1
|
Almeida-Bezerra JW, da Costa Silva JT, Morais-Braga MFB, da Cruz RP, Alencar GG, Alves DS, de Sousa Rodrigues EY, de Sousa SG, de Menezes IRA, Rocha JE, Filho JMB, Leite dos Santos CA, Costa AR, Domiciano CB, de Lima LR, Coutinho HDM. ADME/Tox study and the effect of β-Caryophyllene on the resistant strain of Staphylococcus aureus carrying the QacA/B efflux pump gene. Toxicol Rep 2025; 14:101929. [PMID: 39968054 PMCID: PMC11833615 DOI: 10.1016/j.toxrep.2025.101929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/20/2025] Open
Abstract
The Gram-positive bacterium Staphylococcus aureus is responsible for causing both community-acquired and healthcare-associated infections, and it exhibits high antibiotic resistance due to the presence of efflux pumps. These pumps, such as QacA and QacB, are proteins that expel toxic substances, including antibiotics, making infection treatment more difficult. Among the alternatives to combat this resistance are terpenes, like β-caryophyllene, which have the potential to inhibit these efflux pumps due to their nonpolar nature. Considering this, the objective of this work is to investigate the ability of the mentioned terpene to act as an inhibitor of the QacA/B pump in S. aureus, as well as to analyze its pharmacokinetic and toxicological properties in silico. Initially, a molecular docking simulation was performed using the CryoEM structure of the QacA protein with the software AutoDock VINA to evaluate the interactions between β-caryophyllene and the target protein. Subsequently, in vitro assays were conducted to determine the Minimum Inhibitory Concentration (MIC) of β-caryophyllene and its ability to inhibit the efflux pump in combination with ampicillin in resistant strains of S. aureus. Additionally, in silico ADMET predictions were performed using the SwissADME platform. The results showed that the terpene enhanced the action of ampicillin, reducing the minimum inhibitory concentration (MIC) by 50 %. However, it was not able to reduce the MIC of ethidium bromide. The in silico analysis indicated that β-caryophyllene has good bioavailability and drug-likeness characteristics, but with limitations in its gastrointestinal absorption and brain permeability. The study concludes that β-caryophyllene is a promising candidate as an adjuvant in the treatment of antibiotic-resistant infections, especially due to its ability to partially inhibit efflux pumps.
Collapse
Affiliation(s)
| | | | | | - Rafael Pereira da Cruz
- Department of Biological Sciences, Cariri Regional University — URCA, Crato, CE 63105-000, Brazil
| | | | - Daniel Sampaio Alves
- Department of Biological Sciences, Cariri Regional University — URCA, Crato, CE 63105-000, Brazil
| | | | - Simone Galdino de Sousa
- Department of Biological Sciences, Cariri Regional University — URCA, Crato, CE 63105-000, Brazil
| | | | - Janaína Esmeraldo Rocha
- Center of Science and Technology CCT - State University of Ceara - UECE, Fortaleza, CE 63100-000, Brazil
| | | | | | - Adrielle Rodrigues Costa
- Center for Agrarian Sciences and Biodiversity, Federal University of Cariri - UFCA, Crato, CE 63133-610, Brazil
| | | | - Lucia Raquel de Lima
- Department of Biological Chemistry, Regional University of Cariri – URCA, Crato, Ceará 63105–000, Brazil
| | | |
Collapse
|
2
|
Chan H, Lin W, Kuo D, Chuang H. Beta-Caryophyllene Augments Radiotherapy Efficacy in GBM by Modulating Cell Apoptosis and DNA Damage Repair via PPARγ and NF-κB Pathways. Phytother Res 2025; 39:776-788. [PMID: 39668701 PMCID: PMC11832361 DOI: 10.1002/ptr.8413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/30/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024]
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive brain malignancy with limited treatment options. Radiotherapy (RT) is often used for treating unresectable GBM; however, the outcomes are often limited due to the radioresistance of GBM. Therefore, the discovery of potential radiosensitizers to enhance GBM responses to RT is crucial. Beta-caryophyllene (BCP), a natural cannabinoid, promotes cancer apoptosis by upregulating the PPARγ signaling pathway and can cross the blood-brain barrier due to its lipophilic nature. This study aimed to evaluate the radiosensitizing potential of BCP in GBM cells. U87MG and GL261 cells and a GL261 tumor-bearing model were treated with RT, BCP, or both. Treatment efficacy was assessed using the MTT assay and tumor growth tracking, and the underlying mechanisms were investigated using western blotting, immunofluorescence staining, and other analyses. BCP synergistically enhanced the efficacy of RT in cell culture, as evidenced by the combination index determined through the MTT assay. This enhancement was mediated by the BCP-induced deceleration of DNA damage repair, as demonstrated by sustained γH2AX signal, upregulated PPARγ levels, and reduced expression of pAKT, pERK, and NF-κB, indicating apoptosis induction and inhibition of survival pathways. BCP significantly inhibited tumor growth in GL261 tumor-bearing mice with no discernible side effects. These findings indicate that BCP may serve as a potential radiosensitizer for improving RT outcomes in GBM by inhibiting DNA repair, inducing apoptosis, and suppressing anti-apoptotic and survival pathways.
Collapse
Affiliation(s)
- Hui‐Wen Chan
- Department of Biomedical Imaging and Radiological SciencesNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Wei‐Chan Lin
- Department of RadiologyCathay General HospitalTaipei CityTaiwan
- School of MedicineFu‐Jen Catholic UniversityNew Taipei CityTaiwan
| | - Deng‐Yu Kuo
- Division of Radiation Oncology, Department of RadiologyFar Eastern Memorial HospitalNew Taipei CityTaiwan
| | - Hui‐Yen Chuang
- Department of Biomedical Imaging and Radiological SciencesNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| |
Collapse
|
3
|
Lim CR, Ogawa S, Kumari Y. Exploring β-caryophyllene: a non-psychotropic cannabinoid's potential in mitigating cognitive impairment induced by sleep deprivation. Arch Pharm Res 2025; 48:1-42. [PMID: 39653971 DOI: 10.1007/s12272-024-01523-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/25/2024] [Indexed: 01/04/2025]
Abstract
Sleep deprivation or sleep loss, a prevalent issue in modern society, is linked to cognitive impairment, leading to heightened risks of errors and accidents. Chronic sleep deprivation affects various cognitive functions, including memory, attention, and decision-making, and is associated with an increased risk of neurodegenerative diseases, cardiovascular issues, and metabolic disorders. This review examines the potential of β-caryophyllene, a dietary non-psychotropic cannabinoid, and FDA-approved flavoring agent, as a therapeutic solution for sleep loss-induced cognitive impairment. It highlights β-caryophyllene's ability to mitigate key contributors to sleep loss-induced cognitive impairment, such as inflammation, oxidative stress, neuronal death, and reduced neuroplasticity, by modulating various signaling pathways, including TLR4/NF-κB/NLRP3, MAPK, Nrf2/HO-1, PI3K/Akt, and cAMP/PKA/CREB. As a naturally occurring, non-psychotropic compound with low toxicity, β-caryophyllene emerges as a promising candidate for further investigation. The review underscores the therapeutic potential of β-caryophyllene for sleep loss-induced cognitive impairment and provides mechanistic insights into its action on crucial pathways, suggesting that β-caryophyllene could be a valuable addition to strategies aimed at combating cognitive impairment and other health issues due to sleep loss.
Collapse
Affiliation(s)
- Cher Ryn Lim
- Neurological Disorder and Aging Research Group (NDA), Neuroscience Research Strength (NRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Satoshi Ogawa
- Neuroscience Research Strength (NRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Yatinesh Kumari
- Neurological Disorder and Aging Research Group (NDA), Neuroscience Research Strength (NRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia.
| |
Collapse
|
4
|
Yip KL, Udoh M, Sharman LA, Harman T, Bedoya-Pérez M, Anderson LL, Banister SD, Arnold JC. Cannabinoid-like compounds found in non-cannabis plants exhibit antiseizure activity in genetic mouse models of drug-resistant epilepsy. Epilepsia 2025; 66:303-314. [PMID: 39530840 DOI: 10.1111/epi.18177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE The cannabinoid cannabidiol has established antiseizure effects in drug-resistant epilepsies such as Dravet syndrome and Lennox-Gastaut syndrome. Amorfrutin 2, honokiol, and magnolol are structurally similar to cannabinoids (cannabis-like drugs) but derive from non-cannabis plants. We aimed to study the antiseizure potential of these compounds in various mouse seizure models. In addition, we aimed to characterize their molecular pharmacology at cannabinoid CB1 and CB2 receptors and at T-type calcium channels, which are known targets of the cannabinoids. METHODS Brain and plasma pharmacokinetic profiles were determined. Antiseizure activity was assessed against hyperthermia-induced seizures in a Scn1a+/- mouse model of Dravet syndrome. We then elaborated on the most promising compounds in the maximal electroshock (MES) test in mice and the Gabrb3+/D120N mouse model of Lennox-Gastaut syndrome. Fluorescence-based assays were used to examine modulatory activity at cannabinoid CB1 and CB2 receptors and T-type calcium channel subtypes CaV3.1, CaV3.2, and CaV3.3 overexpressed in mammalian cells. Automated patch-clamp electrophysiology was then used to confirm inhibitory activity on CaV3.1, CaV3.2, and CaV3.3 channels. RESULTS Magnolol and honokiol had high brain-to-plasma ratios (3.55 and 7.56, respectively), unlike amorfrutin 2 (0.06). Amorfrutin 2 and magnolol but not honokiol significantly increased the body temperature threshold at which Scn1a+/- mice had a generalized tonic-clonic seizure. Both amorfrutin 2 and magnolol significantly decreased the proportion of mice exhibiting hindlimb extension in the MES test. Furthermore, magnolol reduced the number and duration of atypical absence seizures in Gabrb3+/D120N mice. The three compounds inhibited all T-type calcium channel subtypes but were without specific activity at cannabinoid receptors. SIGNIFICANCE We show for the first time that amorfrutin 2 and magnolol display novel antiseizure activity in mouse drug-resistant epilepsy models. Our results justify future drug discovery campaigns around these structural scaffolds that aim to develop novel antiseizure drugs for intractable epilepsies.
Collapse
Affiliation(s)
- Ka Lai Yip
- Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Lambert Initiative for Cannabinoid Therapeutics, University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Michael Udoh
- Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Lambert Initiative for Cannabinoid Therapeutics, University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Laura A Sharman
- Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Lambert Initiative for Cannabinoid Therapeutics, University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Thomas Harman
- Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Lambert Initiative for Cannabinoid Therapeutics, University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Miguel Bedoya-Pérez
- Lambert Initiative for Cannabinoid Therapeutics, University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- School of Psychology, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Lyndsey L Anderson
- Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Lambert Initiative for Cannabinoid Therapeutics, University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Samuel D Banister
- Lambert Initiative for Cannabinoid Therapeutics, University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Jonathon C Arnold
- Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Lambert Initiative for Cannabinoid Therapeutics, University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Shybanov DE, Kukushkin ME, Grishin YK, Roznyatovsky VA, Tafeenko VA, Abo Qoura L, Pokrovsky VS, Yarovaya OI, Belyaevskaya SV, Volobueva AS, Esaulkova IL, Zarubaev VV, Beloglazkina EK. 1,3-Dipolar Cycloaddition of Nitrile Oxides and Nitrilimines to (-)-β-Caryophyllene: Stereoselective Synthesis of Polycyclic Derivatives and Their Biological Testing. Int J Mol Sci 2024; 25:11435. [PMID: 39518987 PMCID: PMC11545984 DOI: 10.3390/ijms252111435] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
The cycloaddition of nitrile oxides and nitrilimines to one or both of the C=C double bonds of caryophyllene is described. The possibility of introducing five-membered fused and spiro-linked heterocycles into the structure of sesquiterpenes by the 1,3-dipolar cycloaddition reactions of nitrile oxides and nitrilimines to caryophyllene was demonstrated. As a result of these reactions, pharmacophore fragments of isoxazoline and pyrazoline are introduced into the structure of caryophyllene, which leads to an increase in the conformational rigidity of the molecule. A complete stereochemical assignment of 1,3-dipolar cycloaddition adducts to caryophyllene was carried out. The study of antiviral and cytotoxic activity for some heterocyclic derivatives synthesized in this work revealed relatively high biological activity of previously little-studied cycloaddition adducts at the exocyclic C=CH2 bond of caryophyllene. The effect of substituents in the synthesized heterocycles on biological activity was demonstrated. Compounds with a good inhibitory effect on the H1N1 influenza virus were revealed. The activity of the compound was demonstrated up to 6 h post infection, and this could be due to slight inhibiting activity against viral neuraminidase, necessary at the stage of progeny virion budding.
Collapse
Affiliation(s)
- Dmitry E. Shybanov
- Department of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia; (D.E.S.); (M.E.K.); (Y.K.G.); (V.A.R.); (V.A.T.)
| | - Maxim E. Kukushkin
- Department of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia; (D.E.S.); (M.E.K.); (Y.K.G.); (V.A.R.); (V.A.T.)
| | - Yuri K. Grishin
- Department of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia; (D.E.S.); (M.E.K.); (Y.K.G.); (V.A.R.); (V.A.T.)
| | - Vitaly A. Roznyatovsky
- Department of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia; (D.E.S.); (M.E.K.); (Y.K.G.); (V.A.R.); (V.A.T.)
| | - Viktor A. Tafeenko
- Department of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia; (D.E.S.); (M.E.K.); (Y.K.G.); (V.A.R.); (V.A.T.)
| | - Louay Abo Qoura
- Research Institute of Molecular and Cellular Medicine, People’s Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (L.A.Q.); (V.S.P.)
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russian Federation, 115478 Moscow, Russia
| | - Vadim S. Pokrovsky
- Research Institute of Molecular and Cellular Medicine, People’s Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (L.A.Q.); (V.S.P.)
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russian Federation, 115478 Moscow, Russia
| | - Olga I. Yarovaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia;
| | - Svetlana V. Belyaevskaya
- Pasteur Research Institute of Epidemiology and Microbiology, 14 MiraStr, 197101 St. Petersburg, Russia (V.V.Z.)
| | - Alexandrina S. Volobueva
- Pasteur Research Institute of Epidemiology and Microbiology, 14 MiraStr, 197101 St. Petersburg, Russia (V.V.Z.)
| | - Iana L. Esaulkova
- Pasteur Research Institute of Epidemiology and Microbiology, 14 MiraStr, 197101 St. Petersburg, Russia (V.V.Z.)
| | - Vladimir V. Zarubaev
- Pasteur Research Institute of Epidemiology and Microbiology, 14 MiraStr, 197101 St. Petersburg, Russia (V.V.Z.)
| | - Elena K. Beloglazkina
- Department of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia; (D.E.S.); (M.E.K.); (Y.K.G.); (V.A.R.); (V.A.T.)
| |
Collapse
|
6
|
Xin Q, Xu F, Ma Z, Wu J. β-Caryophyllene mitigates ischemic stroke-induced white matter lesions by inhibiting pyroptosis. Exp Cell Res 2024; 442:114214. [PMID: 39159913 DOI: 10.1016/j.yexcr.2024.114214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
β-Caryophyllene (BCP), a selective agonist for cannabinoid receptor 2 (CB2R), has demonstrated promising protective effects in various pathological conditions. However, the neuroprotective effects of BCP on white matter damage induced by ischemic stroke have not been elucidated previously. In this study, we find that BCP not only improves sensorimotor and cognitive function via CB2R but also mitigates white matter lesions in mice following ischemic stroke. Furthermore, BCP enhances the viability of MO3.13 oligodendrocytes after oxygen-glucose deprivation and reoxygenation (OGD/R), attenuating OGD/R-induced cellular damage and pyroptosis. Notably, these protective effects of BCP are partially enhanced by the NLRP3 inhibitor MCC950 and counteracted by the NLRP3 activator nigericin. In addition, nigericin significantly exacerbates neurological outcomes and increases white matter lesions following BCP treatment in middle cerebral artery occlusion (MCAO) mice. These results suggest that BCP may ameliorate neurological deficits and white matter damage induced by cerebral ischemia through inhibiting NLRP3-mediated pyroptosis.
Collapse
Affiliation(s)
- Qing Xin
- Institute of Brain Science and Diseases, And Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China; Institute of Neurobiology, Jining Medical University, Jining, 272000, China
| | - Fei Xu
- Department of Vascular Surgery, Jining NO.1 People's Hospital, Jining, 272000, China
| | - Zegang Ma
- Institute of Brain Science and Diseases, And Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Jie Wu
- Institute of Brain Science and Diseases, And Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
7
|
Mello F, Sampaio TB, Neuberger B, Mallmann MP, Fighera MR, Royes LFF, Furian AF, Larrick JW, Oliveira MS. Electroencephalographic and Behavioral Effects of Intranasal Administration of a Na +, K +-ATPase-Activating Antibody after Status Epilepticus. ACS Chem Neurosci 2024; 15:2695-2702. [PMID: 38989663 PMCID: PMC11311123 DOI: 10.1021/acschemneuro.4c00141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/11/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024] Open
Abstract
Status epilepticus (SE) is a medical emergency associated with high mortality and morbidity. Na+, K+-ATPase, is a promising therapeutic target for SE, given its critical role in regulation of neuron excitability and cellular homeostasis. We investigated the effects of a Na+, K+-ATPase-activating antibody (DRRSAb) on short-term electrophysiological and behavioral consequences of pilocarpine-induced SE. Rats were submitted to pilocarpine-induced SE, followed by intranasal administration (2 μg/nostril). The antibody increased EEG activity following SE, namely, EEG power in theta, beta, and gamma frequency bands, assessed by quantitative analysis of EEG power spectra. One week later, DRRSAb-treated animals displayed less behavioral hyperreactivity in pick-up tests and better performance in novel object recognition tests, indicating that the intranasal administration of this Na+, K+-ATPase activator immediately after SE improves behavioral outcomes at a later time point. These results suggest that Na+, K+-ATPase activation warrants further investigation as an adjunctive therapeutic strategy for SE.
Collapse
Affiliation(s)
- Fernanda
Kulinski Mello
- Graduate
Program in Pharmacology, Federal University
of Santa Maria, Santa Maria 97105-900, Brazil
| | - Tuane Bazanella Sampaio
- Graduate
Program in Pharmacology, Federal University
of Santa Maria, Santa Maria 97105-900, Brazil
| | - Bruna Neuberger
- Graduate
Program in Pharmacology, Federal University
of Santa Maria, Santa Maria 97105-900, Brazil
| | - Michele Pereira Mallmann
- Graduate
Program in Pharmacology, Federal University
of Santa Maria, Santa Maria 97105-900, Brazil
| | - Michele Rechia Fighera
- Department
of Neuropsychiatry, Federal University of
Santa Maria, Santa Maria 97105-900, Brazil
| | - Luiz Fernando Freire Royes
- Department
of Sports Methods and Techniques, Federal
University of Santa Maria, Santa
Maria 97105-900, Brazil
| | - Ana Flávia Furian
- Graduate
Program in Pharmacology, Federal University
of Santa Maria, Santa Maria 97105-900, Brazil
| | - James W. Larrick
- Panorama
Research Institute, 1230
Bordeaux Dr., Sunnyvale, California 94089, United States
| | - Mauro Schneider Oliveira
- Graduate
Program in Pharmacology, Federal University
of Santa Maria, Santa Maria 97105-900, Brazil
| |
Collapse
|
8
|
Mallmann MP, Oliveira MS. Beta-caryophyllene in psychiatric and neurological diseases: Role of blood-brain barrier. VITAMINS AND HORMONES 2024; 126:125-168. [PMID: 39029971 DOI: 10.1016/bs.vh.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Beta-caryophyllene is an abundant terpene in cannabis, cinnamon, black pepper, cloves, and citrus fruit, delivering a striking, woody-spicy, like cloves and a sweet fruity aroma. Beta-caryophyllene is a Food and Drug Administration-approved food additive with Generally Recognized as Safe status. Interestingly, several biologic activities have been described for beta-caryophyllene, including anti-inflammatory and analgesic effects, neuroprotection against cerebral ischemia and neuronal injury, protection of neurovascular unit against oxidative damage, glial activation and neuroinflammation and anticonvulsant effects. In this chapter, we intend to review the beneficial effects of beta-caryophyllene in the context of psychiatric and neurological diseases. Also, we will analyze the possibility that the blood-brain-barrier may be a central target underlying the beneficial actions of beta-caryophyllene.
Collapse
|
9
|
Devinsky O, Jones NA, Cunningham MO, Jayasekera BAP, Devore S, Whalley BJ. Cannabinoid treatments in epilepsy and seizure disorders. Physiol Rev 2024; 104:591-649. [PMID: 37882730 DOI: 10.1152/physrev.00049.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023] Open
Abstract
Cannabis has been used to treat convulsions and other disorders since ancient times. In the last few decades, preclinical animal studies and clinical investigations have established the role of cannabidiol (CBD) in treating epilepsy and seizures and support potential therapeutic benefits for cannabinoids in other neurological and psychiatric disorders. Here, we comprehensively review the role of cannabinoids in epilepsy. We briefly review the diverse physiological processes mediating the central nervous system response to cannabinoids, including Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol, and terpenes. Next, we characterize the anti- and proconvulsive effects of cannabinoids from animal studies of acute seizures and chronic epileptogenesis. We then review the clinical literature on using cannabinoids to treat epilepsy, including anecdotal evidence and case studies as well as the more recent randomized controlled clinical trials that led to US Food and Drug Administration approval of CBD for some types of epilepsy. Overall, we seek to evaluate our current understanding of cannabinoids in epilepsy and focus future research on unanswered questions.
Collapse
Affiliation(s)
- Orrin Devinsky
- Department of Neurology, NYU Grossman School of Medicine, New York, New York, United States
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, New York, United States
- Department of Psychiatry, NYU Grossman School of Medicine, New York, New York, United States
| | | | - Mark O Cunningham
- Discipline of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - B Ashan P Jayasekera
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Neurosurgery, Royal Victoria Hospital, Newcastle upon Tyne, United Kingdom
| | - Sasha Devore
- Department of Neurology, NYU Grossman School of Medicine, New York, New York, United States
| | | |
Collapse
|
10
|
Neuroprotective effect and herbal-drug pharmacokinetic interaction of Gastrodia elata extract on valproic acid. Biomed Pharmacother 2022; 156:113938. [DOI: 10.1016/j.biopha.2022.113938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 11/19/2022] Open
|
11
|
Miyata S. Glial functions in the blood-brain communication at the circumventricular organs. Front Neurosci 2022; 16:991779. [PMID: 36278020 PMCID: PMC9583022 DOI: 10.3389/fnins.2022.991779] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
The circumventricular organs (CVOs) are located around the brain ventricles, lack a blood-brain barrier (BBB) and sense blood-derived molecules. This review discusses recent advances in the importance of CVO functions, especially glial cells transferring periphery inflammation signals to the brain. The CVOs show size-limited vascular permeability, allowing the passage of molecules with molecular weight <10,000. This indicates that the lack of an endothelial cell barrier does not mean the free movement of blood-derived molecules into the CVO parenchyma. Astrocytes and tanycytes constitute a dense barrier at the distal CVO subdivision, preventing the free diffusion of blood-derived molecules into neighboring brain regions. Tanycytes in the CVOs mediate communication between cerebrospinal fluid and brain parenchyma via transcytosis. Microglia and macrophages of the CVOs are essential for transmitting peripheral information to other brain regions via toll-like receptor 2 (TLR2). Inhibition of TLR2 signaling or depletion of microglia and macrophages in the brain eliminates TLR2-dependent inflammatory responses. In contrast to TLR2, astrocytes and tanycytes in the CVOs of the brain are crucial for initiating lipopolysaccharide (LPS)-induced inflammatory responses via TLR4. Depletion of microglia and macrophages augments LPS-induced fever and chronic sickness responses. Microglia and macrophages in the CVOs are continuously activated, even under normal physiological conditions, as they exhibit activated morphology and express the M1/M2 marker proteins. Moreover, the microglial proliferation occurs in various regions, such as the hypothalamus, medulla oblongata, and telencephalon, with a marked increase in the CVOs, due to low-dose LPS administration, and after high-dose LPS administration, proliferation is seen in most brain regions, except for the cerebral cortex and hippocampus. A transient increase in the microglial population is beneficial during LPS-induced inflammation for attenuating sickness response. Transient receptor potential receptor vanilloid 1 expressed in astrocytes and tanycytes of the CVOs is responsible for thermoregulation upon exposure to a warm environment less than 37°C. Alternatively, Nax expressed in astrocytes and tanycytes of the CVOs is crucial for maintaining body fluid homeostasis. Thus, recent findings indicate that glial cells in the brain CVOs are essential for initiating neuroinflammatory responses and maintaining body fluid and thermal homeostasis.
Collapse
|