1
|
Yawoot N, Tocharus J, Tocharus C. Toll-Like Receptor 4-Mediated Neuroinflammation: Updates on Pathological Roles and Therapeutic Strategies in Chronic Cerebral Hypoperfusion. Mol Neurobiol 2025; 62:7242-7267. [PMID: 39875782 DOI: 10.1007/s12035-025-04718-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025]
Abstract
Neuroinflammation has been acknowledged as being one of the main pathologies that occur following chronic cerebral hypoperfusion (CCH). Since it significantly contributes to neuronal cell damage and thereby leads to cognitive impairment, the signals related to inflammation in hypoperfusion injury have been extensively investigated over the past few years. Toll-like receptor 4 (TLR4) is the key receptor responsible for immune and inflammatory reactions. It has been reported that TLR4 is involved in the pathology of several diseases and has emerged as a therapeutic target for developing a variety of anti-inflammatory compounds. This study explored the pathological roles of TLR4 that potentially cause the promotion of neuroinflammation in CCH damage. The evidence pertinent to the activation of TLR4 and its downstream inflammatory cascades following CCH are also summarized. This study also demonstrated the therapeutic potential of TLR4 inhibition, whether through drugs, substances, or other treatment strategies, in models of CCH-induced neurological dysfunction. The limitations of the accumulated evidence are addressed and discussed in this study. A deeper understanding of the roles of TLR4 in neuroinflammation following CCH damage may help inform the machinery behind pathological processes for advancing further neuroscientific research and developing therapeutic strategies for vascular dementia.
Collapse
Affiliation(s)
- Nuttapong Yawoot
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
- Center of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
2
|
Yu JB, Hong C, Ren XW, Guo W, Chen YF, Ji J, Zhang XY, Sun XL. FTY720 Modulating Microglia-Mediated Cholesterol Recycling via TREM2 Promotes Remyelination Following Ischemic Damage. Stroke 2025. [PMID: 40260538 DOI: 10.1161/strokeaha.124.049745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/15/2025] [Accepted: 04/01/2025] [Indexed: 04/23/2025]
Abstract
BACKGROUND Following ischemic white matter damage, microglia are responsible for phagocytosing and degrading cholesterol-rich myelin debris, storing them as lipid droplets. However, our understanding of how microglia process this engulfed material remains limited. Our previous findings identified FTY720 as a high-affinity ligand for microglial TREM2 (triggering receptor expressed on myeloid cells 2). Therefore, we aimed to reveal the role of FTY720 targeting TREM2 in regulating microglial cholesterol metabolism during remyelination. METHODS Chronic ischemic white matter damage was induced by bilateral carotid artery stenosis in male wild-type and TREM2-/- mice. FTY720 was administered daily via intraperitoneal injection for 28 days following bilateral carotid artery stenosis surgery. Cognitive function, white matter integrity, accumulation of cholesterol and lipid droplets in microglia, and oligodendrocyte differentiation were evaluated using behavioral tests, transmission electron microscopy, immunofluorescence, and biochemical analyses. In vitro coculture systems were used to evaluate cholesterol transfer and remyelination efficacy. RESULTS FTY720 significantly alleviated cognitive deficits and promoted remyelination in bilateral carotid artery stenosis mice, as evidenced by enhanced performance in the Morris water maze and reduced demyelination observed via transmission electron microscopy and immunofluorescence. This therapeutic effect was absent in TREM2-/- bilateral carotid artery stenosis mice. Mechanistically, FTY720 promoted the redistribution of ABCA1 (ATP-binding cassette transporter A1) from lysosomes to the cell membrane in microglia via TREM2, which facilitated cholesterol efflux and reduced the accumulation of intracellular cholesterol and lipid droplets. Additionally, in vitro coculture experiments revealed that FTY720 enhanced cholesterol transfer from microglia to oligodendrocytes through TREM2, thereby promoting oligodendrocyte myelination. CONCLUSIONS Our study suggested that FTY720 regulated the recycling of myelin-derived cholesterol from microglia through TREM2, supplying cholesterol to oligodendrocytes and supporting remyelination, thus offering a novel therapeutic target for ischemic white matter damage.
Collapse
Affiliation(s)
- Jian-Bing Yu
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, China (J.-B.Y., C.H., X.-W.R., W.G., Y.-F.C., J.J., X.-Y.Z., X.-L.S.)
| | - Chen Hong
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, China (J.-B.Y., C.H., X.-W.R., W.G., Y.-F.C., J.J., X.-Y.Z., X.-L.S.)
| | - Xue-Wei Ren
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, China (J.-B.Y., C.H., X.-W.R., W.G., Y.-F.C., J.J., X.-Y.Z., X.-L.S.)
| | - Wei Guo
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, China (J.-B.Y., C.H., X.-W.R., W.G., Y.-F.C., J.J., X.-Y.Z., X.-L.S.)
| | - Ye-Fan Chen
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, China (J.-B.Y., C.H., X.-W.R., W.G., Y.-F.C., J.J., X.-Y.Z., X.-L.S.)
| | - Juan Ji
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, China (J.-B.Y., C.H., X.-W.R., W.G., Y.-F.C., J.J., X.-Y.Z., X.-L.S.)
| | - Xi-Yue Zhang
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, China (J.-B.Y., C.H., X.-W.R., W.G., Y.-F.C., J.J., X.-Y.Z., X.-L.S.)
| | - Xiu-Lan Sun
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, China (J.-B.Y., C.H., X.-W.R., W.G., Y.-F.C., J.J., X.-Y.Z., X.-L.S.)
- Nanjing University of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, China (X.-L.S.)
| |
Collapse
|
3
|
Ishikawa H, Shindo A, Mizutani A, Tomimoto H, Lo EH, Arai K. A brief overview of a mouse model of cerebral hypoperfusion by bilateral carotid artery stenosis. J Cereb Blood Flow Metab 2023; 43:18-36. [PMID: 36883344 PMCID: PMC10638994 DOI: 10.1177/0271678x231154597] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 03/09/2023]
Abstract
Vascular cognitive impairment (VCI) refers to all forms of cognitive disorder related to cerebrovascular diseases, including vascular mild cognitive impairment, post-stroke dementia, multi-infarct dementia, subcortical ischemic vascular dementia (SIVD), and mixed dementia. Among the causes of VCI, more attention has been paid to SIVD because the causative cerebral small vessel pathologies are frequently observed in elderly people and because the gradual progression of cognitive decline often mimics Alzheimer's disease. In most cases, small vessel diseases are accompanied by cerebral hypoperfusion. In mice, prolonged cerebral hypoperfusion is induced by bilateral carotid artery stenosis (BCAS) with surgically implanted metal micro-coils. This cerebral hypoperfusion BCAS model was proposed as a SIVD mouse model in 2004, and the spreading use of this mouse SIVD model has provided novel data regarding cognitive dysfunction and histological/genetic changes by cerebral hypoperfusion. Oxidative stress, microvascular injury, excitotoxicity, blood-brain barrier dysfunction, and secondary inflammation may be the main mechanisms of brain damage due to prolonged cerebral hypoperfusion, and some potential therapeutic targets for SIVD have been proposed by using transgenic mice or clinically used drugs in BCAS studies. This review article overviews findings from the studies that used this hypoperfused-SIVD mouse model, which were published between 2004 and 2021.
Collapse
Affiliation(s)
- Hidehiro Ishikawa
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Akihiro Shindo
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Akane Mizutani
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hidekazu Tomimoto
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
4
|
Huang S, Ren C, Luo Y, Ding Y, Ji X, Li S. New insights into the roles of oligodendrocytes regulation in ischemic stroke recovery. Neurobiol Dis 2023:106200. [PMID: 37321419 DOI: 10.1016/j.nbd.2023.106200] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/20/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023] Open
Abstract
Oligodendrocytes (OLs), the myelin-forming cells of the central nervous system, are integral to axonal integrity and function. Hypoxia-ischemia episodes can cause severe damage to these vulnerable cells through excitotoxicity, oxidative stress, inflammation, and mitochondrial dysfunction, leading to axonal dystrophy, neuronal dysfunction, and neurological impairments. OLs damage can result in demyelination and myelination disorders, severely impacting axonal function, structure, metabolism, and survival. Adult-onset stroke, periventricular leukomalacia, and post-stroke cognitive impairment primarily target OLs, making them a critical therapeutic target. Therapeutic strategies targeting OLs, myelin, and their receptors should be given more emphasis to attenuate ischemia injury and establish functional recovery after stroke. This review summarizes recent advances on the function of OLs in ischemic injury, as well as the present and emerging principles that serve as the foundation for protective strategies against OL deaths.
Collapse
Affiliation(s)
- Shuangfeng Huang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China; Department of Emergency, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Changhong Ren
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China; Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yumin Luo
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China; Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University, Detroit, MI, USA
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China; Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Sijie Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China; Department of Emergency, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Sepasi T, Ghadiri T, Ebrahimi-Kalan A, Bani F, Talebi M, Rahbarghazi R, Khodakarimi S, Beyrampour-Basmenj H, Seidi K, Abbaspour-Ravasjani S, Sadeghi MR, Zarebkohan A, Gao H. CDX-modified chitosan nanoparticles remarkably reduce therapeutic dose of fingolimod in the EAE model of mice. Int J Pharm 2023; 636:122815. [PMID: 36907279 DOI: 10.1016/j.ijpharm.2023.122815] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/20/2023] [Accepted: 03/05/2023] [Indexed: 03/13/2023]
Abstract
Fingolimod (Fin), an FDA-approved drug, is used to control relapsing-remitting multiple sclerosis (MS). This therapeutic agent faces crucial drawbacks like poor bioavailability rate, risk of cardiotoxicity, potent immunosuppressive effects, and high cost. Here, we aimed to assess the therapeutic efficacy of nano-formulated Fin in a mouse model of experimental autoimmune encephalomyelitis (EAE). Results showed the suitability of the present protocol in the synthesis of Fin-loaded CDX-modified chitosan (CS) nanoparticles (NPs) (Fin@CSCDX) with suitable physicochemical features. Confocal microscopy confirmed the appropriate accumulation of synthesized NPs within the brain parenchyma. Compared to the control EAE mice, INF-γ levels were significantly reduced in the group that received Fin@CSCDX (p < 0.05). Along with these data, Fin@CSCDX reduced the expression of TBX21, GATA3, FOXP3, and Rorc associated with the auto-reactivation of T cells (p < 0.05). Histological examination indicated a low-rate lymphocyte infiltration into the spinal cord parenchyma after the administration of Fin@CSCDX. Of note, HPLC data revealed that the concentration of nano-formulated Fin was about 15-fold less than Fin therapeutic doses (TD) with similar reparative effects. Neurological scores were similar in both groups that received nano-formulated fingolimod 1/15th of free Fin therapeutic amounts. Fluorescence imaging indicated that macrophages and especially microglia can efficiently uptake Fin@CSCDX NPs, leading to the regulation of pro-inflammatory responses. Taken together, current results indicated that CDX-modified CS NPs provide a suitable platform not only for the efficient reduction of Fin TD but also these NPs can target the brain immune cells during neurodegenerative disorders.
Collapse
Affiliation(s)
- Tina Sepasi
- Department of Medical Nanotechnology, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tahereh Ghadiri
- Department of Neuroscience and Cognitive, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Ebrahimi-Kalan
- Department of Neuroscience and Cognitive, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Bani
- Department of Medical Nanotechnology, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Talebi
- Stem Cells Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cells Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Khodakarimi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Neuroscience and Cognitive, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Beyrampour-Basmenj
- Department of Medical Biotechnology, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khaled Seidi
- Polymer Research Laboratory, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | | | - Mohammad-Reza Sadeghi
- Department of Medical Biotechnology, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
6
|
Cure of Alzheimer's Dementia Requires Addressing All of the Affected Brain Cell Types. J Clin Med 2023; 12:jcm12052049. [PMID: 36902833 PMCID: PMC10004473 DOI: 10.3390/jcm12052049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Multiple genetic, metabolic, and environmental abnormalities are known to contribute to the pathogenesis of Alzheimer's dementia (AD). If all of those abnormalities were addressed it should be possible to reverse the dementia; however, that would require a suffocating volume of drugs. Nevertheless, the problem may be simplified by using available data to address, instead, the brain cells whose functions become changed as a result of the abnormalities, because at least eleven drugs are available from which to formulate a rational therapy to correct those changes. The affected brain cell types are astrocytes, oligodendrocytes, neurons, endothelial cells/pericytes, and microglia. The available drugs include clemastine, dantrolene, erythropoietin, fingolimod, fluoxetine, lithium, memantine, minocycline, pioglitazone, piracetam, and riluzole. This article describes the ways by which the individual cell types contribute to AD's pathogenesis and how each of the drugs corrects the changes in the cell types. All five of the cell types may be involved in the pathogenesis of AD; of the 11 drugs, fingolimod, fluoxetine, lithium, memantine, and pioglitazone, each address all five of the cell types. Fingolimod only slightly addresses endothelial cells, and memantine is the weakest of the remaining four. Low doses of either two or three drugs are suggested in order to minimize the likelihood of toxicity and drug-drug interactions (including drugs used for co-morbidities). Suggested two-drug combinations are pioglitazone plus lithium and pioglitazone plus fluoxetine; a three-drug combination could add either clemastine or memantine. Clinical trials are required to validate that the suggest combinations may reverse AD.
Collapse
|
7
|
Fessel J. Supplementary Pharmacotherapy for the Behavioral Abnormalities Caused by Stressors in Humans, Focused on Post-Traumatic Stress Disorder (PTSD). J Clin Med 2023; 12:1680. [PMID: 36836215 PMCID: PMC9967886 DOI: 10.3390/jcm12041680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Used as a supplement to psychotherapy, pharmacotherapy that addresses all of the known metabolic and genetic contributions to the pathogenesis of psychiatric conditions caused by stressors would require an inordinate number of drugs. Far simpler is to address the abnormalities caused by those metabolic and genetic changes in the cell types of the brain that mediate the behavioral abnormality. Relevant data regarding the changed brain cell types are described in this article and are derived from subjects with the paradigmatic behavioral abnormality of PTSD and from subjects with traumatic brain injury or chronic traumatic encephalopathy. If this analysis is correct, then therapy is required that benefits all of the affected brain cell types; those are astrocytes, oligodendrocytes, synapses and neurons, endothelial cells, and microglia (the pro-inflammatory (M1) subtype requires switching to the anti-inflammatory (M2) subtype). Combinations are advocated using several drugs, erythropoietin, fluoxetine, lithium, and pioglitazone, that benefit all of the five cell types, and that should be used to form a two-drug combination, suggested as pioglitazone with either fluoxetine or lithium. Clemastine, fingolimod, and memantine benefit four of the cell types, and one chosen from those could be added to the two-drug combination to form a three-drug combination. Using low doses of chosen drugs will limit both toxicity and drug-drug interactions. A clinical trial is required to validate both the advocated concept and the choice of drugs.
Collapse
Affiliation(s)
- Jeffrey Fessel
- Department of Medicine, University of California, 2069 Filbert Street, San Francisco, CA 94123, USA
| |
Collapse
|
8
|
Fessel J. Formulating treatment of major psychiatric disorders: algorithm targets the dominantly affected brain cell-types. DISCOVER MENTAL HEALTH 2023; 3:3. [PMID: 37861813 PMCID: PMC10501034 DOI: 10.1007/s44192-022-00029-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/21/2022] [Indexed: 10/21/2023]
Abstract
BACKGROUND Pharmacotherapy for most psychiatric conditions was developed from serendipitous observations of benefit from drugs prescribed for different reasons. An algorithmic approach to formulating pharmacotherapy is proposed, based upon which combination of changed activities by brain cell-types is dominant for any particular condition, because those cell-types contain and surrogate for genetic, metabolic and environmental information, that has affected their function. The algorithm performs because functions of some or all the affected cell-types benefit from several available drugs: clemastine, dantrolene, erythropoietin, fingolimod, fluoxetine, lithium, memantine, minocycline, pioglitazone, piracetam, and riluzole PROCEDURES/FINDINGS: Bipolar disorder, major depressive disorder, schizophrenia, Alzheimer's disease, and post-traumatic stress disorder, illustrate the algorithm; for them, literature reviews show that no single combination of altered cell-types accounts for all cases; but they identify, for each condition, which combination occurs most frequently, i.e., dominates, as compared with other possible combinations. Knowing the dominant combination of altered cell-types in a particular condition, permits formulation of therapy with combinations of drugs taken from the above list. The percentage of patients who might benefit from that therapy, depends upon the frequency with which the dominant combination occurs in patients with that particular condition. CONCLUSIONS Knowing the dominant combination of changed cell types in psychiatric conditions, permits an algorithmically formulated, rationally-based treatment. Different studies of the same condition often produce discrepant results; all might be correct, because identical clinical phenotypes result from different combinations of impaired cell-types, thus producing different results. Clinical trials would validate both the proposed concept and choice of drugs.
Collapse
Affiliation(s)
- Jeffrey Fessel
- Department of Medicine, University of California, 2069 Filbert Street, San Francisco, CA, 94123, USA.
| |
Collapse
|
9
|
Zhang W, Li Y, Li F, Ling L. Sphingosine-1-phosphate receptor modulators in stroke treatment. J Neurochem 2022; 162:390-403. [PMID: 35943290 DOI: 10.1111/jnc.15685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 06/30/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive lysophospholipid that can influence a broad range of biological processes through its binding to five distinct G protein-coupled receptors. S1P receptor modulators are a new group of immunosuppressive agents currently used in the immunotherapy of multiple sclerosis. Inflammation following stroke may exacerbate injury. Given that S1P signaling is linked to multiple immune processes, therapies targeting the S1P axis may be suitable for treating stroke. In this review, we outline S1P metabolism and S1P receptors, discuss the mechanisms of action of S1P receptor modulators in lymphocyte migration and their direct action on cells of the central nervous system, and provide a concise summary of the efficacy of S1P receptor modulators in animal studies and clinical trials on treatments for stroke.
Collapse
Affiliation(s)
- Wanzhou Zhang
- Department of Neurology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yudi Li
- Department of Neurology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Fangming Li
- Department of Neurology, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong, China
| | - Li Ling
- Department of Neurology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| |
Collapse
|
10
|
Youssef MI, Ma J, Chen Z, Hu WW. Potential therapeutic agents for ischemic white matter damage. Neurochem Int 2021; 149:105116. [PMID: 34229025 DOI: 10.1016/j.neuint.2021.105116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/24/2021] [Indexed: 11/19/2022]
Abstract
Ischemic white matter damage (WMD) is increasingly being considered as one of the major causes of neurological disorders in older adults and preterm infants. The functional consequences of WMD triggers a progressive cognitive decline and dementia particularly in patients with ischemic cerebrovascular diseases. Despite the major stride made in the pathogenesis mechanisms of ischemic WMD in the last century, effective medications are still not available. So, there is an urgent need to explore a promising approach to slow the progression or modify its pathological course. In this review, we discussed the animal models, the pathological mechanisms and the potential therapeutic agents for ischemic WMD. The development in the studies of anti-oxidants, free radical scavengers, anti-inflammatory or anti-apoptotic agents and neurotrophic factors in ischemic WMD were summarized. The agents which either alleviate oligodendrocyte damage or promote its proliferation or differentiation may have potential value for the treatment of ischemic WMD. Moreover, drugs with multifaceted protective activities or a wide therapeutic window may be optimal for clinical translation.
Collapse
Affiliation(s)
- Mahmoud I Youssef
- Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Jing Ma
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China.
| | - Zhong Chen
- Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China.
| | - Wei-Wei Hu
- Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
| |
Collapse
|
11
|
Chua XY, Ho LTY, Xiang P, Chew WS, Lam BWS, Chen CP, Ong WY, Lai MKP, Herr DR. Preclinical and Clinical Evidence for the Involvement of Sphingosine 1-Phosphate Signaling in the Pathophysiology of Vascular Cognitive Impairment. Neuromolecular Med 2020; 23:47-67. [PMID: 33180310 DOI: 10.1007/s12017-020-08632-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023]
Abstract
Sphingosine 1-phosphates (S1Ps) are bioactive lipids that mediate a diverse range of effects through the activation of cognate receptors, S1P1-S1P5. Scrutiny of S1P-regulated pathways over the past three decades has identified important and occasionally counteracting functions in the brain and cerebrovascular system. For example, while S1P1 and S1P3 mediate proinflammatory effects on glial cells and directly promote endothelial cell barrier integrity, S1P2 is anti-inflammatory but disrupts barrier integrity. Cumulatively, there is significant preclinical evidence implicating critical roles for this pathway in regulating processes that drive cerebrovascular disease and vascular dementia, both being part of the continuum of vascular cognitive impairment (VCI). This is supported by clinical studies that have identified correlations between alterations of S1P and cognitive deficits. We review studies which proposed and evaluated potential mechanisms by which such alterations contribute to pathological S1P signaling that leads to VCI-associated chronic neuroinflammation and neurodegeneration. Notably, S1P receptors have divergent but overlapping expression patterns and demonstrate complex interactions. Therefore, the net effect produced by S1P represents the cumulative contributions of S1P receptors acting additively, synergistically, or antagonistically on the neural, vascular, and immune cells of the brain. Ultimately, an optimized therapeutic strategy that targets S1P signaling will have to consider these complex interactions.
Collapse
Affiliation(s)
- Xin Ying Chua
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Leona T Y Ho
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260, Singapore
| | - Ping Xiang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wee Siong Chew
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Brenda Wan Shing Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Christopher P Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, 119260, Singapore
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore.
| | - Deron R Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Biology, San Diego State University, San Diego, CA, USA.
- American University of Health Sciences, Long Beach, CA, USA.
| |
Collapse
|
12
|
Sphingosine-1-Phosphate Receptor Modulators and Oligodendroglial Cells: Beyond Immunomodulation. Int J Mol Sci 2020; 21:ijms21207537. [PMID: 33066042 PMCID: PMC7588977 DOI: 10.3390/ijms21207537] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 12/23/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory disease characterized by demyelination, axonal loss, and synaptic impairment in the central nervous system (CNS). The available therapies aim to reduce the severity of the pathology during the early inflammatory stages, but they are not effective in the chronic stage of the disease. In this phase, failure in endogenous remyelination is associated with the impairment of oligodendrocytes progenitor cells (OPCs) to migrate and differentiate into mature myelinating oligodendrocytes. Therefore, stimulating differentiation of OPCs into myelinating oligodendrocytes has become one of the main goals of new therapeutic approaches for MS. Different disease-modifying therapies targeting sphingosine-1-phosphate receptors (S1PRs) have been approved or are being developed to treat MS. Besides their immunomodulatory effects, growing evidence suggests that targeting S1PRs modulates mechanisms beyond immunomodulation, such as remyelination. In this context, this review focuses on the current understanding of S1PR modulators and their direct effect on OPCs and oligodendrocytes.
Collapse
|
13
|
Molecular Effects of FDA-Approved Multiple Sclerosis Drugs on Glial Cells and Neurons of the Central Nervous System. Int J Mol Sci 2020; 21:ijms21124229. [PMID: 32545828 PMCID: PMC7352301 DOI: 10.3390/ijms21124229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is characterized by peripheral and central inflammatory features, as well as demyelination and neurodegeneration. The available Food and Drug Administration (FDA)-approved drugs for MS have been designed to suppress the peripheral immune system. In addition, however, the effects of these drugs may be partially attributed to their influence on glial cells and neurons of the central nervous system (CNS). We here describe the molecular effects of the traditional and more recent FDA-approved MS drugs Fingolimod, Dimethyl Fumarate, Glatiramer Acetate, Interferon-β, Teriflunomide, Laquinimod, Natalizumab, Alemtuzumab and Ocrelizumab on microglia, astrocytes, neurons and oligodendrocytes. Furthermore, we point to a possible common molecular effect of these drugs, namely a key role for NFκB signaling, causing a switch from pro-inflammatory microglia and astrocytes to anti-inflammatory phenotypes of these CNS cell types that recently emerged as central players in MS pathogenesis. This notion argues for the need to further explore the molecular mechanisms underlying MS drug action.
Collapse
|