1
|
Guo H, Ali T, Li S. Neural circuits mediating chronic stress: Implications for major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111280. [PMID: 39909171 DOI: 10.1016/j.pnpbp.2025.111280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/18/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
Major depressive disorder (MDD), also known as depression, is a prevalent mental disorder that leads to severe disease burden worldwide. Over the past two decades, significant progress has been made in understanding the pathogenesis and developing novel treatments for MDD. Among the complicated etiologies of MDD, chronic stress is a major risk factor. Exploring the underlying brain circuit mechanisms of chronic stress regulation has been an area of active research for recent years. A growing body of preclinical and clinical research has revealed that abnormalities in the brain circuits are closely associated with failures in coping with stress in depressed individuals. Nevertheless, neural circuit mechanisms underlying chronic stress processing and the onset of depression remain a major puzzle. Here, we review recent literature focusing on circuit- and cell-type-specific dissection of depression-like behaviors in chronic stress-related animal models of MDD and outline the key questions.
Collapse
Affiliation(s)
- Hongling Guo
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China.
| | - Tahir Ali
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Shupeng Li
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China; Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Tamura Y, Maeda S, Takahashi H, Aoto Y, Matsuki T, Seki K. GABAergic circuit interaction between central amygdala and bed nucleus of the stria terminalis in lipopolysaccharide-induced despair-like behavior. Physiol Behav 2024; 288:114753. [PMID: 39551417 DOI: 10.1016/j.physbeh.2024.114753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Hyperexcitability of central amygdala (CeA) induces depressive symptoms. The bed nucleus of the stria terminalis (BNST) receives GABAergic input from the CeA. However, it remains unclear whether the GABAergic neurons in the CeA projecting to BNST contribute to major depression. Here, we investigated the roles of GABAergic neurons in CeA and BNST in lipopolysaccharide (LPS)-induced despair-like behavior. We generated adeno-associated virus vectors (AAV) carrying shRNA against Gad67 to knock down GAD67 expression in CeA (Gad67-KD-CeA) or BNST (Gad67-KD-BNST) in C57BL/6J male mice. Despair-like behavior was assessed by tail suspension test (TST) 24 h after LPS administration. Saline-treated Gad67-KD-CeA mice exhibited longer immobility during TST than saline-treated AAV-injected control (AAV-Cont) mice. Although LPS increased immobility time in AAV-Cont mice, it did not affect immobility time in Gad67-KD-CeA mice. While LPS did not affect the immobility time in Gad67-KD-BNST mice, it increased immobility time in AAV-Cont mice. We injected GFP-expressing AAV with a Dlx promoter, specifically expressed in GABAergic neurons, into CeA, and FluoroGold, a retrograde neuronal tracer, into the BNST. GFP signals associated with CeA GABAergic neurons were detected in the BNST, contacting c-fos and GAD67-expressed cells following LPS. We detected the FluoroGold signals in GAD67- and c-fos-expressed neurons in the CeA after LPS administration. Bilateral intra-BNST injection of muscimol (2 pmol), a GABAA receptor agonist, increased immobility time during TST. These findings suggest that LPS-decreased GABAergic activity in the CeA may lead to disinhibition of GABAergic interneurons in the BNST, resulting in GABAA receptor activation and subsequently induces despair-like behavior.
Collapse
Affiliation(s)
- Yuka Tamura
- Department of Pharmacology, School of Pharmaceutical Science, Ohu University, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan
| | - Sakura Maeda
- Department of Pharmacology, School of Pharmaceutical Science, Ohu University, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan
| | - Haruna Takahashi
- Department of Pharmacology, School of Pharmaceutical Science, Ohu University, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan
| | - Yuta Aoto
- Department of Pharmacology, School of Pharmaceutical Science, Ohu University, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan
| | - Tohru Matsuki
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi 480-0392, Japan.
| | - Kenjiro Seki
- Department of Pharmacology, School of Pharmaceutical Science, Ohu University, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan.
| |
Collapse
|
3
|
Maita I, Bazer A, Chae K, Parida A, Mirza M, Sucher J, Phan M, Liu T, Hu P, Soni R, Roepke TA, Samuels BA. Chemogenetic activation of corticotropin-releasing factor-expressing neurons in the anterior bed nucleus of the stria terminalis reduces effortful motivation behaviors. Neuropsychopharmacology 2024; 49:377-385. [PMID: 37452139 PMCID: PMC10724138 DOI: 10.1038/s41386-023-01646-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
Corticotropin-releasing factor (CRF) in the anterior bed nucleus of the stria terminalis (aBNST) is associated with chronic stress and avoidance behavior. However, CRF + BNST neurons project to reward- and motivation-related brain regions, suggesting a potential role in motivated behavior. We used chemogenetics to selectively activate CRF+ aBNST neurons in male and female CRF-ires-Cre mice during an effort-related choice task and a concurrent choice task. In both tasks, mice were given the option either to exert effort for high value rewards or to choose freely available low value rewards. Acute chemogenetic activation of CRF+ aBNST neurons reduced barrier climbing for a high value reward in the effort-related choice task in both males and females. Furthermore, acute chemogenetic activation of CRF+ aBNST neurons also reduced effortful lever pressing in high-performing males in the concurrent choice task. These data suggest a novel role for CRF+ aBNST neurons in effort-based decision and motivation behaviors.
Collapse
Affiliation(s)
- Isabella Maita
- Department of Psychology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Neuroscience Graduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Allyson Bazer
- Department of Psychology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Behavioral and Systems Neuroscience Graduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Kiyeon Chae
- Department of Psychology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Amlaan Parida
- Department of Psychology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Mikyle Mirza
- Department of Psychology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Jillian Sucher
- Department of Psychology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Behavioral and Systems Neuroscience Graduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Mimi Phan
- Department of Psychology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Tonia Liu
- Department of Psychology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Pu Hu
- Department of Psychology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Ria Soni
- Department of Psychology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Troy A Roepke
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Benjamin Adam Samuels
- Department of Psychology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
4
|
van de Poll Y, Cras Y, Ellender TJ. The neurophysiological basis of stress and anxiety - comparing neuronal diversity in the bed nucleus of the stria terminalis (BNST) across species. Front Cell Neurosci 2023; 17:1225758. [PMID: 37711509 PMCID: PMC10499361 DOI: 10.3389/fncel.2023.1225758] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/03/2023] [Indexed: 09/16/2023] Open
Abstract
The bed nucleus of the stria terminalis (BNST), as part of the extended amygdala, has become a region of increasing interest regarding its role in numerous human stress-related psychiatric diseases, including post-traumatic stress disorder and generalized anxiety disorder amongst others. The BNST is a sexually dimorphic and highly complex structure as already evident by its anatomy consisting of 11 to 18 distinct sub-nuclei in rodents. Located in the ventral forebrain, the BNST is anatomically and functionally connected to many other limbic structures, including the amygdala, hypothalamic nuclei, basal ganglia, and hippocampus. Given this extensive connectivity, the BNST is thought to play a central and critical role in the integration of information on hedonic-valence, mood, arousal states, processing emotional information, and in general shape motivated and stress/anxiety-related behavior. Regarding its role in regulating stress and anxiety behavior the anterolateral group of the BNST (BNSTALG) has been extensively studied and contains a wide variety of neurons that differ in their electrophysiological properties, morphology, spatial organization, neuropeptidergic content and input and output synaptic organization which shape their activity and function. In addition to this great diversity, further species-specific differences are evident on multiple levels. For example, classic studies performed in adult rat brain identified three distinct neuron types (Type I-III) based on their electrophysiological properties and ion channel expression. Whilst similar neurons have been identified in other animal species, such as mice and non-human primates such as macaques, cross-species comparisons have revealed intriguing differences such as their comparative prevalence in the BNSTALG as well as their electrophysiological and morphological properties, amongst other differences. Given this tremendous complexity on multiple levels, the comprehensive elucidation of the BNSTALG circuitry and its role in regulating stress/anxiety-related behavior is a major challenge. In the present Review we bring together and highlight the key differences in BNSTALG structure, functional connectivity, the electrophysiological and morphological properties, and neuropeptidergic profiles of BNSTALG neurons between species with the aim to facilitate future studies of this important nucleus in relation to human disease.
Collapse
Affiliation(s)
- Yana van de Poll
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Yasmin Cras
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Tommas J. Ellender
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Jacobs JT, Maior RS, Waguespack HF, Campos-Rodriguez C, Forcelli PA, Malkova L. Pharmacological Inactivation of the Bed Nucleus of the Stria Terminalis Increases Affiliative Social Behavior in Rhesus Macaques. J Neurosci 2023; 43:3331-3338. [PMID: 37012054 PMCID: PMC10162455 DOI: 10.1523/jneurosci.2090-22.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/06/2023] [Accepted: 02/27/2023] [Indexed: 04/05/2023] Open
Abstract
The bed nucleus of the stria terminalis (BNST) has been implicated in a variety of social behaviors, including aggression, maternal care, mating behavior, and social interaction. Limited evidence from rodent studies suggests that activation of the BNST results in a decrease in social interaction between unfamiliar animals. The role of the BNST in social interaction in primates remains wholly unexamined. Nonhuman primates provide a valuable model for studying social behavior because of both their rich social repertoire and neural substrates of behavior with high translational relevance to humans. To test the hypothesis that the primate BNST is a critical modulator of social behavior, we performed intracerebral microinfusions of the GABAA agonist muscimol to transiently inactivate the BNST in male macaque monkeys. We measured changes in social interaction with a familiar same-sex conspecific. Inactivation of the BNST resulted in significant increase in total social contact. This effect was associated with an increase in passive contact and a significant decrease in locomotion. Other nonsocial behaviors (sitting passively alone, self-directed behaviors, and manipulation) were not impacted by BNST inactivation. As part of the "extended amygdala," the BNST is highly interconnected with the basolateral (BLA) and central (CeA) nuclei of the amygdala, both of which also play critical roles in regulating social interaction. The precise pattern of behavioral changes we observed following inactivation of the BNST partially overlaps with our prior reports in the BLA and CeA. Together, these data demonstrate that the BNST is part of a network regulating social behavior in primates.SIGNIFICANCE STATEMENT The bed nucleus of the stria terminalis (BNST) has a well-established role in anxiety behaviors, but its role in social behavior is poorly understood. No prior studies have evaluated the impact of BNST manipulations on social behavior in primates. We found that transient pharmacological inactivation of the BNST increased social behavior in pairs of macaque monkeys. These data suggest the BNST contributes to the brain networks regulating sociability.
Collapse
Affiliation(s)
- Jessica T Jacobs
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, 20057
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, 20057
| | - Rafael S Maior
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, 20057
- Laboratory of Neurosciences, Metabolism and Behavior, Department of Physiological Sciences, Institute of Biology, University of Brasilia, 70910-900, Brasilia, Brazil
| | - Hannah F Waguespack
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, 20057
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, 20057
| | | | - Patrick A Forcelli
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, 20057
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, 20057
- Department of Neuroscience, Georgetown University, Washington, DC 20057
| | - Ludise Malkova
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, 20057
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, 20057
| |
Collapse
|
6
|
Dimén D, Puska G, Szendi V, Sipos E, Zelena D, Dobolyi Á. Sex-specific parenting and depression evoked by preoptic inhibitory neurons. iScience 2021; 24:103090. [PMID: 34604722 PMCID: PMC8463871 DOI: 10.1016/j.isci.2021.103090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/20/2021] [Accepted: 09/01/2021] [Indexed: 01/08/2023] Open
Abstract
The role of preoptic GABAergic inhibitory neurons was addressed in parenting, anxiety and depression. Pup exposure and forced swimming resulted in similar c-Fos activation pattern in neurons expressing vesicular GABA transporter in the preoptic area with generally stronger labeling and different distributional pattern in females than in males. Chemogenetic stimulation of preoptic GABAergic cells resulted in elevated maternal motivation and caring behavior in females and mothers but aggression toward pups in males. Behavioral effects were the opposite following inhibition of preoptic GABAergic neurons suggesting their physiological relevance. In addition, increased anxiety-like and depression-like behaviors were found following chemogenetic stimulation of the same neurons in females, whereas previous pup exposure increased only anxiety-like behavior suggesting that not the pups, but overstimulation of the cells can lead to depression-like behavior. A sexually dimorphic projection pattern of preoptic GABAergic neurons was also identified, which could mediate sex-dependent parenting and associated emotional behaviors. Preoptic GABAergic neurons promote maternal behaviors in females mice Activation of preoptic GABAergic neurons induces pup-directed aggression in males Projection pattern of preoptic GABAergic neurons is sexually dimorphic Depression-like behaviors are provoked by stimulation of preoptic GABAergic neurons
Collapse
Affiliation(s)
- Diána Dimén
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences, Eötvös Loránd Research Network, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Gina Puska
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences, Eötvös Loránd Research Network, Eötvös Loránd University, 1117 Budapest, Hungary.,Department of Ecology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary
| | - Vivien Szendi
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences, Eötvös Loránd Research Network, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Eszter Sipos
- Department of Behavioral and Stress Studies, Institute of Experimental Medicine, 1080 Budapest, Hungary
| | - Dóra Zelena
- Department of Behavioral and Stress Studies, Institute of Experimental Medicine, 1080 Budapest, Hungary.,Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Árpád Dobolyi
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences, Eötvös Loránd Research Network, Eötvös Loránd University, 1117 Budapest, Hungary
| |
Collapse
|
7
|
Fukuwada N, Kanno M, Yoshida S, Seki K. Gαq protein signaling in the bed nucleus of the stria terminalis regulate the lipopolysaccharide-induced despair-like behavior in mice. AIMS Neurosci 2020; 7:438-458. [PMID: 33263080 PMCID: PMC7701371 DOI: 10.3934/neuroscience.2020027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/05/2020] [Indexed: 11/18/2022] Open
Abstract
Major depressive disorder (MDD) is highly comorbid with anxiety disorders. It has been reported that the bed nucleus of the stria terminalis (BNST) is important for the induction of anxiety and MDD. Recently, the Gαq protein signaling within the BNST is involved in the induction of anxiety through Gαq protein signaling-mediated RNA-editing of GluR2 subunit, which produces the calcium (Ca2+)-impermeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor. On the other hand, the role of Gαq protein signaling within the BNST on the induction of MDD has never been reported yet. Therefore, we investigated whether Gαq protein signaling-producing the Ca2+-impermeable AMPA receptors in the BNST is involved in the lipopolysaccharide (LPS)-induced depressive-like behavior, particularly, despair-like behavior. When mice were systemically challenged with a single dose of LPS (1.2 mg/kg, i.p.), the immobility time during tail suspension test (TST) was increased 24 h after LPS injection. However, pretreatment with bilateral intra-BNST injection of neomycin (6.5 mM, 0.125 µL/side), an inhibitor of phospholipase C that is activated by Gαq protein-coupled receptor stimulation, extended the LPS-induced increase in the immobility time of TST. Furthermore, the co-pretreatment with bilateral intra-BNST injection of neomycin with 1-naphthylacetyl spermine (3 mM, 0.125 µL/side), an antagonist of Ca2+-permeable AMPA receptor, to mimic one of the final forms of Gαq protein activation, abolished the aggravated effect of neomycin and significantly shortened the immobility time compared with the control mice with an intra-BNST injection of artificial cerebrospinal fluid before LPS injection. However, pretreatment with bilateral intra-BNST injection of MDL-12,330A (10 µM, 0.125 µL/side), an inhibitor of adenylyl cyclase that is activated by Gαs protein-coupled receptor stimulation, did not affect the LPS-induced increase in the immobility time of TST. These results indicate that the Gαq protein signaling-mediated RNA-editing of GluR2, which produces the Ca2+-impermeable AMPA receptors within the BNST, regulates the LPS-induced despair-like behavior.
Collapse
Affiliation(s)
- Nao Fukuwada
- Department of Pharmacology, School of Pharmaceutical Science, Ohu University, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan
| | - Miki Kanno
- Department of Pharmacology, School of Pharmaceutical Science, Ohu University, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan
| | - Satomi Yoshida
- Department of Pharmacology, School of Pharmaceutical Science, Ohu University, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan
| | - Kenjiro Seki
- Department of Pharmacology, School of Pharmaceutical Science, Ohu University, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan
| |
Collapse
|
8
|
Li X, Li X. The Antidepressant Effect of Light Therapy from Retinal Projections. Neurosci Bull 2018; 34:359-368. [PMID: 29430586 DOI: 10.1007/s12264-018-0210-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 11/08/2017] [Indexed: 01/01/2023] Open
Abstract
Observations from clinical trials have frequently demonstrated that light therapy can be an effective therapy for seasonal and non-seasonal major depression. Despite the fact that light therapy is known to have several advantages over antidepressant drugs like a low cost, minimal side-effects, and fast onset of therapeutic effect, the mechanism underlying light therapy remains unclear. So far, it is known that light therapy modulates mood states and cognitive functions, involving circadian and non-circadian pathways from retinas into brain. In this review, we discuss the therapeutic effect of light on major depression and its relationship to direct retinal projections in the brain. We finally emphasize the function of the retino-raphe projection in modulating serotonin activity, which probably underlies the antidepressant effect of light therapy for depression.
Collapse
Affiliation(s)
- Xiaotao Li
- The Brain Cognition and Brain Disease Institute for Collaborative Research of SIAT at CAS and the McGovern Institute at MIT, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China. .,McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Xiang Li
- The Brain Cognition and Brain Disease Institute for Collaborative Research of SIAT at CAS and the McGovern Institute at MIT, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
9
|
Gonzáles MA, Miranda AP, Orrego H, Silva R, Forray MI. Enduring attenuation of norepinephrine synaptic availability and augmentation of the pharmacological and behavioral effects of desipramine by repeated immobilization stress. Neuropharmacology 2017; 117:249-259. [PMID: 28232061 DOI: 10.1016/j.neuropharm.2017.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 01/16/2023]
Abstract
Here we provide evidence that repeated immobilization stress (RIS) in rats induces a persistent increase in noradrenergic activity in the anterior aspects of the anterolateral bed nucleus of the stria terminalis (alBNST). This increase in noradrenergic activity results from both enhanced synthesis and reuptake of norepinephrine (NE). It leads to a decrease in the synaptic availability of NE, which elicits an augmented noradrenergic response to the inhibitors of NE reuptake (NRIs), such as desipramine (DMI), an antidepressant. The enduring depression-like behavior and the augmentation of the climbing behavior seen in repeatedly stressed rats following subchronic administration of DMI in the forced swimming test (FST) might be explained by a dysregulation of noradrenergic transmission observed in alBNST. Taken together, we propose that dysregulation of noradrenergic transmission such as the one described in the present work may represent a mechanism underlying major depressive disorders (MDD) with melancholic features in humans.
Collapse
Affiliation(s)
- Marco A Gonzáles
- Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ana Pamela Miranda
- Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Horacio Orrego
- Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodolfo Silva
- Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Inés Forray
- Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
10
|
Shirayama Y, Ishima T, Oda Y, Okamura N, Iyo M, Hashimoto K. Opposite roles for neuropeptide S in the nucleus accumbens and bed nucleus of the stria terminalis in learned helplessness rats. Behav Brain Res 2015; 291:67-71. [PMID: 25986404 DOI: 10.1016/j.bbr.2015.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/05/2015] [Accepted: 05/08/2015] [Indexed: 01/19/2023]
Abstract
The role of neuropeptide S (NPS) in depression remains unclear. We examined the antidepressant-like effects of NPS infusions into the shell or core regions of the nucleus accumbens (NAc) and into the bed nucleus of the stria terminalis (BNST) of learned helplessness (LH) rats (an animal model of depression). Infusions of NPS (10 pmol/side) into the NAc shell, but not the NAc core and BNST, exerted antidepressant-like effects in the LH paradigm. Implying that behavioral deficits could be improved in the conditioned avoidance test. Coinfusion of SHA68 (an NPS receptor antagonist, 100 pmol/side) with NPS into the NAc shell blocked these effects. In contrast, NPS receptor antagonism by SHA68 in the BNST induced antidepressant-like effects. Infusions of NPS into the NAc shell or SHA68 into the BNST did not produce memory deficits or locomotor activation in the passive avoidance and open field tests. These results suggest that excitatory and inhibitory actions by the NPS system are integral to the depression in LH animals.
Collapse
Affiliation(s)
- Yukihiko Shirayama
- Department of Psychiatry, Teikyo University Chiba Medical Center, Ichihara, Japan; Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan.
| | - Tamaki Ishima
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Yasunori Oda
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Naoe Okamura
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Masaomi Iyo
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| |
Collapse
|
11
|
Canbeyli R. Sensorimotor modulation of mood and depression: in search of an optimal mode of stimulation. Front Hum Neurosci 2013; 7:428. [PMID: 23908624 PMCID: PMC3727046 DOI: 10.3389/fnhum.2013.00428] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 07/15/2013] [Indexed: 12/15/2022] Open
Abstract
Depression involves a dysfunction in an affective fronto-limbic circuitry including the prefrontal cortices, several limbic structures including the cingulate cortex, the amygdala, and the hippocampus as well as the basal ganglia. A major emphasis of research on the etiology and treatment of mood disorders has been to assess the impact of centrally generated (top-down) processes impacting the affective fronto-limbic circuitry. The present review shows that peripheral (bottom-up) unipolar stimulation via the visual and the auditory modalities as well as by physical exercise modulates mood and depressive symptoms in humans and animals and activates the same central affective neurocircuitry involved in depression. It is proposed that the amygdala serves as a gateway by articulating the mood regulatory sensorimotor stimulation with the central affective circuitry by emotionally labeling and mediating the storage of such emotional events in long-term memory. Since both amelioration and aggravation of mood is shown to be possible by unipolar stimulation, the review suggests that a psychophysical assessment of mood modulation by multimodal stimulation may uncover mood ameliorative synergisms and serve as adjunctive treatment for depression. Thus, the integrative review not only emphasizes the relevance of investigating the optimal levels of mood regulatory sensorimotor stimulation, but also provides a conceptual springboard for related future research.
Collapse
Affiliation(s)
- Resit Canbeyli
- Psychobiology Laboratory, Department of Psychology, Bogazici University , Istanbul , Turkey
| |
Collapse
|
12
|
Krawczyk M, Mason X, DeBacker J, Sharma R, Normandeau CP, Hawken ER, Di Prospero C, Chiang C, Martinez A, Jones AA, Doudnikoff É, Caille S, Bézard E, Georges F, Dumont ÉC. D1 dopamine receptor-mediated LTP at GABA synapses encodes motivation to self-administer cocaine in rats. J Neurosci 2013; 33:11960-71. [PMID: 23864683 PMCID: PMC4011800 DOI: 10.1523/jneurosci.1784-13.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 05/28/2013] [Accepted: 06/13/2013] [Indexed: 11/21/2022] Open
Abstract
Enhanced motivation to take drugs is a central characteristic of addiction, yet the neural underpinning of this maladaptive behavior is still largely unknown. Here, we report a D1-like dopamine receptor (DRD1)-mediated long-term potentiation of GABAA-IPSCs (D1-LTPGABA) in the oval bed nucleus of the stria terminalis that was positively correlated with motivation to self-administer cocaine in rats. Likewise, in vivo intra-oval bed nucleus of the stria terminalis DRD1 pharmacological blockade reduced lever pressing for cocaine more effectively in rats showing enhanced motivation toward cocaine. D1-LTPGABA resulted from enhanced function and expression of G-protein-independent DRD1 coupled to c-Src tyrosine kinases and required local release of neurotensin. There was no D1-LTPGABA in rats that self-administered sucrose, in those with limited cocaine self-administration experience, or in those that received cocaine passively (yoked). Therefore, our study reveals a novel neurophysiological mechanism contributing to individual motivation to self-administer cocaine, a critical psychobiological element of compulsive drug use and addiction.
Collapse
Affiliation(s)
- Michal Krawczyk
- Department of Biomedical and Molecular Sciences and Center for Neuroscience Studies, Queen's University, Kingston, Ontario K7 L 3N6, Canada
| | - Xenos Mason
- Department of Biomedical and Molecular Sciences and Center for Neuroscience Studies, Queen's University, Kingston, Ontario K7 L 3N6, Canada
| | - Julian DeBacker
- Department of Biomedical and Molecular Sciences and Center for Neuroscience Studies, Queen's University, Kingston, Ontario K7 L 3N6, Canada
| | - Robyn Sharma
- Department of Biomedical and Molecular Sciences and Center for Neuroscience Studies, Queen's University, Kingston, Ontario K7 L 3N6, Canada
| | - Catherine P. Normandeau
- Department of Biomedical and Molecular Sciences and Center for Neuroscience Studies, Queen's University, Kingston, Ontario K7 L 3N6, Canada
| | - Emily R. Hawken
- Department of Biomedical and Molecular Sciences and Center for Neuroscience Studies, Queen's University, Kingston, Ontario K7 L 3N6, Canada
| | - Cynthia Di Prospero
- Department of Biomedical and Molecular Sciences and Center for Neuroscience Studies, Queen's University, Kingston, Ontario K7 L 3N6, Canada
| | - Cindy Chiang
- Department of Biomedical and Molecular Sciences and Center for Neuroscience Studies, Queen's University, Kingston, Ontario K7 L 3N6, Canada
| | - Audrey Martinez
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, and
| | - Andrea A. Jones
- Department of Biomedical and Molecular Sciences and Center for Neuroscience Studies, Queen's University, Kingston, Ontario K7 L 3N6, Canada
| | - Évelyne Doudnikoff
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, and
| | - Stephanie Caille
- Université de Bordeaux, Aquitaine Institute for Cognitive and Integrative Neuroscience, F-33076 Bordeaux, France, and
- Centre National de la Recherche Scientifique, UMR 5287, Aquitaine Institute for Cognitive and Integrative Neuroscience, F-33076 Bordeaux, France
| | - Erwan Bézard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, and
| | - François Georges
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, and
- Centre National de la Recherche Scientifique, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33000 Bordeaux, France
| | - Éric C. Dumont
- Department of Biomedical and Molecular Sciences and Center for Neuroscience Studies, Queen's University, Kingston, Ontario K7 L 3N6, Canada
| |
Collapse
|
13
|
O'Connell LA, Hofmann HA. The vertebrate mesolimbic reward system and social behavior network: a comparative synthesis. J Comp Neurol 2012; 519:3599-639. [PMID: 21800319 DOI: 10.1002/cne.22735] [Citation(s) in RCA: 718] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
All animals evaluate the salience of external stimuli and integrate them with internal physiological information into adaptive behavior. Natural and sexual selection impinge on these processes, yet our understanding of behavioral decision-making mechanisms and their evolution is still very limited. Insights from mammals indicate that two neural circuits are of crucial importance in this context: the social behavior network and the mesolimbic reward system. Here we review evidence from neurochemical, tract-tracing, developmental, and functional lesion/stimulation studies that delineates homology relationships for most of the nodes of these two circuits across the five major vertebrate lineages: mammals, birds, reptiles, amphibians, and teleost fish. We provide for the first time a comprehensive comparative analysis of the two neural circuits and conclude that they were already present in early vertebrates. We also propose that these circuits form a larger social decision-making (SDM) network that regulates adaptive behavior. Our synthesis thus provides an important foundation for understanding the evolution of the neural mechanisms underlying reward processing and behavioral regulation.
Collapse
Affiliation(s)
- Lauren A O'Connell
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|
14
|
Distinct behavioral consequences of stress models of depression in the elevated T-maze. Behav Brain Res 2011; 225:590-5. [PMID: 21896290 DOI: 10.1016/j.bbr.2011.08.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 08/19/2011] [Accepted: 08/23/2011] [Indexed: 11/23/2022]
Abstract
Animals exposed to inescapable stress develop behavioral consequences that are similar to symptoms of depression. Therefore, most of the animal models of depression are based on animal exposure to such stressors. The stress-induced behavioral consequences induced by pre-exposure to shock in the learned helplessness model of depression have been proposed to be a consequence of excessive activation of fear/anxiety related structures which would lead to inhibitory avoidance and impaired escape performance. However, this hypothesis has not yet been investigated in a test that is able to generate these different defense strategies in a same rat, such as the elevated T-maze (ETM). Therefore, the objective of the present study was to test the effects of footshock pre-exposure (inescapable-IS or escapable-ES) on both inhibitory avoidance and escape responses of rats submitted to the ETM 24 h later. Moreover, since it is not known whether these effects would be a common feature to other inescapable stressors used as animal models of depression, we have also investigated the behavior of rats previously exposed to forced swimming or restraint. All stressed groups displayed anxiogenic-like behavior when compared to control groups (non-stressed), evidenced by facilitated acquisition of inhibitory avoidance in the ETM. However, only rats exposed to IS showed impaired escape performance. These results support the hypothesis that the facilitated inhibitory avoidance is a common behavioral consequence of distinct stressful stimuli. However, the impaired escape response is likely to be particularly involved in the mediation of the helpless behavior observed in rats pre-exposed to IS. The neurobiological mechanisms involved in these responses are discussed in the manuscript.
Collapse
|
15
|
Hammack SE, Cooper MA, Lezak KR. Overlapping neurobiology of learned helplessness and conditioned defeat: implications for PTSD and mood disorders. Neuropharmacology 2011; 62:565-75. [PMID: 21396383 DOI: 10.1016/j.neuropharm.2011.02.024] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 02/23/2011] [Accepted: 02/27/2011] [Indexed: 12/20/2022]
Abstract
Exposure to traumatic events can increase the risk for major depressive disorder (MDD) as well as posttraumatic stress disorder (PTSD), and pharmacological treatments for these disorders often involve the modulation of serotonergic (5-HT) systems. Several behavioral paradigms in rodents produce changes in behavior that resemble symptoms of MDD and these behavioral changes are sensitive to antidepressant treatments. Here we review two animal models in which MDD-like behavioral changes are elicited by exposure to an acute traumatic event during adulthood, learned helplessness (LH) and conditioned defeat. In LH, exposure of rats to inescapable, but not escapable, tailshock produces a constellation of behavioral changes that include deficits in fight/flight responding and enhanced anxiety-like behavior. In conditioned defeat, exposure of Syrian hamsters to a social defeat by a more aggressive animal leads to a loss of territorial aggression and an increase in submissive and defensive behaviors in subsequent encounters with non-aggressive conspecifics. Investigations into the neural substrates that control LH and conditioned defeat revealed that increased 5-HT activity in the dorsal raphe nucleus (DRN) is critical for both models. Other key brain regions that regulate the acquisition and/or expression of behavior in these two paradigms include the basolateral amygdala (BLA), central nucleus of the amygdala (CeA) and bed nucleus of the stria terminalis (BNST). In this review, we compare and contrast the role of each of these neural structures in mediating LH and conditioned defeat, and discuss the relevance of these data in developing a better understanding of the mechanisms underlying trauma-related depression. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.
Collapse
Affiliation(s)
- Sayamwong E Hammack
- Department of Psychology, University of Vermont, 2 Colchester Avenue, John Dewey Hall, Burlington, VT 05405, USA.
| | | | | |
Collapse
|
16
|
Alves F, Resstel L, Correa F, Crestani C. Bed nucleus of the stria terminalis α1- and α2-adrenoceptors differentially modulate the cardiovascular responses to exercise in rats. Neuroscience 2011; 177:74-83. [DOI: 10.1016/j.neuroscience.2011.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 12/01/2010] [Accepted: 01/03/2011] [Indexed: 02/01/2023]
|
17
|
Crestani CC, Alves FHF, Correa FMA, Guimarães FS, Joca SRL. Acute reversible inactivation of the bed nucleus of stria terminalis induces antidepressant-like effect in the rat forced swimming test. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2010; 6:30. [PMID: 20515458 PMCID: PMC2887770 DOI: 10.1186/1744-9081-6-30] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 06/01/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND The bed nucleus of stria terminalis (BNST) is a limbic forebrain structure involved in hypothalamo-pituitary-adrenal axis regulation and stress adaptation. Inappropriate adaptation to stress is thought to compromise the organism's coping mechanisms, which have been implicated in the neurobiology of depression. However, the studies aimed at investigating BNST involvement in depression pathophysiology have yielded contradictory results. Therefore, the objective of the present study was to investigate the effects of temporary acute inactivation of synaptic transmission in the BNST by local microinjection of cobalt chloride (CoCl2) in rats subjected to the forced swimming test (FST). METHODS Rats implanted with cannulae aimed at the BNST were submitted to 15 min of forced swimming (pretest). Twenty-four hours later immobility time was registered in a new 5 min forced swimming session (test). Independent groups of rats received bilateral microinjections of CoCl2 (1 mM/100 nL) before or immediately after pretest or before the test session. Additional groups received the same treatment and were submitted to the open field test to control for unspecific effects on locomotor behavior. RESULTS CoCl2 injection into the BNST before either the pretest or test sessions reduced immobility in the FST, suggesting an antidepressant-like effect. No significant effect of CoCl2 was observed when it was injected into the BNST immediately after pretest. In addition, no effect of BNST inactivation was observed in the open field test. CONCLUSION These results suggest that acute reversible inactivation of synaptic transmission in the BNST facilitates adaptation to stress and induces antidepressant-like effects.
Collapse
Affiliation(s)
- Carlos C Crestani
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | - Fernando HF Alves
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | - Fernando MA Correa
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | - Sâmia RL Joca
- Laboratory of Pharmacology, Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto; University of São Paulo, 14040-903, Ribeirão Preto, SP, Brazil
| |
Collapse
|
18
|
Canbeyli R. Sensorimotor modulation of mood and depression: An integrative review. Behav Brain Res 2010; 207:249-64. [DOI: 10.1016/j.bbr.2009.11.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 10/29/2009] [Accepted: 11/02/2009] [Indexed: 02/05/2023]
|
19
|
Crestani CC, Alves FHF, Resstel LBM, Correa FMA. The bed nucleus of the stria terminalis modulates exercise-evoked cardiovascular responses in rats. Exp Physiol 2009; 95:69-79. [DOI: 10.1113/expphysiol.2009.049056] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
20
|
Bechtholt AJ, Valentino RJ, Lucki I. Overlapping and distinct brain regions associated with the anxiolytic effects of chlordiazepoxide and chronic fluoxetine. Neuropsychopharmacology 2008; 33:2117-30. [PMID: 17987061 DOI: 10.1038/sj.npp.1301616] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Little is known about the sites of action for the behavioral effects of chronic antidepressants. The novelty-induced hypophagia (NIH) test is one of few animal behavioral tests sensitive to acute benzodiazepines and chronic antidepressants. The goals of these experiments were to examine patterns of brain activation associated with the behavioral response to novelty and identify regions that could regulate the anxiolytic effects of acute benzodiazepine and chronic antidepressant treatments, measured using the NIH test. In the first experiment, rats were treated acutely with the anxiolytic, chlordiazepoxide (2.5 or 5 mg/kg, i.p.). In separate experiments, animals were implanted with osmotic minipumps delivering vehicle or fluoxetine (5 or 20 mg/kg per day s.c.) for 3 or 28 days. NIH was assessed by giving animals access to a familiar palatable food in a novel environment. Associated brain areas were identified using c-fos immunohistochemistry. NIH was mitigated by acute chlordiazepoxide and chronic fluoxetine. Both drugs reversed novelty-induced changes in c-fos expression in the lateral division of the posterolateral part of the bed nucleus of the stria terminalis (STLP), cingulate cortex (Cg), and dorsal field CA2 of the hippocampus (dCA2). Chronic fluoxetine additionally increased c-fos expression in the anterior nucleus accumbens (aAcb) and the piriform cortex (Pir). The effects of the drugs on c-fos expression in many regions correlated with anxiolytic efficacy. These findings identified brain regions where the effects of chronic antidepressants and benzodiazepines may converge to produce anxiolytic activity, as well as distinct sites of action for the two classes of drugs.
Collapse
Affiliation(s)
- Anita J Bechtholt
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403, USA
| | | | | |
Collapse
|
21
|
Pezuk P, Aydin E, Aksoy A, Canbeyli R. Effects of BNST lesions in female rats on forced swimming and navigational learning. Brain Res 2008; 1228:199-207. [PMID: 18619949 DOI: 10.1016/j.brainres.2008.06.071] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 06/18/2008] [Accepted: 06/20/2008] [Indexed: 12/15/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) in the forebrain shows sexual dimorphism in its neuroanatomical connectivity and neurochemical characteristics. The structure is involved in many behavioral and motivational phenomena particularly related to coping with stress. Female rats differ from males in responding to stressful situations such as forced swimming and navigational learning in the water maze. It was previously shown that bilateral damage to the BNST in male Wistar rats aggravated depression as measured by forced swim tests, but did not impair navigational learning in the water maze. The present study extended the findings to female rats demonstrating that bilateral electrolytic lesions of the BNST increased immobility and decreased climbing compared to sham-operated controls, but failed to affect performance in the water maze. Additionally, lesions did not alter behavior in the open field and the elevated plus-maze tests suggesting not only that the modulation of depression by BNST lesions is specific, but also providing support for the view that the BNST may not necessarily be critically involved in anxiety.
Collapse
Affiliation(s)
- Pinar Pezuk
- Department of Biology, University of Virginia, Charlottesville, VA 22904-4328, USA
| | | | | | | |
Collapse
|
22
|
Bosch OJ, Müsch W, Bredewold R, Slattery DA, Neumann ID. Prenatal stress increases HPA axis activity and impairs maternal care in lactating female offspring: implications for postpartum mood disorder. Psychoneuroendocrinology 2007; 32:267-78. [PMID: 17337328 DOI: 10.1016/j.psyneuen.2006.12.012] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 12/15/2006] [Accepted: 12/18/2006] [Indexed: 10/23/2022]
Abstract
Early life stress is believed to constitute a risk factor for the development of mood disorders later in life. In the present study, we hypothesized that prenatal stress (PS) exerts long-lasting effects in female rat offspring, resulting in impaired adaptations to stress during lactation and, as such, may be a contributory factor to postpartum mood disorders. PS increased anxiety in adult virgin females compared with controls. During lactation, PS dams nursed significantly less and spent less time with pups compared with controls, whereas dams did not differ in pup retrieval or maternal aggression. HPA axis reactivity was elevated in response to a mild stressor in PS dams compared to their controls, but not in virgins, with the delta corticosterone response returning to the higher level seen in virgins. Moreover, corticotropin-releasing hormone (CRH) mRNA expression within the parvocellular region of the paraventricular nucleus (PVN) was increased in both virgins and dams exposed to PS compared with the relative controls, while the attenuation in expression in lactating controls was abolished following PS. In addition, arginine vasopressin (AVP) mRNA was increased in the parvocellular, but not magnocellular part of the PVN, in both PS-exposed virgins and lactating dams compared with their relative controls; although expression was also higher in controls during lactation compared with virgins. Thus, the present study demonstrates that exposure to PS results in long-lasting behavioural and neuroendocrine alterations in the female offspring, which are manifested during the lactation period. Furthermore, it implicates PS as a potential risk factor for the development of postpartum mood disorders, and that alterations in the HPA axis reactivity, at least partially, are involved.
Collapse
Affiliation(s)
- Oliver J Bosch
- Department of Zoology, Institute of Zoology, University of Regensburg, 93040 Regensburg, Germany
| | | | | | | | | |
Collapse
|