rate of approximately 25%. In survivors, the prognosis remains dismal, with high prevalence of cerebral palsy, epilepsy and neuropsychiatric disorders. Early and accurate diagnosis of AHT is challenging, both clinically and radiologically, with up to one-third of cases missed on initial examination. Moreover, most of the management in AHT is supportive, reflective of the lack of clear understanding of specific pathogenic mechanisms underlying secondary insult, with approaches targeted toward decreasing intracranial hypertension and reducing cerebral metabolism, cell death and excitotoxicity. Multiple studies have elucidated the role of pro- and anti-inflammatory cytokines and chemokines with upregulation/recruitment of microglia/macrophages, oligodendrocytes and astrocytes in severe traumatic brain injury (TBI). In addition, recent studies in animal models of AHT have demonstrated significant upregulation of microglia, with a potential role of inflammatory cascade contributing to secondary insult. Despite the histological and biochemical evidence, there is a significant dearth of specific imaging approaches to identify this neuroinflammation in AHT. The primary motivation for development of such imaging approaches stems from the need to therapeutically target neuroinflammation and establish its utility in monitoring and prognostication. In the present paper, we discuss the available data suggesting the potential role of neuroinflammation in AHT and role of radiotracer imaging in aiding diagnosis and patient management.
Collapse
Affiliation(s)
- Rahul M Nikam
- Department of Medical Imaging, Nemours Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, DE, 19803, USA. .,Katzin Diagnostic & Research PET/MR Center, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA.
| | - Xuyi Yue
- Katzin Diagnostic & Research PET/MR Center, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Vinay V Kandula
- Department of Medical Imaging, Nemours Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, DE, 19803, USA
| | - Bishnuhari Paudyal
- Katzin Diagnostic & Research PET/MR Center, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Sigrid A Langhans
- Katzin Diagnostic & Research PET/MR Center, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Lauren W Averill
- Department of Medical Imaging, Nemours Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, DE, 19803, USA
| | - Arabinda K Choudhary
- Department of Radiology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| |
Collapse
|
12
|
Wasserman J, McGuire LS, Sick T, Bramlett HM, Dietrich WD. An Exploratory Report on Electrographic Changes in the Cerebral Cortex Following Mild Traumatic Brain Injury with Hyperthermia in the Rat. Ther Hypothermia Temp Manag 2021; 11:10-18. [PMID: 32366168 PMCID: PMC7910421 DOI: 10.1089/ther.2020.0002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) has the potential to perturb perception by disrupting electrical propagation within and between the thalamus and cerebral cortex. Moderate and severe TBI may result in posttraumatic epilepsy, a condition characterized by convulsive tonic-clonic seizures. Spike/wave discharges (SWDs) of generalized nonconvulsive seizures, also called absence seizures, may also occur as a consequence of brain trauma. As mild hyperthermia has been reported to exacerbate histopathological and behavioral outcomes, we used an unbiased algorithm to detect periodic increases in power across different frequency bands following single or double closed head injury (CHI) under normothermia and hyperthermia conditions. We demonstrated that mild TBI did not significantly alter the occurrence of events containing increases in power between the delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), and beta1 (12-20 Hz) frequency bands in the Sprague Dawley rat 12 weeks after injury. However, when hyperthermia (39°C) was induced before and after CHI, electrographic events containing a similar waveform and harmonic frequency to SWDs were observed in a subset of animals. Further experiments utilizing chronic recordings will need to be performed to determine if these trends lead to absence seizures.
Collapse
Affiliation(s)
- Joseph Wasserman
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Laura Stone McGuire
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Thomas Sick
- Department of Neurology and Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Helen M. Bramlett
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Bruce W. Carter Department of Veterans Affairs, Miami, Florida, USA
| | - W. Dalton Dietrich
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Department of Neurology and Miller School of Medicine, University of Miami, Miami, Florida, USA
- Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
13
|
Chen W, Barback CV, Wang S, Hoh CK, Chang EY, Hall DJ, Head BP, Vera DR. A receptor-binding radiopharmaceutical for imaging of traumatic brain injury in a rodent model: [ 99mTc]Tc-tilmanocept. Nucl Med Biol 2021; 92:107-114. [PMID: 32169304 DOI: 10.1016/j.nucmedbio.2020.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Blood-brain barrier (BBB) disruption and subsequent neuro-inflammation occur following traumatic brain injury (TBI), resulting in a spectrum of human nervous system disorders. [99mTc]Tc-tilmanocept is a receptor-binding radiopharmaceutical FDA-approved for sentinel lymph node mapping. We hypothesize that after an intravenous (i.v.) injection, [99mTc]Tc-tilmanocept, will traverse a disrupted BBB and bind to CD206-bearing microglial cells. METHODS Age-matched mice were divided into three groups: 5-days post TBI (n = 4), and 5-days post sham (n = 4), and naïve controls (n = 4). IRDye800CW-labeled [99mTc]Tc-tilmanocept (0.15 nmol per gram body weight) and FITC-labeled bovine serum albumin (FITC-BSA) were injected (i.v.) into each mouse. Mice were imaged with a high-resolution gamma camera for 45 min. Immediately after imaging, the brains were perfused with fixative, excised, imaged with a fluorescence scanner, assayed for radioactivity, and prepared for histology. RESULTS In vivo nuclear imaging, ex vivo fluorescence imaging, ex vivo gamma well counting, and histo-microscopy demonstrated enhanced tilmanocept uptake in the TBI region. The normalized [99mTc]Tc-tilmanocept uptake value from nuclear imaging and the maximum pixel intensity from fluorescence imaging of the TBI group (1.12 ± 0.12 and 2288 ± 278 a.u., respectively) were significantly (P < 0.04) higher than the sham group (0.64 ± 0.28 and 1708 ± 101 a.u., respectively) and the naive group (0.76 ± 0.24 and 1643 ± 391 a.u., respectively). The mean [99mTc]Tc-tilmanocept scaled uptake in the TBI brains (0.058 ± 0.013%/g) was significantly (P < 0.010) higher than the scaled brain uptake of the sham group (0.031 ± 0.011%/g) and higher (P = 0.04) than the uptake of the naïve group (0.020 ± 0.002%/g). Fluorescence microscopy demonstrated increased uptake of the IRDye800CW-tilmanocept and FITC-BSA in the TBI brain regions. CONCLUSION [99mTc]Tc-tilmanocept traverses disrupted blood-brain barrier and localizes within the injured region. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE: [99mTc]Tc-tilmanocept could serve as an imaging biomarker for TBI-associated neuroinflammation and any disease process that involves a disruption of the blood-brain barrier.
Collapse
Affiliation(s)
- Wen Chen
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | | | - Shanshan Wang
- Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA; Department of Anesthesiology, University of California, San Diego, La Jolla, USA
| | - Carl K Hoh
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA
| | - David J Hall
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Brian P Head
- Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA; Department of Anesthesiology, University of California, San Diego, La Jolla, USA
| | - David R Vera
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
14
|
Krivanek TJ, Gale SA, McFeeley BM, Nicastri CM, Daffner KR. Promoting Successful Cognitive Aging: A Ten-Year Update. J Alzheimers Dis 2021; 81:871-920. [PMID: 33935078 PMCID: PMC8293659 DOI: 10.3233/jad-201462] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2021] [Indexed: 02/07/2023]
Abstract
A decade has passed since we published a comprehensive review in this journal addressing the topic of promoting successful cognitive aging, making this a good time to take stock of the field. Because there have been limited large-scale, randomized controlled trials, especially following individuals from middle age to late life, some experts have questioned whether recommendations can be legitimately offered about reducing the risk of cognitive decline and dementia. Despite uncertainties, clinicians often need to at least make provisional recommendations to patients based on the highest quality data available. Converging lines of evidence from epidemiological/cohort studies, animal/basic science studies, human proof-of-concept studies, and human intervention studies can provide guidance, highlighting strategies for enhancing cognitive reserve and preventing loss of cognitive capacity. Many of the suggestions made in 2010 have been supported by additional research. Importantly, there is a growing consensus among major health organizations about recommendations to mitigate cognitive decline and promote healthy cognitive aging. Regular physical activity and treatment of cardiovascular risk factors have been supported by all of these organizations. Most organizations have also embraced cognitively stimulating activities, a heart-healthy diet, smoking cessation, and countering metabolic syndrome. Other behaviors like regular social engagement, limiting alcohol use, stress management, getting adequate sleep, avoiding anticholinergic medications, addressing sensory deficits, and protecting the brain against physical and toxic damage also have been endorsed, although less consistently. In this update, we review the evidence for each of these recommendations and offer practical advice about behavior-change techniques to help patients adopt brain-healthy behaviors.
Collapse
Affiliation(s)
- Taylor J. Krivanek
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Hale Building for Transformative Medicine, Boston, MA, USA
| | - Seth A. Gale
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Hale Building for Transformative Medicine, Boston, MA, USA
| | - Brittany M. McFeeley
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Hale Building for Transformative Medicine, Boston, MA, USA
| | - Casey M. Nicastri
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Hale Building for Transformative Medicine, Boston, MA, USA
| | - Kirk R. Daffner
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Hale Building for Transformative Medicine, Boston, MA, USA
| |
Collapse
|
15
|
Initiators of Classical and Lectin Complement Pathways Are Differently Engaged after Traumatic Brain Injury-Time-Dependent Changes in the Cortex, Striatum, Thalamus and Hippocampus in a Mouse Model. Int J Mol Sci 2020; 22:ijms22010045. [PMID: 33375205 PMCID: PMC7793095 DOI: 10.3390/ijms22010045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/16/2022] Open
Abstract
The complement system is involved in promoting secondary injury after traumatic brain injury (TBI), but the roles of the classical and lectin pathways leading to complement activation need to be clarified. To this end, we aimed to determine the ability of the brain to activate the synthesis of classical and lectin pathway initiators in response to TBI and to examine their expression in primary microglial cell cultures. We have modeled TBI in mice by controlled cortical impact (CCI), a clinically relevant experimental model. Using Real-time quantitative polymerase chain reaction (RT-qPCR) we analyzed the expression of initiators of classical the complement component 1q, 1r and 1s (C1q, C1r, and C1s) and lectin (mannose binding lectin A, mannose binding lectin C, collectin 11, ficolin A, and ficolin B) complement pathways and other cellular markers in four brain areas (cortex, striatum, thalamus and hippocampus) of mice exposed to CCI from 24 h and up to 5 weeks. In all murine ipsilateral brain structures assessed, we detected long-lasting, time- and area-dependent significant increases in the mRNA levels of all classical (C1q, C1s, C1r) and some lectin (collectin 11, ficolin A, ficolin B) initiator molecules after TBI. In parallel, we observed significantly enhanced expression of cellular markers for neutrophils (Cd177), T cells (Cd8), astrocytes (glial fibrillary acidic protein—GFAP), microglia/macrophages (allograft inflammatory factor 1—IBA-1), and microglia (transmembrane protein 119—TMEM119); moreover, we detected astrocytes (GFAP) and microglia/macrophages (IBA-1) protein level strong upregulation in all analyzed brain areas. Further, the results obtained in primary microglial cell cultures suggested that these cells may be largely responsible for the biosynthesis of classical pathway initiators. However, microglia are unlikely to be responsible for the production of the lectin pathway initiators. Immunofluorescence analysis confirmed that at the site of brain injury, the C1q is localized in microglia/macrophages and neurons but not in astroglial cells. In sum, the brain strongly reacts to TBI by activating the local synthesis of classical and lectin complement pathway activators. Thus, the brain responds to TBI with a strong, widespread and persistent upregulation of complement components, the targeting of which may provide protection in TBI.
Collapse
|
16
|
Eyolfson E, Yamakawa GR, Griep Y, Collins R, Carr T, Wang M, Lohman AW, Mychasiuk R. Examining the Progressive Behavior and Neuropathological Outcomes Associated with Chronic Repetitive Mild Traumatic Brain Injury in Rats. Cereb Cortex Commun 2020; 1:tgaa002. [PMID: 34296084 PMCID: PMC8152839 DOI: 10.1093/texcom/tgaa002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023] Open
Abstract
While the physical and behavioral symptomologies associated with a single mild traumatic brain injury (mTBI) are typically transient, repetitive mTBIs (RmTBI) have been associated with persisting neurological deficits. Therefore, this study examined the progressive changes in behavior and the neuropathological outcomes associated with chronic RmTBI through adolescence and adulthood in male and female Sprague Dawley rats. Rats experienced 2 mTBIs/week for 15 weeks and were periodically tested for changes in motor behavior, cognitive function, emotional disturbances, and aggression. Brain tissue was examined for neuropathological changes in ventricle size and presentation of Iba1 and GFAP. We did not see progressively worse behavioral impairments with the accumulation of injuries or time, but did find evidence for neurological and functional change (motor disturbance, reduced exploration, reduced aggression, alteration in depressive-like behavior, deficits in short-term working memory). Neuropathological assessment of RmTBI animals identified an increase in ventricle size, prolonged changes in GFAP, and sex differences in Iba1, in the corpus callosum, thalamus, and medial prefrontal cortex. Telomere length reduced exponentially as the injury load increased. Overall, chronic RmTBI did not result in accumulating behavioral impairment, and there is a need to further investigate progressive behavioral changes associated with repeated injuries in adolescence and young adulthood.
Collapse
Affiliation(s)
- Eric Eyolfson
- Department of Psychology, Alberta Children’s Hospital Research Institute, The University of Calgary, Calgary, AB, T2N 1N4, Canada
- Department of Psychology, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Glenn R Yamakawa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Yannick Griep
- Department of Psychology, Alberta Children’s Hospital Research Institute, The University of Calgary, Calgary, AB, T2N 1N4, Canada
- Department of Psychology, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB, T2N 1N4, Canada
- Division of Epidemiology, Stress Research Institute, Stockholm University, 106 91 Stockholm, Sweden
- Behavioral Science Institute, Radbound University, 9104, 6500 HE, Nijmegen, The Netherlands
| | - Reid Collins
- Department of Psychology, Alberta Children’s Hospital Research Institute, The University of Calgary, Calgary, AB, T2N 1N4, Canada
- Department of Psychology, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Thomas Carr
- Department of Cell Biology and Anatomy, Alberta Children’s Hospital Research Institute, The University of Calgary, Calgary, AB, T2N 1N4, Canada
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Melinda Wang
- Department of Psychology, Alberta Children’s Hospital Research Institute, The University of Calgary, Calgary, AB, T2N 1N4, Canada
- Department of Psychology, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Alexander W Lohman
- Department of Cell Biology and Anatomy, Alberta Children’s Hospital Research Institute, The University of Calgary, Calgary, AB, T2N 1N4, Canada
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Richelle Mychasiuk
- Department of Psychology, Alberta Children’s Hospital Research Institute, The University of Calgary, Calgary, AB, T2N 1N4, Canada
- Department of Psychology, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB, T2N 1N4, Canada
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| |
Collapse
|
17
|
Kanefsky R, Motamedi V, Mithani S, Mysliwiec V, Gill JM, Pattinson CL. Mild traumatic brain injuries with loss of consciousness are associated with increased inflammation and pain in military personnel. Psychiatry Res 2019; 279:34-39. [PMID: 31280036 DOI: 10.1016/j.psychres.2019.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 02/01/2019] [Accepted: 07/01/2019] [Indexed: 10/26/2022]
Abstract
Mild traumatic brain injuries (mTBI) are a pervasive concern for military personnel. Determining the impact of injury severity, including loss of consciousness (LOC) may provide important insights into the risk of psychological symptoms and inflammation commonly witnessed in military personnel and veterans following mTBI. US military personnel and veterans were categorized into three groups; TBI with LOC (n = 36), TBI without LOC (n = 25), Controls (n = 82). Participants reported their history of mTBI, psychological symptoms (post-traumatic stress disorder [PTSD] and depression), health-related quality of life (HRQOL), and underwent a blood draw. ANCOVA models which controlled for insomnia status and combat exposure indicated that both mTBI groups (with/without LOC) reported significantly greater depression and PTSD symptoms compared to controls; however, they did not differ from each other. The mTBI with LOC did report greater pain than both controls and mTBI without LOC. The TBI with LOC group also had significantly elevated IL-6 concentrations than both TBI without LOC and control groups. Within the mTBI groups, increased TNFα concentrations were associated with greater PTSD symptoms. These findings indicate that sustaining an mTBI, with or without LOC is detrimental for psychological wellbeing. However, LOC may be involved in perceptions of pain and concentrations of IL-6.
Collapse
Affiliation(s)
- Rebekah Kanefsky
- National Institutes of Health, National Institute of Nursing Research, 1 Cloister Court, Bldg 60, Bethesda, MD 20892, USA
| | - Vida Motamedi
- National Institutes of Health, National Institute of Nursing Research, 1 Cloister Court, Bldg 60, Bethesda, MD 20892, USA
| | - Sara Mithani
- National Institutes of Health, National Institute of Nursing Research, 1 Cloister Court, Bldg 60, Bethesda, MD 20892, USA
| | - Vincent Mysliwiec
- San Antonio Military Medical Center, Department of Sleep Medicine, 1100 Wilford Hall Loop, Bldg 4554, JBSA-Lackland, TX 78236, USA
| | - Jessica M Gill
- National Institutes of Health, National Institute of Nursing Research, 1 Cloister Court, Bldg 60, Bethesda, MD 20892, USA
| | - Cassandra L Pattinson
- National Institutes of Health, National Institute of Nursing Research, 1 Cloister Court, Bldg 60, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
Vonder Haar C, Martens KM, Bashir A, McInnes KA, Cheng WH, Cheung H, Stukas S, Barron C, Ladner T, Welch KA, Cripton PA, Winstanley CA, Wellington CL. Repetitive closed-head impact model of engineered rotational acceleration (CHIMERA) injury in rats increases impulsivity, decreases dopaminergic innervation in the olfactory tubercle and generates white matter inflammation, tau phosphorylation and degeneration. Exp Neurol 2019; 317:87-99. [DOI: 10.1016/j.expneurol.2019.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 01/20/2023]
|
19
|
Increases in miR-124-3p in Microglial Exosomes Confer Neuroprotective Effects by Targeting FIP200-Mediated Neuronal Autophagy Following Traumatic Brain Injury. Neurochem Res 2019; 44:1903-1923. [PMID: 31190315 DOI: 10.1007/s11064-019-02825-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/04/2019] [Accepted: 06/07/2019] [Indexed: 12/19/2022]
Abstract
In our recent study, we observed consistent increases in miR-124-3p levels in exosomes derived from cultured BV2 microglia which was treated with repetitive traumatic brain injury (rTBI) mouse model brain extracts. To clarify the mechanisms underlying increases in microglia-derived exosomal miR-124-3p and their role in regulating neuronal autophagy after TBI, we investigated the impact of exosomal miR-124-3p on neuronal autophagy in scratch-injured HT22 neurons and rTBI mice. We harvested injured brain extracts from rTBI mice at 3 to 21 days post injury (DPI) for the treatment of cultured BV2 microglia in vitro. We observed significant induction of autophagy following TBI in vitro, and that inhibition of activated neuronal autophagy could protect against trauma-induced injury. Our results indicated that co-culture of injured HT22 neurons with miR-124-3p overexpressing BV2 microglia exerted a protective effect by inhibiting neuronal autophagy in scratch-injured neurons. Further research revealed that these effects were achieved mainly via upregulation of exosomal miR-124-3p, and that Focal adhesion kinase family-interacting protein of 200 kDa (FIP200) plays a key role in trauma-induced autophagy. Injection of exosomes into the vena caudalis in in vivo experiments revealed that exosomal miR-124-3p was associated with decreases in the modified neurological severity score (mNSS) and improvements in Morris water maze (MWM) test results in rTBI mice. Altogether, our results indicate that increased miR-124-3p in microglial exosomes following TBI may inhibit neuronal autophagy and protect against nerve injury via their transfer into neurons. Thus, treatment with microglial exosomes enriched with miR-124-3p may represent a novel therapeutic strategy for the treatment of nerve injury after TBI.
Collapse
|
20
|
Abstract
The underlying mechanisms that result in neurophysiological changes and cognitive sequelae in the context of repetitive mild traumatic brain injury (rmTBI) remain poorly understood. Animal models provide a unique opportunity to examine cellular and molecular responses using histological assessment, which can give important insights on the neurophysiological changes associated with the evolution of brain injury. To better understand the potential cumulative effects of multiple concussions, the focus of animal models is shifting from single to repetitive head impacts. With a growing body of literature on this subject, a review and discussion of current findings is valuable to better understand the neuropathology associated with rmTBI, to evaluate the current state of the field, and to guide future research efforts. Despite variability in experimental settings, existing animal models of rmTBI have contributed to our understanding of the underlying mechanisms following repeat concussion. However, how to reconcile the various impact methods remains one of the major challenges in the field today.
Collapse
Affiliation(s)
- Wouter S Hoogenboom
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10641, USA; Department of Clinical Investigation, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10641, USA.
| | - Craig A Branch
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10641, USA; Department of Physiology and Biophysics, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA; Department of Radiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA.
| | - Michael L Lipton
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10641, USA; Department of Radiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA; Departments of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA; The Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA.
| |
Collapse
|
21
|
Yang JR, Kuo CF, Chung TT, Liao HT. Increased Risk of Dementia in Patients with Craniofacial Trauma: A Nationwide Population-Based Cohort Study. World Neurosurg 2019; 125:e563-e574. [DOI: 10.1016/j.wneu.2019.01.133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 01/09/2023]
|
22
|
Li D, Huang S, Zhu J, Hu T, Han Z, Zhang S, Zhao J, Chen F, Lei P. Exosomes from MiR-21-5p-Increased Neurons Play a Role in Neuroprotection by Suppressing Rab11a-Mediated Neuronal Autophagy In Vitro After Traumatic Brain Injury. Med Sci Monit 2019; 25:1871-1885. [PMID: 30860987 PMCID: PMC6423733 DOI: 10.12659/msm.915727] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Traumatic brain injury (TBI) produces a series of pathological processes. Recent studies have indicated that autophagy pathway is persistently activated after TBI, which may lead to deterioration of nerve injury. Our preliminary work found miR-21-5p was upregulated in both in vivo and in vitro TBI models. MicroRNAs (miRNAs) could be loaded into exosomes to perform cell-to-cell interactions. This research aimed to evaluate the therapeutic effect of neuron-derived exosomes enriched with miR-21-5p on the TBI in vitro and to further explore the possible mechanisms. Material/Methods Brain extracts harvested from an rTBI mouse model were added to cultured HT-22 neurons to imitate the microenvironment of injured brain on in vitro cultured cells. Ultracentrifugation was performed to isolate exosomes. Transmission electron microscopy and Nano sight technology were used to examine exosomes. An in vitro model of TBI was established to study the effect of exosomal miR-21-5p on nerve injury and on neuronal autophagy regulation. Results The expression of miR-21-5p was increased in exosomes derived from HT-22 neurons after treatment with rTBI mouse brain extracts. Autophagy was activated in HT-22 neurons after scratch injury. Exosomal miR-21-5p produced a protective effect by suppressing autophagy in a TBI model in vitro. MiR-21-5p could directly target the Rab11a 3′UTR region to reduce its translation and further suppressed Rab11a-mediated neuronal autophagy. Conclusions The levels of miR-21-5p in neuronal exosomes increased from the acute to the chronic phase of TBI. Neuronal exosomes enriched with miR-21-5p can inhibit the activity of neuronal autophagy by targeting Rab11a, thus attenuating trauma-induced, autophagy-mediated nerve injury in vitro.
Collapse
Affiliation(s)
- Dai Li
- Laboratory of Neuro-Trauma and Neurodegenerative Disorders, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Shan Huang
- Laboratory of Neuro-Trauma and Neurodegenerative Disorders, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Jialin Zhu
- Department of Ultrasound Diagnosis and Treatment, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China (mainland)
| | - Tianpeng Hu
- Laboratory of Neuro-Trauma and Neurodegenerative Disorders, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Zhaoli Han
- Laboratory of Neuro-Trauma and Neurodegenerative Disorders, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Shishuang Zhang
- Laboratory of Neuro-Trauma and Neurodegenerative Disorders, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Jing Zhao
- Laboratory of Neuro-Trauma and Neurodegenerative Disorders, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Fanglian Chen
- Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China (mainland)
| | - Ping Lei
- Laboratory of Neuro-Trauma and Neurodegenerative Disorders, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| |
Collapse
|
23
|
Hunter LE, Branch CA, Lipton ML. The neurobiological effects of repetitive head impacts in collision sports. Neurobiol Dis 2019; 123:122-126. [PMID: 29936233 PMCID: PMC6453577 DOI: 10.1016/j.nbd.2018.06.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/30/2018] [Accepted: 06/20/2018] [Indexed: 12/20/2022] Open
Abstract
It is now recognized that repetitive head impacts (RHI) in sport have the potential for long-term neurological impairments. In order to identify targets for intervention and/or pharmacological treatment, it is necessary to characterize the neurobiological mechanisms associated with RHI. This review aims to summarize animal and human studies that specifically address Blood Brain Barrier (BBB) dysfunction, abnormal neuro-metabolic and neuro-inflammatory processes as well as Tau aggregation associated with RHI in collision sports. Additionally, we examine the influence of physical activity and genetics on outcomes of RHI, discuss methodological considerations, and provide suggestions for future directions of this burgeoning area of research.
Collapse
Affiliation(s)
- Liane E Hunter
- The Gruss Magnetic Resonance Imaging Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA.
| | - Craig A Branch
- The Gruss Magnetic Resonance Imaging Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA; Departments of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA; Departments of Physiology and Biophysics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Michael L Lipton
- The Gruss Magnetic Resonance Imaging Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA; Departments of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA; Departments of Psychiatry & Behavioral Sciences, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA; The Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| |
Collapse
|
24
|
King D, Hume PA, Hardaker N, Pearce A, Cummins C, Clark T. Traumatic brain injuries in New Zealand: National Insurance (Accident Compensation Corporation) claims from 2012 to 2016. J Neurol Sci 2019; 399:61-68. [PMID: 30776729 DOI: 10.1016/j.jns.2019.01.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 11/25/2022]
Abstract
AIM To provide epidemiological data and related costs to the national health insurance scheme for traumatic brain injury (TBI) in New Zealand. METHOD A retrospective analytical review utilising detailed descriptive minor and moderate-to-severe epidemiological TBI data obtained from the Accident Compensation Corporation (ACC) for 2012-2016. Injuries were analysed by three levels of increasing severity: moderate, moderate-to-serious (MSC) and severe claims categories. RESULTS Over the January 2012 to December 2016 period there were 97,955 claims for TBI costing ACC $1,450,643,667 [equivalent to £$743,417,120]. Falls accounted for nearly half (41.7%, 8262), and over a quarter (39.9%; $67,626,000 [£34,662,176]) of the moderate claims for TBI. Motor vehicle accidents recorded the highest percentage (36.5%), total costs ($610,978,229 [£313,170,000]) and highest mean cost per-moderate claim per-year ($47,372 ± $2401 [£24,282 ± £1231]) for MSC TBI claims. This was similar for severe claims where motor vehicles accidents accounted for 56% of the total serious claims, 65.1% of the costs with a mean cost per-serious claim of $64,913 ± 4331 [£32,759 ± £2186] per-year. CONCLUSION There were 97,955 TBI injury claims lodged over the duration of the study with 36% (n = 35,304) classified as MSC. The incidence of total TBI in New Zealand was 432 per 100,000 population, and 155 per 100,000 for MSC TBI claims. Despite the growing number of studies reporting on the effects of sports-related TBI, there is a paucity of studies reporting on the longitudinal effects of TBI in falls, assaults and motor vehicle accidents. Further research is warranted into the assessment and management of intimate partner violence and child abuse victims for TBI's.
Collapse
Affiliation(s)
- Doug King
- Sports Performance Research Institute New Zealand (SPRINZ), Faculty of Health and Environmental Science, Auckland University of Technology, Auckland, New Zealand; School of Science and Technology, University of New England, Armidale, NSW, Australia.
| | - Patria A Hume
- Sports Performance Research Institute New Zealand (SPRINZ), Faculty of Health and Environmental Science, Auckland University of Technology, Auckland, New Zealand; National Institute of Stroke and Applied Neuroscience (NISAN), Faculty of Health and Environmental Science, Auckland University of Technology, Auckland, New Zealand
| | - Natalie Hardaker
- Sports Performance Research Institute New Zealand (SPRINZ), Faculty of Health and Environmental Science, Auckland University of Technology, Auckland, New Zealand; Accident Compensation Corporation, Wellington, New Zealand
| | - Alan Pearce
- Department of Rehabilitation, Nutrition and Sport, La Trobe University, Melbourne, Australia
| | - Cloe Cummins
- School of Science and Technology, University of New England, Armidale, NSW, Australia; Institute for Sport Physical Activity and Leisure, Leeds Beckett University, Leeds, United Kingdom
| | - Trevor Clark
- Australian College of Physical Education, Department of Sport Performance, Sydney Olympic Park NSW, Australia
| |
Collapse
|
25
|
Newcombe EA, Camats-Perna J, Silva ML, Valmas N, Huat TJ, Medeiros R. Inflammation: the link between comorbidities, genetics, and Alzheimer's disease. J Neuroinflammation 2018; 15:276. [PMID: 30249283 PMCID: PMC6154824 DOI: 10.1186/s12974-018-1313-3] [Citation(s) in RCA: 373] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/11/2018] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder, most cases of which lack a clear causative event. This has made the disease difficult to characterize and, thus, diagnose. Although some cases are genetically linked, there are many diseases and lifestyle factors that can lead to an increased risk of developing AD, including traumatic brain injury, diabetes, hypertension, obesity, and other metabolic syndromes, in addition to aging. Identifying common factors and trends between these conditions could enhance our understanding of AD and lead to the development of more effective treatments. Although the immune system is one of the body’s key defense mechanisms, chronic inflammation has been increasingly linked with several age-related diseases. Moreover, it is now well accepted that chronic inflammation has an important role in the onset and progression of AD. In this review, the different inflammatory signals associated with AD and its risk factors will be outlined to demonstrate how chronic inflammation may be influencing individual susceptibility to AD. Our goal is to bring attention to potential shared signals presented by the immune system during different conditions that could lead to the development of successful treatments.
Collapse
Affiliation(s)
- Estella A Newcombe
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Building 79, Brisbane, 4072, QLD, Australia.
| | - Judith Camats-Perna
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Building 79, Brisbane, 4072, QLD, Australia
| | - Mallone L Silva
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Building 79, Brisbane, 4072, QLD, Australia
| | - Nicholas Valmas
- Queensland Brain Institute, The University of Queensland, Brisbane, 4072, QLD, Australia
| | - Tee Jong Huat
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Building 79, Brisbane, 4072, QLD, Australia.,Centre for Stem Cell Ageing and Regenerative Engineering, The University of Queensland, Brisbane, 4072, QLD, Australia
| | - Rodrigo Medeiros
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Building 79, Brisbane, 4072, QLD, Australia.
| |
Collapse
|
26
|
Lv J, Zeng Y, Qian Y, Dong J, Zhang Z, Zhang J. MicroRNA let-7c-5p improves neurological outcomes in a murine model of traumatic brain injury by suppressing neuroinflammation and regulating microglial activation. Brain Res 2018; 1685:91-104. [PMID: 29408500 DOI: 10.1016/j.brainres.2018.01.032] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/01/2018] [Accepted: 01/24/2018] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are a class of non-coding small RNAs that regulate the expression of target genes. They derive from pre-miRNAs that are enzymatically processed by dicer to ∼22 nucleotide mature miRNAs. Members of the pre-miRNA lethal-7 (let-7) are known to regulate cell proliferation and apoptosis. Here, we showed that the level of let-7c-5p, a key member of the let-7 family, was rapidly reduced in the traumatically injured foci in brains of adult C57BL/6J mice and gradually recovered to the pre-injury level 14 days after traumatic brain injury (TBI) induction. This finding led us to test whether upregulating let-7c-5p in murine cerebral tissue by intracerebroventricular injection (ICV) of let-7c-5p mimic could improve the outcomes of mice subjected to controlled cortical impact (CCI). We found that let-7c-5p overexpression attenuated TBI-induced neurological dysfunction and brain edema. The improvements were attributed to let-7c-5p-mediated inhibiting neuroinflammation and attenuation of microglia/macrophage activation, both inhibiting M1 polarization and enhancing M2 polarization. In vitro experiments, we observed that let-7c-5p was decreased in primary microglia activated by LPS treatment or oxygen/glucose deprivation (OGD). Transfection of let-7c-5p mimic suppressed the release of inflammatory mediators in cultured activated primary microglia. In addition, the expressions of caspase-3, a let-7c-5p putative target gene, and the PKC-δ which mediates effect of caspase-3 were inhibited by let-7c-5p in a murine model of TBI. Taken together, these results define the biological activities of cerebral let-7c-5p and delineate its therapeutic potential for improving the neurological outcome of TBI.
Collapse
Affiliation(s)
- Jingfang Lv
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Laboratory of Neuro-Trauma, Tianjin Neurological Institute, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China; Department of General Surgery, Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yong Zeng
- Laboratory of Neuro-Trauma, Tianjin Neurological Institute, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China; Department of Neurosurgery, Tianjin First Center Hospital, Tianjin, China
| | - Yu Qian
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Laboratory of Neuro-Trauma, Tianjin Neurological Institute, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Jingfei Dong
- Blood Works Research Institute, Seattle, WA, USA; Division of Hematology, Department of Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Zhixiang Zhang
- Department of General Surgery, Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Laboratory of Neuro-Trauma, Tianjin Neurological Institute, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China.
| |
Collapse
|
27
|
Huang S, Ge X, Yu J, Han Z, Yin Z, Li Y, Chen F, Wang H, Zhang J, Lei P. Increased miR‐124‐3p in microglial exosomes following traumatic brain injury inhibits neuronal inflammation and contributes to neurite outgrowthviatheir transfer into neurons. FASEB J 2017; 32:512-528. [PMID: 28935818 DOI: 10.1096/fj.201700673r] [Citation(s) in RCA: 323] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/11/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Shan Huang
- Laboratory of Neuro‐Trauma and Neurodegenerative DisordersTianjin Geriatrics Institute Tianjin China
- Key Laboratory of Injuries, Variations, and Regeneration of Nervous SystemTianjin Neurological Institute, Tianjin Medical University General Hospital Tianjin China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of Education Tianjin China
| | - Xintong Ge
- Laboratory of Neuro‐Trauma and Neurodegenerative DisordersTianjin Geriatrics Institute Tianjin China
- Key Laboratory of Injuries, Variations, and Regeneration of Nervous SystemTianjin Neurological Institute, Tianjin Medical University General Hospital Tianjin China
- Department of NeurosurgeryTianjin Medical University General Hospital Tianjin China
| | - Jinwen Yu
- Laboratory of Neuro‐Trauma and Neurodegenerative DisordersTianjin Geriatrics Institute Tianjin China
- Key Laboratory of Injuries, Variations, and Regeneration of Nervous SystemTianjin Neurological Institute, Tianjin Medical University General Hospital Tianjin China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of Education Tianjin China
| | - Zhaoli Han
- Key Laboratory of Injuries, Variations, and Regeneration of Nervous SystemTianjin Neurological Institute, Tianjin Medical University General Hospital Tianjin China
- Department of GeriatricsTianjin Medical University General Hospital Tianjin China
| | - Zhenyu Yin
- Laboratory of Neuro‐Trauma and Neurodegenerative DisordersTianjin Geriatrics Institute Tianjin China
- Key Laboratory of Injuries, Variations, and Regeneration of Nervous SystemTianjin Neurological Institute, Tianjin Medical University General Hospital Tianjin China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of Education Tianjin China
| | - Ying Li
- Key Laboratory of Injuries, Variations, and Regeneration of Nervous SystemTianjin Neurological Institute, Tianjin Medical University General Hospital Tianjin China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of Education Tianjin China
| | - Fanglian Chen
- Key Laboratory of Injuries, Variations, and Regeneration of Nervous SystemTianjin Neurological Institute, Tianjin Medical University General Hospital Tianjin China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of Education Tianjin China
| | - Haichen Wang
- Department of NeurologyDuke University Medical Center Durham North Carolina USA
| | - Jianning Zhang
- Key Laboratory of Injuries, Variations, and Regeneration of Nervous SystemTianjin Neurological Institute, Tianjin Medical University General Hospital Tianjin China
- Department of NeurosurgeryTianjin Medical University General Hospital Tianjin China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of Education Tianjin China
| | - Ping Lei
- Laboratory of Neuro‐Trauma and Neurodegenerative DisordersTianjin Geriatrics Institute Tianjin China
- Department of GeriatricsTianjin Medical University General Hospital Tianjin China
| |
Collapse
|
28
|
Donat CK, Scott G, Gentleman SM, Sastre M. Microglial Activation in Traumatic Brain Injury. Front Aging Neurosci 2017; 9:208. [PMID: 28701948 PMCID: PMC5487478 DOI: 10.3389/fnagi.2017.00208] [Citation(s) in RCA: 322] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/12/2017] [Indexed: 12/15/2022] Open
Abstract
Microglia have a variety of functions in the brain, including synaptic pruning, CNS repair and mediating the immune response against peripheral infection. Microglia rapidly become activated in response to CNS damage. Depending on the nature of the stimulus, microglia can take a number of activation states, which correspond to altered microglia morphology, gene expression and function. It has been reported that early microglia activation following traumatic brain injury (TBI) may contribute to the restoration of homeostasis in the brain. On the other hand, if they remain chronically activated, such cells display a classically activated phenotype, releasing pro-inflammatory molecules, resulting in further tissue damage and contributing potentially to neurodegeneration. However, new evidence suggests that this classification is over-simplistic and the balance of activation states can vary at different points. In this article, we review the role of microglia in TBI, analyzing their distribution, morphology and functional phenotype over time in animal models and in humans. Animal studies have allowed genetic and pharmacological manipulations of microglia activation, in order to define their role. In addition, we describe investigations on the in vivo imaging of microglia using translocator protein (TSPO) PET and autoradiography, showing that microglial activation can occur in regions far remote from sites of focal injuries, in humans and animal models of TBI. Finally, we outline some novel potential therapeutic approaches that prime microglia/macrophages toward the beneficial restorative microglial phenotype after TBI.
Collapse
Affiliation(s)
| | | | | | - Magdalena Sastre
- Division of Brain Sciences, Department of Medicine, Imperial College LondonLondon, United Kingdom
| |
Collapse
|
29
|
Garcia JM, Stillings SA, Leclerc JL, Phillips H, Edwards NJ, Robicsek SA, Hoh BL, Blackburn S, Doré S. Role of Interleukin-10 in Acute Brain Injuries. Front Neurol 2017; 8:244. [PMID: 28659854 PMCID: PMC5466968 DOI: 10.3389/fneur.2017.00244] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/17/2017] [Indexed: 12/23/2022] Open
Abstract
Interleukin-10 (IL-10) is an important anti-inflammatory cytokine expressed in response to brain injury, where it facilitates the resolution of inflammatory cascades, which if prolonged causes secondary brain damage. Here, we comprehensively review the current knowledge regarding the role of IL-10 in modulating outcomes following acute brain injury, including traumatic brain injury (TBI) and the various stroke subtypes. The vascular endothelium is closely tied to the pathophysiology of these neurological disorders and research has demonstrated clear vascular endothelial protective properties for IL-10. In vitro and in vivo models of ischemic stroke have convincingly directly and indirectly shown IL-10-mediated neuroprotection; although clinically, the role of IL-10 in predicting risk and outcomes is less clear. Comparatively, conclusive studies investigating the contribution of IL-10 in subarachnoid hemorrhage are lacking. Weak indirect evidence supporting the protective role of IL-10 in preclinical models of intracerebral hemorrhage exists; however, in the limited number of clinical studies, higher IL-10 levels seen post-ictus have been associated with worse outcomes. Similarly, preclinical TBI models have suggested a neuroprotective role for IL-10; although, controversy exists among the several clinical studies. In summary, while IL-10 is consistently elevated following acute brain injury, the effect of IL-10 appears to be pathology dependent, and preclinical and clinical studies often paradoxically yield opposite results. The pronounced and potent effects of IL-10 in the resolution of inflammation and inconsistency in the literature regarding the contribution of IL-10 in the setting of acute brain injury warrant further rigorously controlled and targeted investigation.
Collapse
Affiliation(s)
- Joshua M Garcia
- College of Medicine, University of Florida, Gainesville, FL, United States
| | | | - Jenna L Leclerc
- Department of Anesthesiology, College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States.,Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Harrison Phillips
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States
| | - Nancy J Edwards
- Department of Neurology, University of California, San Francisco, CA, United States.,Department of Neurosurgery, University of California, San Francisco, CA, United States
| | - Steven A Robicsek
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States.,Department of Neurosurgery, University of Florida, Gainesville, FL, United States.,Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Brian L Hoh
- Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Spiros Blackburn
- Department of Neurosurgery, University of Texas, Houston, TX, United States
| | - Sylvain Doré
- Department of Anesthesiology, College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States.,Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States.,Department of Neurology, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Psychology, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Psychiatry, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Pharmaceutics, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
30
|
Mountney A, Boutté AM, Cartagena CM, Flerlage WF, Johnson WD, Rho C, Lu XC, Yarnell A, Marcsisin S, Sousa J, Vuong C, Zottig V, Leung LY, Deng-Bryant Y, Gilsdorf J, Tortella FC, Shear DA. Functional and Molecular Correlates after Single and Repeated Rat Closed-Head Concussion: Indices of Vulnerability after Brain Injury. J Neurotrauma 2017; 34:2768-2789. [PMID: 28326890 DOI: 10.1089/neu.2016.4679] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Closed-head concussive injury is one of the most common causes of traumatic brain injury (TBI). Isolated concussions frequently produce acute neurological impairments, and individuals typically recover spontaneously within a short time frame. In contrast, brain injuries resulting from multiple concussions can result in cumulative damage and elevated risk of developing chronic brain pathologies. Increased attention has focused on identification of diagnostic markers that can prognostically serve as indices of brain health after injury, revealing the temporal profile of vulnerability to a second insult. Such markers may demarcate adequate recovery periods before concussed patients can return to required activities. We developed a noninvasive closed-head impact model that captures the hallmark symptoms of concussion in the absence of gross tissue damage. Animals were subjected to single or repeated concussive impact and examined using a battery of neurological, vestibular, sensorimotor, and molecular metrics. A single concussion induced transient, but marked, acute neurological impairment, gait alterations, neuronal death, and increased glial fibrillary acidic protein (GFAP) expression in brain tissue. As expected, repeated concussions exacerbated sensorimotor dysfunction, prolonged gait abnormalities, induced neuroinflammation, and upregulated GFAP and tau. These animals also exhibited chronic functional neurological impairments with sustained astrogliosis and white matter thinning. Acute changes in molecular signatures correlated with behavioral impairments, whereas increased times to regaining consciousness and balance impairments were associated with higher GFAP and neuroinflammation. Overall, behavioral consequences of either single or repeated concussive impact injuries appeared to resolve more quickly than the underlying molecular, metabolic, and neuropathological abnormalities. This observation, which is supported by similar studies in other mTBI models, underscores the critical need to develop more objective prognostic measures for guiding return-to-play decisions.
Collapse
Affiliation(s)
- Andrea Mountney
- 1 Brain Trauma Neuroprotection and Neurorestoration Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Angela M Boutté
- 1 Brain Trauma Neuroprotection and Neurorestoration Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Casandra M Cartagena
- 1 Brain Trauma Neuroprotection and Neurorestoration Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - William F Flerlage
- 1 Brain Trauma Neuroprotection and Neurorestoration Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Wyane D Johnson
- 1 Brain Trauma Neuroprotection and Neurorestoration Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Chanyang Rho
- 1 Brain Trauma Neuroprotection and Neurorestoration Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Xi-Chu Lu
- 1 Brain Trauma Neuroprotection and Neurorestoration Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Angela Yarnell
- 2 Behavioral Biology Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Sean Marcsisin
- 3 Division of Experimental Therapeutics, Military Malaria Research, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Jason Sousa
- 3 Division of Experimental Therapeutics, Military Malaria Research, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Chau Vuong
- 3 Division of Experimental Therapeutics, Military Malaria Research, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Victor Zottig
- 3 Division of Experimental Therapeutics, Military Malaria Research, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Lai-Yee Leung
- 1 Brain Trauma Neuroprotection and Neurorestoration Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Ying Deng-Bryant
- 1 Brain Trauma Neuroprotection and Neurorestoration Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Janice Gilsdorf
- 1 Brain Trauma Neuroprotection and Neurorestoration Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Frank C Tortella
- 1 Brain Trauma Neuroprotection and Neurorestoration Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Deborah A Shear
- 1 Brain Trauma Neuroprotection and Neurorestoration Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland
| |
Collapse
|