1
|
Liu S, Zheng X, Luo Z, Tang C, Hu Y, Peng Q, Mi P, Chen H, Yao X. The synthesis and bioactivity of apigenin derivatives. Fitoterapia 2024; 179:106228. [PMID: 39332505 DOI: 10.1016/j.fitote.2024.106228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/19/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND Apigenin, a naturally occurring compound with a flavone core structure, is known for its diverse bioactivities, including anti-inflammation, anti-toxicant, anti-cancer and so on. There has been significant interest in the medicinal chemistry community. To address these challenges, researchers have developed various derivatives of apigenin to address challenges such as poor water-solubility and low intestinal absorption, aiming to enhance the pharmacological activities and pharmacokinetic properties of this compound. OBJECTIVE In recent years, there has been a proliferation of apigenin derivatives with enhanced bioactivity. However, there is a lack of comprehensive reviews on the function-based modification of these derivatives. In this paper, we provide an overview of the apigenin derivatives with varying bioactivities and explored their structure activity relationships. And the functions of different groups of apigenin derivatives were also analyzed. CONCLUSION This review summarized the current achievements that could provide some clues for further study of apigenin-based drugs.
Collapse
Affiliation(s)
- Shun Liu
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China
| | - Xing Zheng
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China; Department of Pharmacy, Hunan Vocational College of Science and Technology, Third ZhongyiShan Road, Changsha, Hunan 410004, China
| | - Zhongqin Luo
- Shaoyang Hospital of TCM, No. 631, Dongda Road, Shaoyang, Hunan 422000, China
| | - Caihong Tang
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China
| | - Yufei Hu
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China
| | - Qingying Peng
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China
| | - Pengbing Mi
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China.
| | - Hongfei Chen
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China.
| | - Xu Yao
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
2
|
Xu T, Zhao H, Li J, Fang X, Wu H, Hu W. Apigetrin alleviates intervertebral disk degeneration by regulating nucleus pulposus cell autophagy. JOR Spine 2024; 7:e1325. [PMID: 38633661 PMCID: PMC11022626 DOI: 10.1002/jsp2.1325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/13/2024] [Accepted: 02/25/2024] [Indexed: 04/19/2024] Open
Abstract
Background Intervertebral disk degeneration (IVDD) is a common spine disease, and inflammation is considered to be one of its main pathogenesis. Apigetrin (API) is a natural bioactive flavonoid isolated from various herbal medicines and shows attractive anti-inflammatory and antioxidative properties; whereas, there is no exploration of the therapeutic potential of API on IVDD. Here, we aim to explore the potential role of API on IVDD in vivo and in vitro. Methods In vitro, western blotting, real-time quantitative polymerase chain reaction, and immunofluorescence analysis were implemented to explore the bioactivity of API on interleukin-1 beta (IL-1β)-induced inflammatory changes in nucleus pulposus cells (NPCs). In vivo, histological staining and immunohistochemistry were employed to investigate the histological changes of intervertebral disk sections on puncture-induced IVDD rat models. Results In vitro, API played a crucial role in anti-inflammation and autophagy enhancement in IL-1β-induced NPCs. API improved inflammation by inhibiting the nuclear factor-kappaB and mitogen-activated protein kinas pathways, whereas it promoted autophagy via the phosphatidylinositol 3-kinase/AKT/mammalian target of the rapamycin pathway. Furthermore, in vivo experiment illustrated that API mitigates the IVDD progression in puncture-induced IVDD model. Conclusions API inhibited degenerative phenotypes and promoted autophagy in vivo and in vitro IVDD models. Those suggested that API might be a potential drug or target for IVDD.
Collapse
Affiliation(s)
- Tao Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Hongqi Zhao
- Department of Orthopedics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Jian Li
- Department of OrthopaedicsThird Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi HospitalTaiyuanChina
| | - Xuan Fang
- Department of Orthopedics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Weihua Hu
- Department of Orthopedics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
3
|
Wu J, Zhang D, Liu H, Li J, Li T, Wu J, Zhang S. Neuroprotective effects of apigenin on retinal ganglion cells in ischemia/reperfusion: modulating mitochondrial dynamics in in vivo and in vitro models. J Transl Med 2024; 22:447. [PMID: 38741132 PMCID: PMC11089678 DOI: 10.1186/s12967-024-05260-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Retinal ischemia/reperfusion (RIR) is implicated in various forms of optic neuropathies, yet effective treatments are lacking. RIR leads to the death of retinal ganglion cells (RGCs) and subsequent vision loss, posing detrimental effects on both physical and mental health. Apigenin (API), derived from a wide range of sources, has been reported to exert protective effects against ischemia/reperfusion injuries in various organs, such as the brain, kidney, myocardium, and liver. In this study, we investigated the protective effect of API and its underlying mechanisms on RGC degeneration induced by retinal ischemia/reperfusion (RIR). METHODS An in vivo model was induced by anterior chamber perfusion following intravitreal injection of API one day prior to the procedure. Meanwhile, an in vitro model was established through 1% oxygen and glucose deprivation. The neuroprotective effects of API were evaluated using H&E staining, spectral-domain optical coherence tomography (SD-OCT), Fluoro-Gold retrograde labeling, and Photopic negative response (PhNR). Furthermore, transmission electron microscopy (TEM) was employed to observe mitochondrial crista morphology and integrity. To elucidate the underlying mechanisms of API, the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, flow cytometry assay, western blot, cell counting kit-8 (CCK-8) assay, lactate dehydrogenase (LDH) assay, JC-1 kit assay, dichlorofluorescein-diacetate (DCFH-DA) assay, as well as TMRE and Mito-tracker staining were conducted. RESULTS API treatment protected retinal inner plexiform layer (IPL) and ganglion cell complex (GCC), and improved the function of retinal ganglion cells (RGCs). Additionally, API reduced RGC apoptosis and decreased lactate dehydrogenase (LDH) release by upregulating Bcl-2 and Bcl-xL expression, while downregulating Bax and cleaved caspase-3 expression. Furthermore, API increased mitochondrial membrane potential (MMP) and decreased extracellular reactive oxygen species (ROS) production. These effects were achieved by enhancing mitochondrial function, restoring mitochondrial cristae morphology and integrity, and regulating the expression of OPA1, MFN2, and DRP1, thereby regulating mitochondrial dynamics involving fusion and fission. CONCLUSION API protects RGCs against RIR injury by modulating mitochondrial dynamics, promoting mitochondrial fusion and fission.
Collapse
Affiliation(s)
- Jiawen Wu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
| | - Daowei Zhang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
| | - Hongli Liu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
| | - Jufeng Li
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
| | - Ting Li
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
| | - Jihong Wu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai, China.
- Key Laboratory of Myopia, Ministry of Health, Shanghai, China.
| | - Shenghai Zhang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai, China.
- Key Laboratory of Myopia, Ministry of Health, Shanghai, China.
| |
Collapse
|
4
|
Ortiz-Mendoza N, Martínez-Gordillo MJ, Martínez-Ambriz E, Basurto-Peña FA, González-Trujano ME, Aguirre-Hernández E. Ethnobotanical, Phytochemical, and Pharmacological Properties of the Subfamily Nepetoideae (Lamiaceae) in Inflammatory Diseases. PLANTS (BASEL, SWITZERLAND) 2023; 12:3752. [PMID: 37960108 PMCID: PMC10648697 DOI: 10.3390/plants12213752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/15/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
Nepetoideae is the most diverse subfamily of Lamiaceae, and some species are well known for their culinary and medicinal uses. In recent years, there has been growing interest in the therapeutic properties of the species of this group regarding inflammatory illnesses. This study aims to collect information on traditional uses through ethnobotanical, pharmacological, and phytochemical information of the subfamily Nepetoideae related to inflammatory diseases. UNAM electronic resources were used to obtain the information. The analysis of the most relevant literature was compiled and organised in tables. From this, about 106 species of the subfamily are traditionally recognised to alleviate chronic pain associated with inflammation. Pharmacological studies have been carried out in vitro and in vivo on approximately 308 species belonging to the genera Salvia, Ocimum, Thymus, Mentha, Origanum, Lavandula, and Melissa. Phytochemical and pharmacological evaluations have been performed and mostly prepared as essential oil or high polarity extracts, whose secondary metabolites are mainly of a phenolic nature. Other interesting and explored metabolites are diterpenes from the abietane, clerodane, and kaurane type; however, they have only been described in some species of the genera Salvia and Isodon. This review reveals that the Nepetoideae subfamily is an important source for therapeutics of the inflammatory process.
Collapse
Affiliation(s)
- Nancy Ortiz-Mendoza
- Laboratorio de Productos Naturales, Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Ciudad Universitaria Coyoacán, Edificio D, 1° Piso, Circuito de Posgrados, Mexico City 04510, Mexico
| | - Martha Juana Martínez-Gordillo
- Departamento de Biología Comparada, Herbario de la Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Emmanuel Martínez-Ambriz
- Instituto de Ecología, A.C., Red de Biodiversidad y Sistemática, Xalapa 91073, Veracruz, Mexico;
| | | | - María Eva González-Trujano
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico;
| | - Eva Aguirre-Hernández
- Laboratorio de Productos Naturales, Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| |
Collapse
|
5
|
Gomes EN, Patel H, Yuan B, Lyu W, Juliani HR, Wu Q, Simon JE. Successive harvests affect the aromatic and polyphenol profiles of novel catnip ( Nepeta cataria L.) cultivars in a genotype-dependent manner. FRONTIERS IN PLANT SCIENCE 2023; 14:1121582. [PMID: 36866384 PMCID: PMC9971627 DOI: 10.3389/fpls.2023.1121582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Catnip (Nepeta cataria L.) produces volatile iridoid terpenes, mainly nepetalactones, with strong repellent activity against species of arthropods with commercial and medical importance. Recently, new catnip cultivars CR3 and CR9 have been developed, both characterized by producing copious amounts of nepetalactones. Due to its perennial nature, multiple harvests can be obtained from this specialty crop and the effects of such practice on the phytochemical profile of the plants are not extensively studied. METHODS In this study we assessed the productivity of biomass, chemical composition of the essential oil and polyphenol accumulation of new catnip cultivars CR3 and CR9 and their hybrid, CR9×CR3, across four successive harvests. The essential oil was obtained by hydrodistillation and the chemical composition was obtained via gas chromatography-mass spectrometry (GC-MS). Individual polyphenols were quantified by Ultra-High-Performance Liquid Chromatography- diode-array detection (UHPLC-DAD). RESULTS Although the effects on biomass accumulation were independent of genotypes, the aromatic profile and the accumulation of polyphenols had a genotype-dependent response to successive harvests. While cultivar CR3 had its essential oil dominated by E,Z-nepetalactone in all four harvests, cultivar CR9 showed Z,E-nepetalactone as the main component of its aromatic profile during the 1st, 3rd and 4th harvests. At the second harvest, the essential oil of CR9 was mainly composed of caryophyllene oxide and (E)-β-caryophyllene. The same sesquiterpenes represented the majority of the essential oil of the hybrid CR9×CR3 at the 1st and 2nd successive harvests, while Z,E-nepetalactone was the main component at the 3rd and 4th harvests. For CR9 and CR9×CR3, rosmarinic acid and luteolin diglucuronide were at the highest contents at the 1st and 2nd harvest, while for CR3 the peak occurred at the 3rd successive harvest. DISCUSSION The results emphasize that agronomic practices can significantly affect the accumulation of specialized metabolites in N. cataria and the genotype-specific interactions may indicate differential ecological adaptations of each cultivar. This is the first report on the effects of successive harvest on these novel catnip genotypes and highlights their potential for the supply of natural products for the pest control and other industries.
Collapse
Affiliation(s)
- Erik Nunes Gomes
- New Use Agriculture and Natural Plant Products, Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
- Federal Agency for Support and Evaluation of Graduate Education (CAPES), Ministry of Education of Brazil, Brasilia, DF, Brazil
| | - Harna Patel
- New Use Agriculture and Natural Plant Products, Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
| | - Bo Yuan
- New Use Agriculture and Natural Plant Products, Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
| | - Weiting Lyu
- New Use Agriculture and Natural Plant Products, Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
| | - H. Rodolfo Juliani
- New Use Agriculture and Natural Plant Products, Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
| | - Qingli Wu
- New Use Agriculture and Natural Plant Products, Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
- Center for Agricultural Food Ecosystems, Institute of Food, Nutrition & Health, Rutgers University, New Brunswick, NJ, United States
| | - James E. Simon
- New Use Agriculture and Natural Plant Products, Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
- Center for Agricultural Food Ecosystems, Institute of Food, Nutrition & Health, Rutgers University, New Brunswick, NJ, United States
| |
Collapse
|
6
|
Tang YL, Liu AL, Lv SS, Zhou ZR, Cao H, Weng SJ, Zhang YQ. Green light analgesia in mice is mediated by visual activation of enkephalinergic neurons in the ventrolateral geniculate nucleus. Sci Transl Med 2022; 14:eabq6474. [PMID: 36475906 DOI: 10.1126/scitranslmed.abq6474] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Green light exposure has been shown to reduce pain in animal models. Here, we report a vision-associated enkephalinergic neural circuit responsible for green light-mediated analgesia. Full-field green light exposure at an intensity of 10 lux produced analgesic effects in healthy mice and in a model of arthrosis. Ablation of cone photoreceptors completely inhibited the analgesic effect, whereas rod ablation only partially reduced pain relief. The analgesic effect was not modulated by the ablation of intrinsically photosensitive retinal ganglion cells (ipRGCs), which are atypical photoreceptors that control various nonvisual effects of light. Inhibition of the retino-ventrolateral geniculate nucleus (vLGN) pathway completely abolished the analgesic effects. Activation of this pathway reduced nociceptive behavioral responses; such activation was blocked by the inhibition of proenkephalin (Penk)-positive neurons in the vLGN (vLGNPenk). Moreover, green light analgesia was prevented by knockdown of Penk in the vLGN or by ablation of vLGNPenk neurons. In addition, activation of the projections from vLGNPenk neurons to the dorsal raphe nucleus (DRN) was sufficient to suppress nociceptive behaviors, whereas its inhibition abolished the green light analgesia. Our findings indicate that cone-dominated retinal inputs mediated green light analgesia through the vLGNPenk-DRN pathway and suggest that this signaling pathway could be exploited for reducing pain.
Collapse
Affiliation(s)
- Yu-Long Tang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Ai-Lin Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Su-Su Lv
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zi-Rui Zhou
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Hong Cao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Shi-Jun Weng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yu-Qiu Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
7
|
Xie G, Zou X, Liang Z, Wu D, He J, Xie K, Jin H, Wang H, Shen Q. Integrated metabolomic and transcriptomic analyses reveal molecular response of anthocyanins biosynthesis in perilla to light intensity. FRONTIERS IN PLANT SCIENCE 2022; 13:976449. [PMID: 36212297 PMCID: PMC9540795 DOI: 10.3389/fpls.2022.976449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
The perilla anthocyanins have important medicinal and ornamental value, and their contents are significantly affected by light intensity. In view of their molecular mechanisms were not well understood, we integrated the metabolomic and transcriptomic analyses of the light-sensitive perilla variety under different light intensity. The perilla leave color were obviously affected under different treatments. Totally 140 flavonoid metabolites and 2461 genes showed steady change, among which 60 flavonoid metabolites were increased accumulation and 983 genes were upregulated expression under elevated light intensity treatment. Light treatment prominently affected the expression of genes involved in the main anthocyanin metabolites accumulation in perilla leaves. Using WGCNA analysis, we identified 4 key genes in anthocyanin biosynthesis pathway (CHI, DFR, and ANS) and 147 transcription factors (MYB, bHLH, bZIP, ERF, and NAC) involved in malonylshisonin biosynthesis. Among them, 6 MYBs and 4 bZIPs were predicted to play important roles in light regulation of malonylshisonin biosynthesis based on phylogenetic construction, correlation analysis, cis-acting element identification and qPCR verification. The identified key genes and regulatory factors will help us to understand the potential mechanism of photo-regulated anthocyanin accumulation in perilla.
Collapse
|
8
|
Jittapalapong S, Poompoung T, Sutjarit S. Apigenin induces oxidative stress in mouse Sertoli TM4 cells. Vet World 2021; 14:3132-3137. [PMID: 35153403 PMCID: PMC8829396 DOI: 10.14202/vetworld.2021.3132-3137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/02/2021] [Indexed: 11/24/2022] Open
Abstract
Background and Aim: Apigenin (API) is an estrogenic compound found in many plants. Sertoli cells reside in the testis and are a key target of environmental toxicants. This study aimed to examine the cytotoxicity, especially oxidative stress of API in mouse Sertoli TM4 cells. Materials and Methods: Mouse Sertoli TM4 cells were treated with 50 and 100 μM API for 48 h. Cell viability, lactate dehydrogenase (LDH) activities, glutathione reductase (GR) activities, production of reactive oxygen species (ROS), and malondialdehyde (MDA) levels were evaluated using various assays. Results: Treatment with API at both 50 and 100 μM decreased viability and GR activity but increased LDH activity, ROS production, and MDA levels in mouse Sertoli TM4 cells. Conclusion: Exposure to API induced oxidative stress in mouse Sertoli TM4 cells.
Collapse
Affiliation(s)
- Sathaporn Jittapalapong
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - Thapanee Poompoung
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - Samak Sutjarit
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
9
|
Sarigul Sezenoz A, Akkoyun I, Helvacioglu F, Haberal N, Dagdeviren A, Bacanli D, Yilmaz G, Oto S. Antiproliferative and Mitochondrial Protective Effects of Apigenin in an Oxygen-Induced Retinopathy In Vivo Mouse Model. J Ocul Pharmacol Ther 2021; 37:580-590. [PMID: 34665015 DOI: 10.1089/jop.2021.0046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Purpose: To investigate the effects of a common dietary flavonoid apigenin on retinal endothelial cell proliferation, retinal morphological structure, and apoptotic cell death in an oxygen-induced retinopathy (OIR) mouse model to evaluate the possibility of the use of apigenin in the treatment of ocular neovascular diseases (ONDs). Methods: Ninety-six newborn C57BL/6J mice were included. Eight groups were randomized, each including 12 mice. Two negative control groups were kept in room air: the first without any injection and the second received intravitreal (IV) dimethyl sulfoxide (DMSO), which is the solvent we used. The OIR groups were exposed to 75% ± 2% oxygen from postnatal days (PD) 7 to 12. On PD 12, the mice were randomly assigned to 6 groups: 2 OIR control groups (1 received no injection, 1 received IV-DMSO), 2 IV-apigenin groups (10 and 20 μg/mL), and 2 intraperitoneal (IP)-apigenin groups (10 and 20 mg/kg). We quantified retinal endothelial cell proliferation by counting neovascular tufts in cross-sections and examined histological and ultrastructural changes through light and electron microscopy. We evaluated apoptosis by terminal deoxynucleotidyl transferase-mediated nick end-labeling (TUNEL). Results: We detected a significant increase in endothelial cell proliferation in the OIR groups. Groups receiving apigenin, both IP and IV, had significant decreases in endothelial cells, atypical mitochondrion count, and apoptotic cells compared with the groups receiving no injections. None of the apigenin-injected groups revealed cystic degeneration or cell loss. Conclusions: Apigenin suppresses neovascularization, has antiapoptotic and antioxidative effects in an OIR mouse model, and can be considered a promising agent for treating OND. Clinical trial (Project number: DA15/19).
Collapse
Affiliation(s)
| | - Imren Akkoyun
- Department of Ophthalmology, Baskent University Faculty of Medicine, Ankara, Turkey
| | - Fatma Helvacioglu
- Department of Histology and Embryology, Baskent University Faculty of Medicine, Ankara, Turkey
| | - Nihan Haberal
- Department of Pathology, Baskent University Faculty of Medicine, Ankara, Turkey
| | - Attila Dagdeviren
- Department of Histology and Embryology, Baskent University Faculty of Medicine, Ankara, Turkey
| | - Didem Bacanli
- Baskent University Laboratory Animal Breeding and Research Center, Ankara, Turkey
| | - Gursel Yilmaz
- Department of Ophthalmology, Baskent University Faculty of Medicine, Ankara, Turkey
| | - Sibel Oto
- Department of Ophthalmology, Baskent University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
10
|
Fernandez-Gonzalez P, Mas-Sanchez A, Garriga P. Polyphenols and Visual Health: Potential Effects on Degenerative Retinal Diseases. Molecules 2021; 26:3407. [PMID: 34199888 PMCID: PMC8200069 DOI: 10.3390/molecules26113407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/26/2022] Open
Abstract
Dietary polyphenols are a group of natural compounds that have been proposed to have beneficial effects on human health. They were first known for their antioxidant properties, but several studies over the years have shown that these compounds can exert protective effects against chronic diseases. Nonetheless, the mechanisms underlying these potential benefits are still uncertain and contradictory effects have been reported. In this review, we analyze the potential effects of polyphenol compounds on some visual diseases, with a special focus on retinal degenerative diseases. Current effective therapies for the treatment of such retinal diseases are lacking and new strategies need to be developed. For this reason, there is currently a renewed interest in finding novel ligands (or known ligands with previously unexpected features) that could bind to retinal photoreceptors and modulate their molecular properties. Some polyphenols, especially flavonoids (e.g., quercetin and tannic acid), could attenuate light-induced receptor damage and promote visual health benefits. Recent evidence suggests that certain flavonoids could help stabilize the correctly folded conformation of the visual photoreceptor protein rhodopsin and offset the deleterious effect of retinitis pigmentosa mutations. In this regard, certain polyphenols, like the flavonoids mentioned before, have been shown to improve the stability, expression, regeneration and folding of rhodopsin mutants in experimental in vitro studies. Moreover, these compounds appear to improve the integration of the receptor into the cell membrane while acting against oxidative stress at the same time. We anticipate that polyphenol compounds can be used to target visual photoreceptor proteins, such as rhodopsin, in a way that has only been recently proposed and that these can be used in novel approaches for the treatment of retinal degenerative diseases like retinitis pigmentosa; however, studies in this field are limited and further research is needed in order to properly characterize the effects of these compounds on retinal degenerative diseases through the proposed mechanisms.
Collapse
Affiliation(s)
| | | | - Pere Garriga
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Edifici Gaia, 08222 Terrassa, Spain; (P.F.-G.); (A.M.-S.)
| |
Collapse
|
11
|
Zhou Y, He YJ, Wang ZJ, Hu BY, Xie TZ, Xiao X, Zhou ZS, Sang XY, Luo XD. A review of plant characteristics, phytochemistry and bioactivities of the genus Glechoma. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113830. [PMID: 33465438 DOI: 10.1016/j.jep.2021.113830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/15/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plants of the genus Glechoma have been abundantly used for thousands of years in China as folk treatments for cholelithiasis, urolithiasis, inflammation, and other conditions. AIM OF THE STUDY This review discusses the potential application of Glechoma as an herbal medicine. The plant characteristics, ethnobotanical uses, phytochemistry, and pharmacological activities of Glechoma are summarized as a guide for phytochemical and pharmacological investigations. MATERIALS AND METHODS Various search engines including SciFinder, Google Scholar, Scopus-Elsevier, Medline, Web of Science, and China National Knowledge Infrastructure were searched for publications on Glechoma using relevant keywords. Additionally, local records, books, and non-English journals were screened up to October 2020. RESULTS The phytochemistry of several Glechoma plants has been systematically studied, and over one hundred different compounds have been isolated and identified. Terpenoids, flavonoids and polyphenols are the major secondary metabolites. Crude extracts and isolated compounds have been shown to exhibit various pharmacological activities including prevention of nephrolithiasis, anti-inflammatory, analgesic, anticomplement, antimicrobial, antioxidant, depigmenting, anticancer, and antiviral activities, among others. CONCLUSION Glechoma species have been used as folk medicine to treat various diseases and have diverse biological activities, making them valuable starting materials for drug development. However, in most cases the pharmacological mechanisms, pharmacokinetics, toxicology, safety, and possible interactions with other drugs remain to be determined.
Collapse
Affiliation(s)
- Ying Zhou
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Ying-Jie He
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Zhao-Jie Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Bin-Yuan Hu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Tian-Zhen Xie
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Xia Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Zhong-Shun Zhou
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Xu-Yan Sang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Xiao-Dong Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences Kunming, 650201, PR China.
| |
Collapse
|
12
|
Ortega JT, Parmar T, Golczak M, Jastrzebska B. Protective Effects of Flavonoids in Acute Models of Light-Induced Retinal Degeneration. Mol Pharmacol 2021; 99:60-77. [PMID: 33154094 PMCID: PMC7736834 DOI: 10.1124/molpharm.120.000072] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022] Open
Abstract
Degeneration of photoreceptors caused by excessive illumination, inherited mutations, or aging is the principal pathology of blinding diseases. Pharmacological compounds that stabilize the visual receptor rhodopsin and modulate the cellular pathways triggering death of photoreceptors could avert this pathology. Interestingly, flavonoids can modulate the cellular processes, such as oxidative stress, inflammatory responses, and apoptosis, that are activated during retinal degeneration. As we found previously, flavonoids also bind directly to unliganded rod opsin, enhancing its folding, stability, and regeneration. In addition, flavonoids stimulate rhodopsin gene expression. Thus, we evaluated the effect of two main dietary flavonoids, quercetin and myricetin, in ATP-binding cassette subfamily A member 4 -/- /retinol dehydrogenase 8 -/- and wild-type BALB/c mice susceptible to light-induced photoreceptor degeneration. Using in vivo imaging, such as optical coherence tomography, scanning laser ophthalmoscopy, and histologic assessment of retinal morphology, we found that treatment with these flavonoids prior to light insult remarkably protected retina from deterioration and preserved its function. Using high-performance liquid chromatography-mass spectrometry analysis, we detected these flavonoids in the eye upon their intraperitoneal administration. The molecular events associated with the protective effect of quercetin and myricetin were related to the elevated expression of photoreceptor-specific proteins, rhodopsin and cone opsins, decreased expression of the specific inflammatory markers, and the shift of the equilibrium between cell death regulators BCL2-associated X protein (BAX) and B-cell lymphoma 2 toward an antiapoptotic profile. These results were confirmed in photoreceptor-derived 661W cells treated with either H2O2 or all-trans-retinal stressors implicated in the mechanism of retinal degeneration. Altogether, flavonoids could have significant prophylactic value for retinal degenerative diseases. SIGNIFICANCE STATEMENT: Flavonoids commonly present in food exhibit advantageous effects in blinding diseases. They bind to and stabilize unliganded rod opsin, which in excess accelerates degenerative processes in the retina. Additionally, flavonoids enhance the expression of the visual receptors, rod and cone opsins; inhibit the inflammatory reactions; and induce the expression of antiapoptotic markers in the retina, preventing the degeneration in vivo. Thus, flavonoids could have a prophylactic value for retinal degenerative diseases.
Collapse
Affiliation(s)
- Joseph T Ortega
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Tanu Parmar
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Marcin Golczak
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Beata Jastrzebska
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
13
|
Zhang X, Henneman NF, Girardot PE, Sellers JT, Chrenek MA, Li Y, Wang J, Brenner C, Nickerson JM, Boatright JH. Systemic Treatment With Nicotinamide Riboside Is Protective in a Mouse Model of Light-Induced Retinal Degeneration. Invest Ophthalmol Vis Sci 2020; 61:47. [PMID: 32852543 PMCID: PMC7452859 DOI: 10.1167/iovs.61.10.47] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
Purpose Maintaining levels of nicotinamide adenine dinucleotide (NAD+), a coenzyme critical for cellular energetics and biosynthetic pathways, may be therapeutic in retinal disease because retinal NAD+ levels decline during retinal damage and degeneration. The purpose of this study was to investigate whether systemic treatment with nicotinamide riboside (NR), a NAD+ precursor that is orally deliverable and well-tolerated by humans, is protective in a mouse model of light-induced retinal degeneration. Methods Mice were injected intraperitoneally with vehicle or NR the day before and the morning of exposure to degeneration-inducing levels of light. Retinal function was assessed by electroretinography and in vivo retinal morphology and inflammation was assessed by optical coherence tomography. Post mortem retina sections were assessed for morphology, TUNEL, and inflammatory markers Iba1 and GFAP. Retinal NAD+ levels were enzymatically assayed. Results Exposure to degeneration-inducing levels of light suppressed retinal NAD+ levels. Mice undergoing light-induced retinal degeneration exhibited significantly suppressed retinal function, severely disrupted photoreceptor cell layers, and increased apoptosis and inflammation in the outer retina. Treatment with NR increased levels of NAD+ in retina and prevented these deleterious outcomes. Conclusions This study is the first to report the protective effects of NR treatment in a mouse model of retinal degeneration. The positive outcomes, coupled with human tolerance to NR dosing, suggest that maintaining retinal NAD+ via systemic NR treatment should be further explored for clinical relevance.
Collapse
Affiliation(s)
- Xian Zhang
- Department of Ophthalmology, School of Medicine, Emory University, Atlanta, Georgia, United States
- Department of Ophthalmology, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Nathaniel F. Henneman
- Department of Ophthalmology, School of Medicine, Emory University, Atlanta, Georgia, United States
- Institut Necker-Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, 75015 Paris, France
- Department of Diabetes & Cancer Metabolism, City of Hope National Medical Center, Duarte, California, United States
| | - Preston E. Girardot
- Department of Ophthalmology, School of Medicine, Emory University, Atlanta, Georgia, United States
| | - Jana T. Sellers
- Department of Ophthalmology, School of Medicine, Emory University, Atlanta, Georgia, United States
| | - Micah A. Chrenek
- Department of Ophthalmology, School of Medicine, Emory University, Atlanta, Georgia, United States
| | - Ying Li
- Department of Ophthalmology, School of Medicine, Emory University, Atlanta, Georgia, United States
| | - Jiaxing Wang
- Department of Ophthalmology, School of Medicine, Emory University, Atlanta, Georgia, United States
| | - Charles Brenner
- Department of Diabetes & Cancer Metabolism, City of Hope National Medical Center, Duarte, California, United States
| | - John M. Nickerson
- Department of Ophthalmology, School of Medicine, Emory University, Atlanta, Georgia, United States
| | - Jeffrey H. Boatright
- Department of Ophthalmology, School of Medicine, Emory University, Atlanta, Georgia, United States
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VAHS, Decatur, Georgia, United States
| |
Collapse
|
14
|
Septembre-Malaterre A, Lalarizo Rakoto M, Marodon C, Bedoui Y, Nakab J, Simon E, Hoarau L, Savriama S, Strasberg D, Guiraud P, Selambarom J, Gasque P. Artemisia annua, a Traditional Plant Brought to Light. Int J Mol Sci 2020; 21:E4986. [PMID: 32679734 PMCID: PMC7404215 DOI: 10.3390/ijms21144986] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/23/2022] Open
Abstract
Traditional remedies have been used for thousand years for the prevention and treatment of infectious diseases, particularly in developing countries. Of growing interest, the plant Artemisia annua, known for its malarial properties, has been studied for its numerous biological activities including metabolic, anti-tumor, anti-microbial and immunomodulatory properties. Artemisia annua is very rich in secondary metabolites such as monoterpenes, sesquiterpenes and phenolic compounds, of which the biological properties have been extensively studied. The purpose of this review is to gather and describe the data concerning the main chemical components produced by Artemisia annua and to describe the state of the art about the biological activities reported for this plant and its compounds beyond malaria.
Collapse
Affiliation(s)
- Axelle Septembre-Malaterre
- Unité de recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (P.G.); (J.S.); (P.G.)
| | - Mahary Lalarizo Rakoto
- Faculté de Médecine, Université d’Antananarivo, Campus Universitaire Ambohitsaina, BP 375, Antananarivo 101, Madagascar;
| | - Claude Marodon
- APLAMEDOM Réunion, 1, rue Emile Hugot, Batiment B, Parc Technologique de Saint Denis, 97490 Sainte Clotilde, La Réunion, France; (C.M.); (J.N.); (E.S.); (L.H.)
| | - Yosra Bedoui
- INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, 97400 Saint Denis de La Réunion, France;
| | - Jessica Nakab
- APLAMEDOM Réunion, 1, rue Emile Hugot, Batiment B, Parc Technologique de Saint Denis, 97490 Sainte Clotilde, La Réunion, France; (C.M.); (J.N.); (E.S.); (L.H.)
| | - Elisabeth Simon
- APLAMEDOM Réunion, 1, rue Emile Hugot, Batiment B, Parc Technologique de Saint Denis, 97490 Sainte Clotilde, La Réunion, France; (C.M.); (J.N.); (E.S.); (L.H.)
| | - Ludovic Hoarau
- APLAMEDOM Réunion, 1, rue Emile Hugot, Batiment B, Parc Technologique de Saint Denis, 97490 Sainte Clotilde, La Réunion, France; (C.M.); (J.N.); (E.S.); (L.H.)
| | - Stephane Savriama
- EA929 Archéologie Industrielle, Histoire, Patrimoine/Géographie-Développement Environnement de la Caraïbe (AIHP-GEODE), Université des Antilles, Campus Schoelcher, BP7207, 97275 Schoelcher Cedex Martinique, France;
| | - Dominique Strasberg
- Unité Mixte de Recherche Peuplements Végétaux et Bio-agresseurs en Milieu Tropical (PVBMT), Pôle de Protection des Plantes, Université de La Réunion, 7 Chemin de l’IRAT, 97410 Saint-Pierre, La Réunion, France;
| | - Pascale Guiraud
- Unité de recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (P.G.); (J.S.); (P.G.)
| | - Jimmy Selambarom
- Unité de recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (P.G.); (J.S.); (P.G.)
| | - Philippe Gasque
- Unité de recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (P.G.); (J.S.); (P.G.)
- Laboratoire d’immunologie clinique et expérimentale de la zone de l’océan indien (LICE-OI) CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| |
Collapse
|
15
|
Chumsakul O, Wakayama K, Tsuhako A, Baba Y, Takai Y, Kurose T, Honma Y, Watanabe S. Apigenin Regulates Activation of Microglia and Counteracts Retinal Degeneration. J Ocul Pharmacol Ther 2020; 36:311-319. [PMID: 32379991 DOI: 10.1089/jop.2019.0163] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Purpose: Photoreceptor degeneration is a major cause of blindness. Microglia are known to play key roles in the pathogenesis and progression of neural degeneration. We examined the possible use of apigenin, which is a naturally occurring flavonoid, for the treatment of photoreceptor degeneration through regulation of microglial activities. Methods: As in vitro analyses, BV2 and MG5 mouse microglia cell lines were stimulated in the presence or absence of apigenin, and their activation profile was examined. In vivo study was done using rd1 photoreceptor degeneration model, and apigenin was administered by intravitreal injection, and pathological feature was examined. Results: Cell survival was not affected by apigenin in either BV2 and MG5. Apigenin suppressed lipopolysaccharide (LPS)-induced chemokine production in both BV2 and MG5 cells, but phagocytosis was suppressed in MG5 cells but not in BV2 cells. Apigenin inhibited LPS-induced M1 activation but could not drive microglia toward the M2 phenotype. Apigenin suppressed the expression of miR-155 in a dose-dependent manner. Furthermore, the Ets protein level was suppressed by treatment of BV2 cells with apigenin. When rd1 mice were treated with apigenin by intravitreal injection, the expression of inflammatory chemokines in the retina was reduced, and activation of microglia and Müller glia was suppressed. Furthermore, the thickness of the outer nuclear layer of the retina of rd1 mice was thicker in apigenin-treated retinas. Conclusions: Taken together, local administration of apigenin to the retina is a potential therapeutic treatment for photoreceptor degeneration, which involves downregulation of microglia in the retina when photoreceptors are damaged.
Collapse
Affiliation(s)
- Onuma Chumsakul
- Pharmacological Research Group, Basic Research Development Division, Rohto Pharmaceutical Co., Ltd., Kizugawa, Kyoto, Japan
| | - Kanaho Wakayama
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Asano Tsuhako
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yukihiro Baba
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yoshihiro Takai
- Pharmacological Research Group, Basic Research Development Division, Rohto Pharmaceutical Co., Ltd., Kizugawa, Kyoto, Japan
| | - Takahiro Kurose
- Pharmacological Research Group, Basic Research Development Division, Rohto Pharmaceutical Co., Ltd., Kizugawa, Kyoto, Japan
| | - Yoichi Honma
- Pharmacological Research Group, Basic Research Development Division, Rohto Pharmaceutical Co., Ltd., Kizugawa, Kyoto, Japan
| | - Sumiko Watanabe
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
The Retinoid and Non-Retinoid Ligands of the Rod Visual G Protein-Coupled Receptor. Int J Mol Sci 2019; 20:ijms20246218. [PMID: 31835521 PMCID: PMC6941084 DOI: 10.3390/ijms20246218] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 11/27/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) play a predominant role in the drug discovery effort. These cell surface receptors are activated by a variety of specific ligands that bind to the orthosteric binding pocket located in the extracellular part of the receptor. In addition, the potential binding sites located on the surface of the receptor enable their allosteric modulation with critical consequences for their function and pharmacology. For decades, drug discovery focused on targeting the GPCR orthosteric binding sites. However, finding that GPCRs can be modulated allosterically opened a new venue for developing novel pharmacological modulators with higher specificity. Alternatively, focus on discovering of non-retinoid small molecules beneficial in retinopathies associated with mutations in rhodopsin is currently a fast-growing pharmacological field. In this review, we summarize the accumulated knowledge on retinoid ligands and non-retinoid modulators of the light-sensing GPCR, rhodopsin and their potential in combating the specific vision-related pathologies. Also, recent findings reporting the potential of biologically active compounds derived from natural products as potent rod opsin modulators with beneficial effects against degenerative diseases related to this receptor are highlighted here.
Collapse
|
17
|
Kowalska I, Adach W, Stochmal A, Olas B. A comparison of the effects of apigenin and seven of its derivatives on selected biomarkers of oxidative stress and coagulation in vitro. Food Chem Toxicol 2019; 136:111016. [PMID: 31805303 DOI: 10.1016/j.fct.2019.111016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/30/2019] [Indexed: 01/10/2023]
Abstract
Apigenin is a phenolic compound widely present in many fruits, vegetables and herbs. Its name originates from Apium: a genus of the Apiaceae. The aim of the present study was to determine the antioxidant or pro-oxidant properties of apigenin and seven of its derivatives, isolated from the aerial parts of barrel medic (Medicago truncatula) and common wheat (Triticum aestivum), in human plasma treated with a hydroxyl radical donor (OH•) in vitro. It also examines their influence on the parameters of coagulation. The compounds were found to demonstrate different effects on oxidative stress and coagulation which may be related to differences in their structure. In particular, apigenin 7-O-{2'-O-feruloyl-[β-D-glucuronopyranosyl(1 → 3)]-β-D- glucuronopyranosyl(1 → 2)-O-β-D-glucopyranoside} demonstrates both antioxidant and anticoagulant activities, and may offer the most promise for the prevention and treatment of cardiovascular disorders of all the phenolic compounds tested so far.
Collapse
Affiliation(s)
- Iwona Kowalska
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100, Puławy, Poland
| | - Weronika Adach
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, 90-236, Łódź, Poland
| | - Anna Stochmal
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100, Puławy, Poland
| | - Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, 90-236, Łódź, Poland.
| |
Collapse
|
18
|
Kang MK, Lee EJ, Kim YH, Kim DY, Oh H, Kim SI, Kang YH. Chrysin Ameliorates Malfunction of Retinoid Visual Cycle through Blocking Activation of AGE-RAGE-ER Stress in Glucose-Stimulated Retinal Pigment Epithelial Cells and Diabetic Eyes. Nutrients 2018; 10:nu10081046. [PMID: 30096827 PMCID: PMC6116048 DOI: 10.3390/nu10081046] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/05/2018] [Accepted: 08/06/2018] [Indexed: 12/20/2022] Open
Abstract
Diabetes-associated visual cycle impairment has been implicated in diabetic retinopathy, and chronic hyperglycemia causes detrimental effects on visual function. Chrysin, a naturally occurring flavonoid found in various herbs, has anti-inflammatory, antioxidant, and neuroprotective properties. The goal of the current study was to identify the retinoprotective role of chrysin in maintaining robust retinoid visual cycle-related components. The in vitro study employed human retinal pigment epithelial (RPE) cells exposed to 33 mM of glucose or advanced glycation end products (AGEs) in the presence of 1–20 μM chrysin for three days. In the in vivo study, 10 mg/kg of chrysin was orally administrated to db/db mice. Treating chrysin reversed the glucose-induced production of vascular endothelial growth factor, insulin-like growth factor-1, and pigment epithelium-derived factor (PEDF) in RPE cells. The outer nuclear layer thickness of chrysin-exposed retina was enhanced. The oral gavage of chrysin augmented the levels of the visual cycle enzymes of RPE65, lecithin retinol acyltransferase (LRAT), retinol dehydrogenase 5 (RDH5), and rhodopsin diminished in db/db mouse retina. The diabetic tissue levels of the retinoid binding proteins and the receptor of the cellular retinol-binding protein, cellular retinaldehyde-binding protein-1, interphotoreceptor retinoid-binding protein and stimulated by retinoic acid 6 were restored to those of normal mouse retina. The presence of chrysin demoted AGE secretion and AGE receptor (RAGE) induction in glucose-exposed RPE cells and diabetic eyes. Chrysin inhibited the reduction of PEDF, RPE 65, LRAT, and RDH5 in 100 μg/mL of AGE-bovine serum albumin-exposed RPE cells. The treatment of RPE cells with chrysin reduced the activation of endoplasmic reticulum (ER) stress. Chrysin inhibited the impairment of the retinoid visual cycle through blocking ER stress via the AGE-RAGE activation in glucose-stimulated RPE cells and diabetic eyes. This is the first study demonstrating the protective effects of chrysin on the diabetes-associated malfunctioned visual cycle.
Collapse
Affiliation(s)
- Min-Kyung Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Korea.
| | - Eun-Jung Lee
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Korea.
| | - Yun-Ho Kim
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Korea.
| | - Dong Yeon Kim
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Korea.
| | - Hyeongjoo Oh
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Korea.
| | - Soo-Il Kim
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Korea.
| | - Young-Hee Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Korea.
| |
Collapse
|
19
|
Tan T, Zhang J, Xu X, Huang WP, Luo Y. Geographical discrimination of Glechomae Herba based on fifteen phenolic constituents determined by LC-MS/MS method combined with chemometric methods. Biomed Chromatogr 2018. [DOI: 10.1002/bmc.4239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ting Tan
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine; Jiangxi University of Traditional Chinese Medicine; Jiangxi Nanchang China
| | - Jing Zhang
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine; Jiangxi University of Traditional Chinese Medicine; Jiangxi Nanchang China
| | - Xu Xu
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine; Jiangxi University of Traditional Chinese Medicine; Jiangxi Nanchang China
| | - Wen-Ping Huang
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine; Jiangxi University of Traditional Chinese Medicine; Jiangxi Nanchang China
| | - Yun Luo
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education; Jiangxi University of Traditional Chinese Medicine; Nanchang China
| |
Collapse
|