1
|
Zhang X, Jin T, Wang H, Han S, Liang Y. Microglia in morphine tolerance: cellular and molecular mechanisms and therapeutic potential. Front Pharmacol 2024; 15:1499799. [PMID: 39669194 PMCID: PMC11635611 DOI: 10.3389/fphar.2024.1499799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024] Open
Abstract
Morphine has a crucial role in treating both moderate to severe pain and chronic pain. However, prolonged administration of morphine can lead to tolerance of analgesia, resulting in increased doses and poor treatment of pain. Many patients, such as those with terminal cancer, require high doses of morphine for long periods. Addressing morphine tolerance can help this group of patients to escape pain, and the mechanisms behind this need to be investigated. Microglia are the key cells involved in morphine tolerance and chronic morphine administration leads to microglia activation, which in turn leads to activation of internal microglia signalling pathways and protein transcription, ultimately leading to the release of inflammatory factors. Inhibiting the activation of microglia internal signalling pathways can reduce morphine tolerance. However, the exact mechanism of how morphine acts on microglia and ultimately leads to tolerance is unknown. This article discusses the mechanisms of morphine induced microglia activation, reviews the signalling pathways within microglia and the associated therapeutic targets and possible drugs, and provides possible directions for clinical prevention or retardation of morphine induced analgesic tolerance.
Collapse
Affiliation(s)
- Xiangning Zhang
- Department of Anesthesiology, Women and Children’s Hospital, Peking University People’s Hospital, Qingdao University, Qingdao, Shandong, China
- Clinical Medical College, Qingdao University, Qingdao, Shandong, China
| | - Tingting Jin
- Department of Anesthesiology, Women and Children’s Hospital, Peking University People’s Hospital, Qingdao University, Qingdao, Shandong, China
- Clinical Medical College, Qingdao University, Qingdao, Shandong, China
| | - Haixia Wang
- Department of Anesthesiology, Women and Children’s Hospital, Peking University People’s Hospital, Qingdao University, Qingdao, Shandong, China
- Clinical Medical College, Qingdao University, Qingdao, Shandong, China
| | - Shuai Han
- Department of Anesthesiology, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yongxin Liang
- Department of Anesthesiology, Women and Children’s Hospital, Peking University People’s Hospital, Qingdao University, Qingdao, Shandong, China
- Clinical Medical College, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
2
|
Li DY, Gao SJ, Sun J, Zhang LQ, Wu JY, Song FH, Liu DQ, Zhou YQ, Mei W. Targeting the nitric oxide/cGMP signaling pathway to treat chronic pain. Neural Regen Res 2023; 18:996-1003. [PMID: 36254980 PMCID: PMC9827765 DOI: 10.4103/1673-5374.355748] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 11/07/2022] Open
Abstract
Nitric oxide (NO)/cyclic guanosine 3',5'-monophosphate (cGMP) signaling has been shown to act as a mediator involved in pain transmission and processing. In this review, we summarize and discuss the mechanisms of the NO/cGMP signaling pathway involved in chronic pain, including neuropathic pain, bone cancer pain, inflammatory pain, and morphine tolerance. The main process in the NO/cGMP signaling pathway in cells involves NO activating soluble guanylate cyclase, which leads to subsequent production of cGMP. cGMP then activates cGMP-dependent protein kinase (PKG), resulting in the activation of multiple targets such as the opening of ATP-sensitive K+ channels. The activation of NO/cGMP signaling in the spinal cord evidently induces upregulation of downstream molecules, as well as reactive astrogliosis and microglial polarization which participate in the process of chronic pain. In dorsal root ganglion neurons, natriuretic peptide binds to particulate guanylyl cyclase, generating and further activating the cGMP/PKG pathway, and it also contributes to the development of chronic pain. Upregulation of multiple receptors is involved in activation of the NO/cGMP signaling pathway in various pain models. Notably the NO/cGMP signaling pathway induces expression of downstream effectors, exerting both algesic and analgesic effects in neuropathic pain and inflammatory pain. These findings suggest that activation of NO/cGMP signaling plays a constituent role in the development of chronic pain, and this signaling pathway with dual effects is an interesting and promising target for chronic pain therapy.
Collapse
Affiliation(s)
- Dan-Yang Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shao-Jie Gao
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jia Sun
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Long-Qing Zhang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jia-Yi Wu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Fan-He Song
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Dai-Qiang Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Ya-Qun Zhou
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wei Mei
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
3
|
Sorokina NS, Starostina MV. Myelopeptides Reduce Morphine Tolerance in C57BL/6j Mice. Bull Exp Biol Med 2021; 171:623-626. [PMID: 34617173 DOI: 10.1007/s10517-021-05282-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Indexed: 11/27/2022]
Abstract
The development of morphine tolerance in C57BL/6j mice was estimated by the analgesic effect in tail-flick and hot plate tests. Morphine hydrochloride (10 mg/kg body weight) was administered to animals twice for 5 days and once on the sixth day, saline or myelopeptides were injected 15 min before morphine administration (2 μg/kg body weight). In the tail-flick test, all studied myelopeptides suppressed the development of tolerance to morphine and did not show their own analgesic activity. In the hot plate test, only three myelopeptides (MP2, MP5, and MP6) were found to reduce the formation of morphine tolerance. MP1 significantly reduced the analgesic effect of morphine on days 1-3 of administration, but contributed to the preservation of the analgesic effect during the period of tolerance development.
Collapse
Affiliation(s)
- N S Sorokina
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - M V Starostina
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia.
| |
Collapse
|
4
|
The Expression and Function of Nitric Oxide Synthase Enzyme in Atorvastatin Effects on Morphine-Induced Dependence in Mice. ARCHIVES OF NEUROSCIENCE 2021. [DOI: 10.5812/ans.117122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Atorvastatin exerts neuroprotective effects on the treatment of central nervous system disorders. Morphine analgesic tolerance and dependence remain as major concerns in medicine. Nitric oxide (NO) pathway mediates the development of opioid analgesic tolerance and dependence, as well as atorvastatin neuroprotection. Objectives: The present study aimed to assess the possible involvement of the NO/cGMP pathway in the process of the effects of atorvastatin on morphine physical dependence. Methods: Dependence was induced by repetitive injection of morphine sulfate. Naloxone was injected at the dose of 4 mg/kg on the last day of the experiment to assess withdrawal signs. Animals received atorvastatin (1, 5, 10, and 20 mg/kg, orally). Nitric oxide synthase (NOS) inhibitors and ODQ were injected before protective dose of atorvastatin. The gene expression of NOS isoforms was evaluated by real-time PCR. Thereafter, the hippocampal levels of cGMP and nitrite were measured. Results: Treatment with atorvastatin 10 mg/kg significantly attenuated naloxone-induced withdrawal behaviours. The administration of L-NAME, aminoguanidine, and ODQ before atorvastatin enhanced its effects. The treatment with atorvastatin significantly decreased the nitrite and cGMP levels as well as NOS gene expression in the hippocampus of dependent animals. Conclusions: It can be concluded that atorvastatin, possibly, through inducible NOS, could alleviate morphine dependence and withdrawal signs.
Collapse
|
5
|
Abstract
The pervasive and devastating nature of substance use disorders underlies the need for the continued development of novel pharmacotherapies. We now know that glia play a much greater role in neuronal processes than once believed. The various types of glial cells (e.g., astrocytes, microglial, oligodendrocytes) participate in numerous functions that are crucial to healthy central nervous system function. Drugs of abuse have been shown to interact with glia in ways that directly contribute to the pharmacodynamic effects responsible for their abuse potential. Through their effect upon glia, drugs of abuse also alter brain function resulting in behavioral changes associated with substance use disorders. Therefore, drug-induced changes in glia and inflammation within the central nervous system (neuroinflammation) have been investigated to treat various aspects of drug abuse and dependence. This article presents a brief overview of the effects of each of the major classes of addictive drugs on glia. Next, the paper reviews the pre-clinical and clinical studies assessing the effects that glial modulators have on abuse-related behavioral effects, such as pleasure, withdrawal, and motivation. There is a strong body of pre-clinical literature demonstrating the general effectiveness of several glia-modulating drugs in models of reward and relapse. Clinical studies have also yielded promising results, though not as robust. There is still much to disentangle regarding the integration between addictive drugs and glial cells. Improved understanding of the relationship between glia and the pathophysiology of drug abuse should allow for more precise exploration in the development and testing of glial-directed treatments for substance use disorders.
Collapse
Affiliation(s)
- Jermaine D. Jones
- Division on Substance Use Disorders, New York State Psychiatric Institute and Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| |
Collapse
|
6
|
Bagheri H, Ghasemi F, Barreto GE, Sathyapalan T, Jamialahmadi T, Sahebkar A. The effects of statins on microglial cells to protect against neurodegenerative disorders: A mechanistic review. Biofactors 2020; 46:309-325. [PMID: 31846136 DOI: 10.1002/biof.1597] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/22/2019] [Indexed: 12/28/2022]
Abstract
Microglia are the primary innate immune system cells in the central nervous system (CNS). They are crucial for the immunity, neurogenesis, synaptogenesis, neurotrophic support, phagocytosis of cellular debris, and maintaining the CNS integrity and homeostasis. Invasion by pathogens as well as in CNS injuries and damages results in activation of microglia known as microgliosis. The activated microglia have the capacity to release proinflammatory mediators leading to neuroinflammation. However, uncontrolled neuroinflammation can give rise to various neurological disorders (NDs), especially the neurodegenerative diseases including Parkinson's disease (PD) and related disorders, Alzheimer's disease (AD) and other dementias, multiple sclerosis (MS), Huntington's disease (HD), spinocerebellar ataxia (SCA), spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS), and stroke. Statins (HMG-CoA reductase inhibitors) are among the most widely prescribed medications for the management of hypercholesterolemia worldwide. It can be used for primary prevention in healthy individuals who are at higher risk of cardiovascular and coronary heart diseases as well as the secondary prevention in patients with cardiovascular and coronary heart diseases disease. A growing body of evidence has indicated that statins have the potential to attenuate the proinflammatory mediators and subsequent NDs by controlling the microglial activation and consequent reduction in neuroinflammatory mediators. In this review, we have discussed the recent studies on the effects of statins on microglia activation and neuroinflammation.
Collapse
Affiliation(s)
- Hossein Bagheri
- Department of Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Faezeh Ghasemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Tannaz Jamialahmadi
- Halal Research Center of IRI, FDA, Tehran, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Zeng XS, Geng WS, Wang ZQ, Jia JJ. Morphine Addiction and Oxidative Stress: The Potential Effects of Thioredoxin-1. Front Pharmacol 2020; 11:82. [PMID: 32153403 DOI: 10.3389/fphar.2020.00082if:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/27/2020] [Indexed: 11/16/2024] Open
Abstract
Long-term administration of morphine for the management of chronic pain will result in tolerance to its analgesic effect and could even cause drug dependence. Numerous studies have demonstrated significant redox alteration in morphine dependence and addiction. Thioredoxin-1 (Trx-1) play important roles in controlling the cellular redox balance. In recent years, several recent studies have demonstrated that Trx-1 may be a promising novel therapeutic target for morphine addiction. In this article, we firstly review the redox alteration in morphine addiction. We also summarize the expression and the protective roles of Trx-1 in morphine dependence. We further highlight the protection of geranylgeranylacetone (GGA), a noncytotoxic pharmacological inducer of Trx-1, in morphine-induced conditioned place preference. In conclusion, Trx-1 may be very promising for clinical therapy of morphine addiction in the future.
Collapse
Affiliation(s)
- Xian-Si Zeng
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Wen-Shuo Geng
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Zhan-Qi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, China
| | - Jin-Jing Jia
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang, China
| |
Collapse
|
8
|
Zeng XS, Geng WS, Wang ZQ, Jia JJ. Morphine Addiction and Oxidative Stress: The Potential Effects of Thioredoxin-1. Front Pharmacol 2020; 11:82. [PMID: 32153403 PMCID: PMC7047156 DOI: 10.3389/fphar.2020.00082] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
Long-term administration of morphine for the management of chronic pain will result in tolerance to its analgesic effect and could even cause drug dependence. Numerous studies have demonstrated significant redox alteration in morphine dependence and addiction. Thioredoxin-1 (Trx-1) play important roles in controlling the cellular redox balance. In recent years, several recent studies have demonstrated that Trx-1 may be a promising novel therapeutic target for morphine addiction. In this article, we firstly review the redox alteration in morphine addiction. We also summarize the expression and the protective roles of Trx-1 in morphine dependence. We further highlight the protection of geranylgeranylacetone (GGA), a noncytotoxic pharmacological inducer of Trx-1, in morphine-induced conditioned place preference. In conclusion, Trx-1 may be very promising for clinical therapy of morphine addiction in the future.
Collapse
Affiliation(s)
- Xian-Si Zeng
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Wen-Shuo Geng
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Zhan-Qi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, China
| | - Jin-Jing Jia
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang, China
| |
Collapse
|
9
|
Abstract
This paper is the fortieth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2017 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
10
|
Wang MR, Zhang XJ, Liu HC, Ma WD, Zhang ML, Zhang Y, Li X, Dou MM, Jing YL, Chu YJ, Zhu L. Matrine protects oligodendrocytes by inhibiting their apoptosis and enhancing mitochondrial autophagy. Brain Res Bull 2019; 153:30-38. [DOI: 10.1016/j.brainresbull.2019.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/03/2019] [Accepted: 08/07/2019] [Indexed: 12/16/2022]
|
11
|
Ghanbarabadi M, Falanji F, Rad A, Chazani Sharahi N, Amoueian S, Amin M, Molavi M, Amin B. Neuroprotective effects of clavulanic acid following permanent bilateral common carotid artery occlusion in rats. Drug Dev Res 2019; 80:1110-1119. [PMID: 31482584 DOI: 10.1002/ddr.21595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/28/2019] [Accepted: 08/08/2019] [Indexed: 11/05/2022]
Abstract
We investigated whether clavulanic acid could improve learning and memory, in rats underwent bilateral occlusion of common carotid artery (2VO). Seventy male Wistar rats were subjected to 2VO, with a 1-week interval between right and left artery occlusions. After 2VO, animals received clavulanic acid (10, 20, 40 mg/kg, intraperitoneally), from day 8 to 20. Spatial memory was assessed in the Morris water maze, 1 week after the induction of 2VO (day 15). The mRNA expression levels of bcl-2, bcl2-associated x protein (bax), caspase-3, inducible nitric oxide synthase (iNOS), and amyloid beta precursor protein (APP) were measured in the neocortex and hippocampus. Clavulanic acid significantly decreased the escape latency and swimming time in the training trial days. As well, it increased time and distance percentage in the target quadrant, while it decreased such factors in the opposite quadrant in the final trial day, compared to 2VO + normal saline animals. Real time-PCR data showed a significant higher mRNA expression of bax, caspase 3, and iNOS in the hippocampus and neocortex of 2VO animal compared to nonoccluded rats. APP increased in the neocortex but not hippocampus. Compared with 2VO animals, clavulanic acid significantly down-regulated the expression of iNOS, caspase 3, and APP, accompanied by diminishing the bax/bcl2 ratio. Our results reveal a potential therapeutic use of clavulanic acid for cognitive dysfunction associated with cerebral hypoperfusion in vascular dementia and Alzheimer disease.
Collapse
Affiliation(s)
- Mustafa Ghanbarabadi
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Farahnaz Falanji
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Abolfazl Rad
- Cellular and Molecular Research Center, Department of Biochemistry and Nutrition, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | | | - Sakineh Amoueian
- Pathology Department, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohamadreza Amin
- Laboratory Experimental Surgical Oncology, Section Surgical Oncology, Department of Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Mehdi Molavi
- Department of Internal Medicine, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Bahareh Amin
- Cellular and Molecular Research Center, Department of Physiology and Pharmacology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| |
Collapse
|
12
|
Catale C, Bussone S, Lo Iacono L, Carola V. Microglial alterations induced by psychoactive drugs: A possible mechanism in substance use disorder? Semin Cell Dev Biol 2019; 94:164-175. [PMID: 31004753 DOI: 10.1016/j.semcdb.2019.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/19/2019] [Accepted: 03/29/2019] [Indexed: 12/11/2022]
Abstract
Recently, the xenobiotic hypothesis has implicated the immune system in targeting substances of abuse as foreign molecules and stimulating inflammatory responses. Microglial cells are the resident immune cells of the central nervous system and function in homeostatic surveillance. Microglial changes that are induced by exposure to substances of abuse appear to mediate in part the establishment of addiction and the persistence of drug-mediated biological and behavioral changes. In this context, interest in the study of drug-microglia interactions has increased recently. This review summarizes the most recent preclinical rodent and clinical studies on the interaction between microglia and various classes of drugs of abuse, such as ethanol, psychostimulants, and opioids. The principal biological mechanisms of the communication between substances of abuse and microglia will be described to consider putative mechanisms of the establishment of drug addiction and future potential targets for treating substance use disorder.
Collapse
Affiliation(s)
- Clarissa Catale
- Department of Psychology, University of Rome "La Sapienza", Via dei Marsi, 78, 00185 Rome, Italy
| | - Silvia Bussone
- Department of Dynamic and Clinical Psychology, University of Rome "La Sapienza", Via degli Apuli 1, 00185 Rome, Italy
| | - Luisa Lo Iacono
- Department of Psychology, University of Rome "La Sapienza", Via dei Marsi, 78, 00185 Rome, Italy; IRCCS Santa Lucia Foundation, Via Fosso di Fiorano 64, 00143 Rome, Italy
| | - Valeria Carola
- Department of Dynamic and Clinical Psychology, University of Rome "La Sapienza", Via degli Apuli 1, 00185 Rome, Italy; IRCCS Santa Lucia Foundation, Via Fosso di Fiorano 64, 00143 Rome, Italy.
| |
Collapse
|
13
|
Kim R, Healey KL, Sepulveda-Orengo MT, Reissner KJ. Astroglial correlates of neuropsychiatric disease: From astrocytopathy to astrogliosis. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:126-146. [PMID: 28989099 PMCID: PMC5889368 DOI: 10.1016/j.pnpbp.2017.10.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/24/2017] [Accepted: 10/04/2017] [Indexed: 01/22/2023]
Abstract
Complex roles for astrocytes in health and disease continue to emerge, highlighting this class of cells as integral to function and dysfunction of the nervous system. In particular, escalating evidence strongly implicates a range of changes in astrocyte structure and function associated with neuropsychiatric diseases including major depressive disorder, schizophrenia, and addiction. These changes can range from astrocytopathy, degeneration, and loss of function, to astrogliosis and hypertrophy, and can be either adaptive or maladaptive. Evidence from the literature indicates a myriad of changes observed in astrocytes from both human postmortem studies as well as preclinical animal models, including changes in expression of glial fibrillary protein, as well as changes in astrocyte morphology and astrocyte-mediated regulation of synaptic function. In this review, we seek to provide a comprehensive assessment of these findings and consequently evidence for common themes regarding adaptations in astrocytes associated with neuropsychiatric disease. While results are mixed across conditions and models, general findings indicate decreased astrocyte cellular features and gene expression in depression, chronic stress and anxiety, but increased inflammation in schizophrenia. Changes also vary widely in response to different drugs of abuse, with evidence reflective of features of astrocytopathy to astrogliosis, varying across drug classes, route of administration and length of withdrawal.
Collapse
Affiliation(s)
- Ronald Kim
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States
| | - Kati L Healey
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States
| | - Marian T Sepulveda-Orengo
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States
| | - Kathryn J Reissner
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States..
| |
Collapse
|