1
|
Chen M, Han X, Zhang J, Li M. Genetic analysis of a family with ZBTB18 related intellectual disability: A rare case report. Asian J Surg 2024; 48:S1015-9584(24)02330-3. [PMID: 39482224 DOI: 10.1016/j.asjsur.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024] Open
Affiliation(s)
- Mengling Chen
- Hubei Provinical Clinical Research Center for Accurate Fetus Malformation Diagnosis, Department of Gynaecology and Obstetrics, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Xiaoqiang Han
- Hubei Provinical Clinical Research Center for Accurate Fetus Malformation Diagnosis, Department of Gynaecology and Obstetrics, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Jiaqi Zhang
- Hubei Provinical Clinical Research Center for Accurate Fetus Malformation Diagnosis, Department of Ultrasound, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China.
| | - Mingqun Li
- Hubei Provinical Clinical Research Center for Accurate Fetus Malformation Diagnosis, Department of Gynaecology and Obstetrics, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China.
| |
Collapse
|
2
|
Tanaka T, Hirai S, Manabe H, Endo K, Shimbo H, Nishito Y, Horiuchi J, Yoshitane H, Okado H. Minocycline prevents early age-related cognitive decline in a mouse model of intellectual disability caused by ZBTB18/RP58 haploinsufficiency. J Neuroinflammation 2024; 21:260. [PMID: 39396010 PMCID: PMC11471036 DOI: 10.1186/s12974-024-03217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/01/2024] [Indexed: 10/14/2024] Open
Abstract
Haploinsufficiency of the transcriptional repressor ZBTB18/RP58 is associated with intellectual disability. However, the mechanisms causing this disability are unknown, and preventative measures and treatments are not available. Here, we assessed multiple behaviors in Zbtb18/Rp58 heterozygous-knockout mice, and examined local field potentials, DNA fragmentation, mitochondrial morphology, and performed histochemical and transcriptome analyses in the hippocampus to evaluate chronic inflammation. In wild-type mice, object location memory was present at a similar level at 2 and 4-5 months of age, and became impaired at 12-18 months. In contrast, Zbtb18/Rp58 heterozygous-knockout mice displayed early onset impairments in object location memory by 4-5 months of age. These mice also exhibited earlier accumulation of DNA and mitochondrial damage, and activated microglia in the dentate gyrus, which are associated with defective DNA repair. Notably, chronic minocycline therapy, which has neuroprotective and anti-inflammatory effects, attenuated age-related phenotypes, including accumulation of DNA damage, increased microglial activation, and impairment of object location memory. Our results suggest that Zbtb18/Rp58 activity is required for DNA repair and its reduction results in DNA and mitochondrial damage, increased activation of microglia, and inflammation, leading to accelerated declines in cognitive functions. Minocycline has potential as a therapeutic agent for the treatment of ZBTB18/RP58 haploinsufficiency-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Tomoko Tanaka
- Department of Psychiatry and Behavioral Science, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan.
- Department of Basic Medical Science, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan.
| | - Shinobu Hirai
- Department of Psychiatry and Behavioral Science, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Hiroyuki Manabe
- Department of Neurophysiology, Nara Medical University, Nara, 634-8521, Japan
| | - Kentaro Endo
- Center for Medical Research Cooperation, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Hiroko Shimbo
- Department of Psychiatry and Behavioral Science, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Yasumasa Nishito
- Center for Medical Research Cooperation, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Junjiro Horiuchi
- Center for Medical Research Cooperation, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Hikari Yoshitane
- Department of Basic Medical Science, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Haruo Okado
- Department of Psychiatry and Behavioral Science, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan.
| |
Collapse
|
3
|
JIang W, Dong J, Zhang W, Huang Z, Guo T, Zhang K, Jiang X, Du T. Development and Validation of a Prognostic Model based on 11 E3-related Genes for Colon Cancer Patients. Curr Pharm Des 2024; 30:935-951. [PMID: 38898815 DOI: 10.2174/0113816128292398240306160051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/06/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Colon cancer is a common tumor in the gastrointestinal tract with a poor prognosis. According to research reports, ubiquitin-dependent modification systems have been found to play a crucial role in the development and advancement of different types of malignant tumors, including colon cancer. However, further investigation is required to fully understand the mechanism of ubiquitination in colon cancer. METHODS We collected the RNA expression matrix of the E3 ubiquitin ligase-related genes (E3RGs) from the patients with colon adenocarcinoma (COAD) using The Cancer Genome Atlas program (TCGA). The "limma" package was used to obtain differentially expressed E3RGs between COAD and adjacent normal tissues. Then, univariate COX regression and least absolute shrinkage and selection operator (LASSO) analysis were performed to construct the prognostic signature and nomogram model. Afterward, we used the original copy number variation data of COAD to find potential somatic mutation and employed the "pRRophetic" package to investigate the disparity in the effectiveness of chemotherapy drugs between high and low-risk groups. The RT-qPCR was also implied to detect mRNA expression levels in tumor tissues. RESULTS A total of 137 differentially expressed E3RG3 were screened and 11 genes (CORO2B, KCTD9, RNF32, BACH2, RBCK1, DPH7, WDR78, UCHL1, TRIM58, WDR72, and ZBTB18) were identified for the construction of prognostic signatures. The Kaplan-Meier curve showed a worse prognosis for patients with high risk both in the training and test cohorts (P = 1.037e-05, P = 5.704e-03), and the area under the curve (AUC) was 0.728 and 0.892 in the training and test cohorts, respectively. Based on the stratified analysis, this 11- E3RGs signature was a novel and attractive prognostic model independent of several clinicopathological parameters (age, sex, stage, TNM) in COAD. The DEGs were subjected to GO and KEGG analysis, which identified pathways associated with cancer progression. These pathways included the cAMP signaling pathway, calcium signaling pathway, Wnt signaling pathway, signaling pathways regulating stem cell pluripotency, and proteoglycans in cancer. Additionally, immune infiltration analysis revealed significant differences in the infiltration of macrophages M0, T cells follicular helper, and plasma cells between the two groups. CONCLUSION We developed a novel independent risk model consisting of 11 E3RGs and verified the effectiveness of this model in test cohorts, providing important insights into survival prediction in COAD and several promising targets for COAD therapy.
Collapse
Affiliation(s)
- Wanju JIang
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jiaxing Dong
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Wenjia Zhang
- Department of Respiratory Medicine, Shanghai Tenth Peoples Hospital, Tongji University, Shanghai 200072, China
| | - Zhiye Huang
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Taohua Guo
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Kehui Zhang
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xiaohua Jiang
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Tao Du
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
4
|
Lu C, Garipler G, Dai C, Roush T, Salome-Correa J, Martin A, Liscovitch-Brauer N, Mazzoni EO, Sanjana NE. Essential transcription factors for induced neuron differentiation. Nat Commun 2023; 14:8362. [PMID: 38102126 PMCID: PMC10724217 DOI: 10.1038/s41467-023-43602-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
Neurogenins are proneural transcription factors required to specify neuronal identity. Their overexpression in human pluripotent stem cells rapidly produces cortical-like neurons with spiking activity and, because of this, they have been widely adopted for human neuron disease models. However, we do not fully understand the key downstream regulatory effectors responsible for driving neural differentiation. Here, using inducible expression of NEUROG1 and NEUROG2, we identify transcription factors (TFs) required for directed neuronal differentiation by combining expression and chromatin accessibility analyses with a pooled in vitro CRISPR-Cas9 screen targeting all ~1900 TFs in the human genome. The loss of one of these essential TFs (ZBTB18) yields few MAP2-positive neurons. Differentiated ZBTB18-null cells have radically altered gene expression, leading to cytoskeletal defects and stunted neurites and spines. In addition to identifying key downstream TFs for neuronal differentiation, our work develops an integrative multi-omics and TFome-wide perturbation platform to rapidly characterize essential TFs for the differentiation of any human cell type.
Collapse
Affiliation(s)
- Congyi Lu
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| | - Görkem Garipler
- Department of Biology, New York University, New York, NY, USA
| | - Chao Dai
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| | - Timothy Roush
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| | - Jose Salome-Correa
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| | - Alex Martin
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| | - Noa Liscovitch-Brauer
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| | - Esteban O Mazzoni
- Department of Biology, New York University, New York, NY, USA.
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY, USA.
| | - Neville E Sanjana
- New York Genome Center, New York, NY, USA.
- Department of Biology, New York University, New York, NY, USA.
| |
Collapse
|
5
|
Hirai S, Miwa H, Shimbo H, Nakajima K, Kondo M, Tanaka T, Ohtaka-Maruyama C, Hirai S, Okado H. The mouse model of intellectual disability by ZBTB18/RP58 haploinsufficiency shows cognitive dysfunction with synaptic impairment. Mol Psychiatry 2023; 28:2370-2381. [PMID: 36721027 DOI: 10.1038/s41380-023-01941-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 02/02/2023]
Abstract
ZBTB18/RP58 (OMIM *608433) is one of the pivotal genes responsible for 1q43q44 microdeletion syndrome (OMIM #612337) and its haploinsufficiency induces intellectual disability. However, the underlying pathological mechanism of ZBTB18/RP58 haploinsufficiency is unknown. In this study, we generated ZBTB18/RP58 heterozygous mice and found that these mutant mice exhibit multiple behavioral deficits, including impairment in motor learning, working memory, and memory flexibility, which are related to behaviors in people with intellectual disabilities, and show no gross abnormalities in their cytoarchitectures but dysplasia of the corpus callosum, which has been reported in certain population of patients with ZBTB18 haploinsufficiency as well as in those with 1q43q44 microdeletion syndrome, indicating that these mutant mice are a novel model of ZBTB18/RP58 haploinsufficiency, which reflects heterozygotic ZBTB18 missense, truncating variants and some phenotypes of 1q43q44 microdeletion syndrome based on ZBTB18/RP58 haploinsufficiency. Furthermore, these mice show glutamatergic synaptic dysfunctions, including a reduced glutamate receptor expression, altered properties of NMDA receptor-mediated synaptic responses, a decreased saturation level of long-term potentiation of excitatory synaptic transmission, and distinct morphological characteristics of the thick-type spines. Therefore, these results suggest that ZBTB18/RP58 haploinsufficiency leads to impaired excitatory synaptic maturation, which in turn results in cognitive dysfunction in ZBTB18 haploinsufficiency.
Collapse
Affiliation(s)
- Sayaka Hirai
- Neural Development Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Hideki Miwa
- Neural Development Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan.
- Molecular Neuropsychopharmacology Section, Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, 187-8553, Japan.
- Sleep Disorders Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan.
| | - Hiroko Shimbo
- Neural Development Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
- Sleep Disorders Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Keisuke Nakajima
- Neural Development Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
- Sleep Disorders Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Masahiro Kondo
- Neural Development Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
- Department of Legal Medicine, Nihon University School of Dentistry, Chiyoda, Tokyo, 101-8310, Japan
| | - Tomoko Tanaka
- Neural Development Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
- Department of Basic Medical Science, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Chiaki Ohtaka-Maruyama
- Neural Development Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
- Developmental Neuroscience Project, Department of Brain & Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Shinobu Hirai
- Neural Development Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan.
- Brain Metabolic Regulation Group, Frontier Laboratory, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan.
| | - Haruo Okado
- Neural Development Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan.
- Sleep Disorders Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan.
| |
Collapse
|
6
|
Dai J, Leung M, Guan W, Guo HT, Krasnow RE, Wang TJ, El-Rifai W, Zhao Z, Reed T. Whole-Genome Differentially Hydroxymethylated DNA Regions among Twins Discordant for Cardiovascular Death. Genes (Basel) 2021; 12:genes12081183. [PMID: 34440357 PMCID: PMC8392630 DOI: 10.3390/genes12081183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/19/2022] Open
Abstract
Epigenetics is a mechanism underlying cardiovascular disease. It is unknown whether DNA hydroxymethylation is prospectively associated with the risk for cardiovascular death independent of germline and common environment. Male twin pairs middle-aged in 1969–1973 and discordant for cardiovascular death through December 31, 2014, were included. Hydroxymethylation was quantified in buffy coat DNA collected in 1986–1987. The 1893 differentially hydroxymethylated regions (DhMRs) were identified after controlling for blood leukocyte subtypes and age among 12 monozygotic (MZ) pairs (Benjamini–Hochberg False Discovery Rate < 0.01), of which the 102 DhMRs were confirmed with directionally consistent log2-fold changes and p < 0.01 among additional 7 MZ pairs. These signature 102 DhMRs, independent of the germline, were located on all chromosomes except for chromosome 21 and the Y chromosome, mainly within/overlapped with intergenic regions and introns, and predominantly hyper-hydroxymethylated. A binary linear classifier predicting cardiovascular death among 19 dizygotic pairs was identified and equivalent to that generated from MZ via the 2D transformation. Computational bioinformatics discovered pathways, phenotypes, and DNA motifs for these DhMRs or their subtypes, suggesting that hydroxymethylation was a pathophysiological mechanism underlying cardiovascular death that might be influenced by genetic factors and warranted further investigations of mechanisms of these signature regions in vivo and in vitro.
Collapse
Affiliation(s)
- Jun Dai
- Department of Public Health, College of Health Sciences, Des Moines University, Des Moines, IA 50312, USA
- Correspondence: ; Tel.: +1-515-271-1367
| | - Ming Leung
- Institute for Personalized Medicine, Penn State College of Medicine, Hershey, PA 17033, USA;
| | - Weihua Guan
- Division of Biostatistics, University of Minnesota School of Public Health, Minneapolis, MN 55455, USA;
| | - Han-Tian Guo
- Bioinformatics and Computational Biology Undergraduate Program, Iowa State University, Ames, IA 50011, USA;
| | - Ruth E. Krasnow
- Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA;
| | - Thomas J. Wang
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Terry Reed
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| |
Collapse
|
7
|
Wang J, Che J. CircTP63 promotes hepatocellular carcinoma progression by sponging miR-155-5p and upregulating ZBTB18. Cancer Cell Int 2021; 21:156. [PMID: 33685441 PMCID: PMC7938576 DOI: 10.1186/s12935-021-01753-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/02/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the leading cause of tumor-related death worldwide due to high morbidity and mortality, yet lacking effective biomarkers and therapies. Circular RNAs (circRNAs) are a group of non-coding RNAs that regulate gene expression through interacting with miRNAs, implicating in the tumorigenesis and progression. A novel circRNA, circTP63, was reported to be an oncogene in HCC. However, its role in HCC remains unclear. METHODS qRT-PCR was used to assess the mRNA levels of CircTP63 in 90 pairs of tumor and adjacent normal tissues from HCC patients, one human normal hepatic epithelial cell line and HCC cell lines. CCK-8, colony formation, transwell, and flow cytometry assays were performed to detect the cellular function of circTP63/miR-155-5p/ZBTB18 in HCC cells. HCC xenograft mice models were established to assess the in vivo effect of circTP63. Bioinformatic analysis, RNA pull-down and luciferase assays were used to determine the interaction among circTP63/miR-155-5p/ZBTB18. RESULTS circTP63 was significantly upregulated in HCC tissues and cell lines. High circTP63 expression is closely associated with the tumor stages, lymph node metastasis, and poor prognosis of HCC patients. Functionally, knockdown of circTP63 inhibited cell proliferation, migration, invasion, and promoted cell apoptosis of HCC. Meanwhile, overexpression of circTP63 enhanced HCC progression. Mechanically, circTP63 was a sponge of miR-155-5p to facilitate the ZBTB18 expression, and the ZBTB18 expression in HCC tissues was negatively associated with the survival rate of HCC patients. Furthermore, rescued assays revealed that the reduced tumor-promoting effect on HCC cells induced by knockdown of circTP63 can be reversed by miR-155-5p inhibitor or ZBTB18 overexpression. CONCLUSION Our data highlight a critical circTP63-miR-155-5p-ZBTB18 regulatory network involved in the HCC progression, gaining mechanistic insights into the function of circRNAs in HCC progression, and providing effective biomarkers and therapeutic targets for HCC treatment.
Collapse
Affiliation(s)
- Jiantao Wang
- Department of Hepatobiliary Surgery, Yantaishan Hospital, Jiefang Road, Zhifu District, Yantai, 264000, Shandong Province, China
| | - Jinbiao Che
- Department of Gastroenterology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong Province, China.
| |
Collapse
|
8
|
Okado H. Nervous system regulated by POZ domain Krüppel-like zinc finger (POK) family transcription repressor RP58. Br J Pharmacol 2020; 178:813-826. [PMID: 32959890 DOI: 10.1111/bph.15265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/07/2020] [Accepted: 08/31/2020] [Indexed: 12/21/2022] Open
Abstract
The POZ domain Krüppel-like zinc finger transcription repressor (POK family) contains many important molecules, including RP58, Bcl6 and PLZF. They function as transcription repressors via chromatin remodelling and histone deacetylation and are known to be involved in the development and tumourigenesis of various organs. Furthermore, they are important in the formation and function of the nervous system. This review summarizes the role of the POK family transcription repressors in the nervous system. We particularly targeted Rp58 (also known as Znf238, Znp238 and Zbtb18), a sequence-specific transcriptional repressor that is strongly expressed in developing glutamatergic projection neurons in the cerebral cortex. It regulates various physiological processes, including neuronal production, neuronal migration and neuronal maturation. Human studies suggest that reduced RP58 levels are involved in cognitive function impairment and brain tumour formation. This review particularly focuses on the mechanisms underlying RP58-mediated neuronal development and function. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.4/issuetoc.
Collapse
Affiliation(s)
- Haruo Okado
- Laboratory of Neural Development, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
9
|
Berg DA, Su Y, Jimenez-Cyrus D, Patel A, Huang N, Morizet D, Lee S, Shah R, Ringeling FR, Jain R, Epstein JA, Wu QF, Canzar S, Ming GL, Song H, Bond AM. A Common Embryonic Origin of Stem Cells Drives Developmental and Adult Neurogenesis. Cell 2019; 177:654-668.e15. [PMID: 30929900 PMCID: PMC6496946 DOI: 10.1016/j.cell.2019.02.010] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/20/2018] [Accepted: 02/08/2019] [Indexed: 02/07/2023]
Abstract
New neurons arise from quiescent adult neural progenitors throughout life in specific regions of the mammalian brain. Little is known about the embryonic origin and establishment of adult neural progenitors. Here, we show that Hopx+ precursors in the mouse dentate neuroepithelium at embryonic day 11.5 give rise to proliferative Hopx+ neural progenitors in the primitive dentate region, and they, in turn, generate granule neurons, but not other neurons, throughout development and then transition into Hopx+ quiescent radial glial-like neural progenitors during an early postnatal period. RNA-seq and ATAC-seq analyses of Hopx+ embryonic, early postnatal, and adult dentate neural progenitors further reveal common molecular and epigenetic signatures and developmental dynamics. Together, our findings support a "continuous" model wherein a common neural progenitor population exclusively contributes to dentate neurogenesis throughout development and adulthood. Adult dentate neurogenesis may therefore represent a lifelong extension of development that maintains heightened plasticity in the mammalian hippocampus.
Collapse
Affiliation(s)
- Daniel A Berg
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yijing Su
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dennisse Jimenez-Cyrus
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA; The Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Aneek Patel
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nancy Huang
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David Morizet
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephanie Lee
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Reeti Shah
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Rajan Jain
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan A Epstein
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Qing-Feng Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Stefan Canzar
- Gene Center, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Allison M Bond
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|