1
|
Edgecombe J, Urban L, Todd EV, Gemmell NJ. Might Gene Duplication and Neofunctionalization Contribute to the Sexual Lability Observed in Fish? Sex Dev 2021; 15:122-133. [PMID: 34167118 DOI: 10.1159/000515425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/24/2021] [Indexed: 11/19/2022] Open
Abstract
Sex determination and differentiation varies widely across vertebrates, but is most dramatically diverse in fishes. Among fishes sex reversal and sex change are observed in 41 teleost families spanning 7 orders. These sex-changing fish perhaps highlight better than any other system that sex determination is not the narrow and fixed construct we once thought, but a plastic trait that is better viewed as a reaction norm. However, while this stunning transformation is increasingly understood, a fundamental question arises, which is why some fish species have retained this inherent plasticity in sexual fate, while others have not? Here, we explore our current understanding of sex change in fish, some of the factors that permit and constrain sex reversal, and posit that gene duplication and neofunctionalization contribute to the sexual lability observed in fish.
Collapse
Affiliation(s)
- Jonika Edgecombe
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Lara Urban
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Erica V Todd
- School of Life and Environmental Sciences, Deakin University, Queenscliff, Victoria, Australia
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Wilkins AS. A striking example of developmental bias in an evolutionary process: The "domestication syndrome". Evol Dev 2019; 22:143-153. [PMID: 31545016 DOI: 10.1111/ede.12319] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The question of whether "developmental bias" can influence evolution is still controversial, despite much circumstantial evidence and a good theoretical argument. Here, I will argue that the domestication of mammalian species, which took place independently more than two dozen times, provides a particularly convincing example of developmental bias in evolution. The singular finding that underlies this claim is the repeated occurrence in domesticated mammals of a set of distinctive traits, none of which were deliberately selected. This phenomenon has been termed "the domestication syndrome". In this article, I will: (a) describe the properties of the domestication syndrome; (b) show how it can be explained in terms of the operation of a specific genetic regulatory network, that which governs neural crest cell development; and (c) discuss Dmitry Belyaev's idea of "destabilizing selection," which holds that selecting for a new behavior often entails neuroendocrine alterations that alter many aspects of development. Finally, I will argue for the potential general significance of such destabilizing selection, in combination with developmental bias, in animal evolution.
Collapse
Affiliation(s)
- Adam S Wilkins
- Institute of Theoretical Biology, Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
3
|
Developmental Bias and Evolution: A Regulatory Network Perspective. Genetics 2018; 209:949-966. [PMID: 30049818 DOI: 10.1534/genetics.118.300995] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/19/2018] [Indexed: 01/12/2023] Open
Abstract
Phenotypic variation is generated by the processes of development, with some variants arising more readily than others-a phenomenon known as "developmental bias." Developmental bias and natural selection have often been portrayed as alternative explanations, but this is a false dichotomy: developmental bias can evolve through natural selection, and bias and selection jointly influence phenotypic evolution. Here, we briefly review the evidence for developmental bias and illustrate how it is studied empirically. We describe recent theory on regulatory networks that explains why the influence of genetic and environmental perturbation on phenotypes is typically not uniform, and may even be biased toward adaptive phenotypic variation. We show how bias produced by developmental processes constitutes an evolving property able to impose direction on adaptive evolution and influence patterns of taxonomic and phenotypic diversity. Taking these considerations together, we argue that it is not sufficient to accommodate developmental bias into evolutionary theory merely as a constraint on evolutionary adaptation. The influence of natural selection in shaping developmental bias, and conversely, the influence of developmental bias in shaping subsequent opportunities for adaptation, requires mechanistic models of development to be expanded and incorporated into evolutionary theory. A regulatory network perspective on phenotypic evolution thus helps to integrate the generation of phenotypic variation with natural selection, leaving evolutionary biology better placed to explain how organisms adapt and diversify.
Collapse
|
4
|
Crombach A, Wotton KR, Jiménez-Guri E, Jaeger J. Gap Gene Regulatory Dynamics Evolve along a Genotype Network. Mol Biol Evol 2016; 33:1293-307. [PMID: 26796549 PMCID: PMC4839219 DOI: 10.1093/molbev/msw013] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Developmental gene networks implement the dynamic regulatory mechanisms that pattern and shape the organism. Over evolutionary time, the wiring of these networks changes, yet the patterning outcome is often preserved, a phenomenon known as “system drift.” System drift is illustrated by the gap gene network—involved in segmental patterning—in dipteran insects. In the classic model organism Drosophila melanogaster and the nonmodel scuttle fly Megaselia abdita, early activation and placement of gap gene expression domains show significant quantitative differences, yet the final patterning output of the system is essentially identical in both species. In this detailed modeling analysis of system drift, we use gene circuits which are fit to quantitative gap gene expression data in M. abdita and compare them with an equivalent set of models from D. melanogaster. The results of this comparative analysis show precisely how compensatory regulatory mechanisms achieve equivalent final patterns in both species. We discuss the larger implications of the work in terms of “genotype networks” and the ways in which the structure of regulatory networks can influence patterns of evolutionary change (evolvability).
Collapse
Affiliation(s)
- Anton Crombach
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Karl R Wotton
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Eva Jiménez-Guri
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Johannes Jaeger
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
5
|
Wilkins AS. Waddington’s Unfinished Critique of Neo-Darwinian Genetics: Then and Now. ACTA ACUST UNITED AC 2015. [DOI: 10.1162/biot.2008.3.3.224] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
6
|
Abstract
Teleost fishes are the most species-rich clade of vertebrates and feature an overwhelming diversity of sex-determining mechanisms, classically grouped into environmental and genetic systems. Here, we review the recent findings in the field of sex determination in fish. In the past few years, several new master regulators of sex determination and other factors involved in sexual development have been discovered in teleosts. These data point toward a greater genetic plasticity in generating the male and female sex than previously appreciated and implicate novel gene pathways in the initial regulation of the sexual fate. Overall, it seems that sex determination in fish does not resort to a single genetic cascade but is rather regulated along a continuum of environmental and heritable factors.
Collapse
|
7
|
Marchand G, Huynh-Thu VA, Kane NC, Arribat S, Varès D, Rengel D, Balzergue S, Rieseberg LH, Vincourt P, Geurts P, Vignes M, Langlade NB. Bridging physiological and evolutionary time-scales in a gene regulatory network. THE NEW PHYTOLOGIST 2014; 203:685-696. [PMID: 24786523 DOI: 10.1111/nph.12818] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 03/17/2014] [Indexed: 06/03/2023]
Abstract
Gene regulatory networks (GRNs) govern phenotypic adaptations and reflect the trade-offs between physiological responses and evolutionary adaptation that act at different time-scales. To identify patterns of molecular function and genetic diversity in GRNs, we studied the drought response of the common sunflower, Helianthus annuus, and how the underlying GRN is related to its evolution. We examined the responses of 32,423 expressed sequences to drought and to abscisic acid (ABA) and selected 145 co-expressed transcripts. We characterized their regulatory relationships in nine kinetic studies based on different hormones. From this, we inferred a GRN by meta-analyses of a Gaussian graphical model and a random forest algorithm and studied the genetic differentiation among populations (FST ) at nodes. We identified two main hubs in the network that transport nitrate in guard cells. This suggests that nitrate transport is a critical aspect of the sunflower physiological response to drought. We observed that differentiation of the network genes in elite sunflower cultivars is correlated with their position and connectivity. This systems biology approach combined molecular data at different time-scales and identified important physiological processes. At the evolutionary level, we propose that network topology could influence responses to human selection and possibly adaptation to dry environments.
Collapse
Affiliation(s)
- Gwenaëlle Marchand
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | - Vân Anh Huynh-Thu
- Department of Electrical Engineering and Computer Science and GIGA-R, Systems and Modeling, University of Liège, Liège, Belgium
| | - Nolan C Kane
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Sandrine Arribat
- INRA, Unité de Recherche en Génomique Végétale (URGV), UMR1165 - Université d'Evry Val d'Essonne - ERL CNRS 8196, CP 5708, F-91057, Evry Cedex, France
| | - Didier Varès
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | - David Rengel
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | - Sandrine Balzergue
- INRA, Unité de Recherche en Génomique Végétale (URGV), UMR1165 - Université d'Evry Val d'Essonne - ERL CNRS 8196, CP 5708, F-91057, Evry Cedex, France
| | - Loren H Rieseberg
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Patrick Vincourt
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | - Pierre Geurts
- Department of Electrical Engineering and Computer Science and GIGA-R, Systems and Modeling, University of Liège, Liège, Belgium
| | - Matthieu Vignes
- INRA, Mathématiques et Informatique Appliquées (MIA), UPR875, F-31326, Castanet-Tolosan, France
| | - Nicolas B Langlade
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| |
Collapse
|
8
|
Valenzuela N, Neuwald JL, Literman R. Transcriptional evolution underlying vertebrate sexual development. Dev Dyn 2012; 242:307-19. [DOI: 10.1002/dvdy.23897] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2012] [Indexed: 12/30/2022] Open
Affiliation(s)
- Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal Biology; Iowa State University; Ames; Iowa
| | - Jennifer L. Neuwald
- Department of Ecology, Evolution, and Organismal Biology; Iowa State University; Ames; Iowa
| | - Robert Literman
- Department of Ecology, Evolution, and Organismal Biology; Iowa State University; Ames; Iowa
| |
Collapse
|
9
|
Uller T, Helanterä H. From the origin of sex-determining factors to the evolution of sex-determining systems. QUARTERLY REVIEW OF BIOLOGY 2011; 86:163-80. [PMID: 21954700 DOI: 10.1086/661118] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Sex determination is typically classified as either genotypic or environmental. However, this dichotomy obscures the developmental origin and evolutionary modification of determinants of sex, and therefore hinders an understanding of the processes that generates diversity in sex-determining systems. Recent research on reptiles and fish emphasizes that sex determination is a multifactorial regulatory process that is best understood as a threshold dichotomy rather than as the result of genetically inherited triggers of development. Here we critically assess the relationship between the developmental origin of sex-determining factors and evolutionary transitions in sex-determining systems. Our perspective emphasizes the importance of both genetic and nongenetic causes in evolution of sex determination and may help to generate predictions with respect to the evolutionary patterns of sex-determining systems and the underlying diversity of developmental and genetic regulatory networks.
Collapse
Affiliation(s)
- Tobias Uller
- Edward Grey Institute, Department of Zoology, University of Oxford Oxford OX1 3PS United Kingdom.
| | | |
Collapse
|
10
|
Lamm E. Conceptual and Methodological Biases in Network Models. Ann N Y Acad Sci 2009; 1178:291-304. [DOI: 10.1111/j.1749-6632.2009.05009.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
High nucleotide divergence in developmental regulatory genes contrasts with the structural elements of olfactory pathways in caenorhabditis. Genetics 2008; 181:1387-97. [PMID: 19001295 DOI: 10.1534/genetics.107.082651] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Almost all organismal function is controlled by pathways composed of interacting genetic components. The relationship between pathway structure and the evolution of individual pathway components is not completely understood. For the nematode Caenorhabditis elegans, chemosensory pathways regulate critical aspects of an individual's life history and development. To help understand how olfaction evolves in Caenorhabditis and to examine patterns of gene evolution within transduction pathways in general, we analyzed nucleotide variation within and between species across two well-characterized olfactory pathways, including regulatory genes controlling the fate of the cells in which the pathways are expressed. In agreement with previous studies, we found much higher levels of polymorphism within C. remanei than within the related species C. elegans and C. briggsae. There are significant differences in the rates of nucleotide evolution for genes across the two pathways but no particular association between evolutionary rate and gene position, suggesting that the evolution of functional pathways must be considered within the context of broader gene network structure. However, developmental regulatory genes show both higher levels of divergence and polymorphism than the structural genes of the pathway. These results show that, contrary to the emerging paradigm in the evolution of development, important structural changes can accumulate in transcription factors.
Collapse
|
12
|
Carroll SM, Bridgham JT, Thornton JW. Evolution of hormone signaling in elasmobranchs by exploitation of promiscuous receptors. Mol Biol Evol 2008; 25:2643-52. [PMID: 18799714 DOI: 10.1093/molbev/msn204] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Specific interactions among proteins, nucleic acids, and metabolites drive virtually all cellular functions and underlie phenotypic complexity and diversity. Despite the fundamental importance of interactions, the mechanisms and dynamics by which they evolve are poorly understood. Here we describe novel interactions between a lineage-specific hormone and its receptors in elasmobranchs, a subclass of cartilaginous fishes, and infer how these associations evolved using phylogenetic and protein structural analyses. The hormone 1alpha-hydroxycorticosterone (1alpha-B) is a physiologically important steroid synthesized only in elasmobranchs. We show that 1alpha-B modulates gene expression in vitro by activating two paralogous intracellular transcription factors, the mineralocorticoid receptor (MR) and glucocorticoid receptor (GR), in the little skate Leucoraja erinacea; MR serves as a high-sensitivity and GR as a low-sensitivity receptor. Using functional analysis of extant and resurrected ancestral proteins, we show that receptor sensitivity to 1alpha-B evolved millions of years before the hormone itself evolved. The 1alpha-B differs from more ancient corticosteroids only by the addition of a hydroxyl group; the three-dimensional structure of the ancestral receptor shows that the ligand pocket contained ample unoccupied space to accommodate this moiety. Our findings indicate that the interactions between 1alpha-B and elasmobranch GR and MR proteins evolved by molecular exploitation: a novel hormone recruited into new functional partnerships two ancient receptors that had previously interacted with other ligands. The ancestral receptor's promiscuous capacity to fortuitously bind compounds that are slight structural variants of its original ligands set the stage for the evolution of this new interaction.
Collapse
|
13
|
|
14
|
Abstract
Although numerous investigators assume that the global features of genetic networks are moulded by natural selection, there has been no formal demonstration of the adaptive origin of any genetic network. This Analysis shows that many of the qualitative features of known transcriptional networks can arise readily through the non-adaptive processes of genetic drift, mutation and recombination, raising questions about whether natural selection is necessary or even sufficient for the origin of many aspects of gene-network topologies. The widespread reliance on computational procedures that are devoid of population-genetic details to generate hypotheses for the evolution of network configurations seems to be unjustified.
Collapse
Affiliation(s)
- Michael Lynch
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.
| |
Collapse
|
15
|
Lynch M. The frailty of adaptive hypotheses for the origins of organismal complexity. Proc Natl Acad Sci U S A 2007; 104 Suppl 1:8597-604. [PMID: 17494740 PMCID: PMC1876435 DOI: 10.1073/pnas.0702207104] [Citation(s) in RCA: 449] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The vast majority of biologists engaged in evolutionary studies interpret virtually every aspect of biodiversity in adaptive terms. This narrow view of evolution has become untenable in light of recent observations from genomic sequencing and population-genetic theory. Numerous aspects of genomic architecture, gene structure, and developmental pathways are difficult to explain without invoking the nonadaptive forces of genetic drift and mutation. In addition, emergent biological features such as complexity, modularity, and evolvability, all of which are current targets of considerable speculation, may be nothing more than indirect by-products of processes operating at lower levels of organization. These issues are examined in the context of the view that the origins of many aspects of biological diversity, from gene-structural embellishments to novelties at the phenotypic level, have roots in nonadaptive processes, with the population-genetic environment imposing strong directionality on the paths that are open to evolutionary exploitation.
Collapse
Affiliation(s)
- Michael Lynch
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
16
|
Katz PS. Evolution and development of neural circuits in invertebrates. Curr Opin Neurobiol 2006; 17:59-64. [PMID: 17174546 DOI: 10.1016/j.conb.2006.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Accepted: 12/07/2006] [Indexed: 01/06/2023]
Abstract
Developmental mechanisms can shed light on how evolutionary diversity has arisen. Invertebrate nervous systems offer a wealth of diverse structures and functions from which to relate development to evolution. Individual homologous neurons have been shown to have distinct roles in species with different behaviors. In addition, specific neurons have been lost or gained in some phylogenetic lineages. The ability to address the neural basis of behavior at the cellular level in invertebrates has facilitated discoveries showing that species-specific behavior can arise from differences in synaptic strength, in neuronal structure and in neuromodulation. The mechanisms involved in the development of neural circuits lead to these differences across species.
Collapse
Affiliation(s)
- Paul S Katz
- Department of Biology, Georgia State University, PO Box 4010, Atlanta, GA 30302-4010, USA.
| |
Collapse
|
17
|
Salazar-Ciudad I. On the origins of morphological disparity and its diverse developmental bases. Bioessays 2006; 28:1112-22. [PMID: 17041901 DOI: 10.1002/bies.20482] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It has been repeatedly claimed that morphological novelties are an unresolved problem in evolutionary theory. Several definitions of novelty exist but most emphasize that novelties imply qualitative changes on the phenotype and not the quantitative gradual changes favored in the neo-Darwinian approach to evolutionary theory. This article discusses how the concept of novelty is used to describe aspects of morphological evolution that are not satisfactorily explained under the modern synthesis. In this article, it is suggested that there is a repertoire of morphological changes rather than two discrete qualitatively different types of morphological change. How these different types of morphological changes can be understood from the diversity of developmental mechanisms existing in animal development is explored. Specifically, it is proposed that animal morphology and its variation can be understood from the spatial patterns produced by a set of basic developmental mechanisms and their combination. Some specific examples of these kinds of morphologic changes are explained.
Collapse
Affiliation(s)
- Isaac Salazar-Ciudad
- Developmental Biology Program, Institute of Biotechnology, PO Box 56, FIN-00014, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
18
|
Schubert M, Escriva H, Xavier-Neto J, Laudet V. Amphioxus and tunicates as evolutionary model systems. Trends Ecol Evol 2006; 21:269-77. [PMID: 16697913 DOI: 10.1016/j.tree.2006.01.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 01/13/2006] [Accepted: 01/31/2006] [Indexed: 10/25/2022]
Abstract
One important question in evolutionary biology concerns the origin of vertebrates from invertebrates. The current consensus is that the proximate ancestor of vertebrates was an invertebrate chordate. Today, the invertebrate chordates comprise cephalochordates (amphioxus) and tunicates (each a subphylum in the phylum Chordata, which also includes the vertebrate subphylum). It was widely accepted that, within the chordates, tunicates represent the sister group of a clade of cephalochordates plus vertebrates. However, recent studies suggest that the evolutionary positions of tunicates and cephalochordates should be reversed, the implications of which are considered here. We also review the two major groups of invertebrate chordates and compare relative advantages (and disadvantages) of each as model systems for elucidating the origin of the vertebrates.
Collapse
Affiliation(s)
- Michael Schubert
- Laboratoire de Biologie Moléculaire de la Cellule, CNRS-UMR5161, INRA LA 1237, IFR 128 BioSciences Lyon-Gerland, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | | | | | | |
Collapse
|