1
|
Gallego-Ortega A, Galindo-Romero C, Vidal-Villegas B, Bernal-Garro JM, de la Villa P, Avilés-Trigueros M, Vidal-Sanz M. The action of 7,8-dihydroxyflavone preserves retinal ganglion cell survival and visual function via the TrkB pathway in NMDA-induced retinal excitotoxicity. Biomed Pharmacother 2025; 185:117944. [PMID: 40056826 DOI: 10.1016/j.biopha.2025.117944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/10/2025] Open
Abstract
PURPOSE To analyze the response of different retinal ganglion cell (RGC) populations to NMDA-induced retinal excitotoxicity and the effect of an intraperitoneal treatment with 7,8-Dihydroxyflavone (DHF), a potent selective TrkB agonist. METHODS Adult albino rats were treated the day prior to NMDA injection and the three following days with intraperitoneal vehicle (1 %DMSO in 0.09 %NaCl) or DHF (5 mg/kg in vehicle) injections. DHF-afforded protection was studied in the population of Brn3a+RGCs, OPN+RGCs (α-RGCs), OPN+ Tbr2+RGCs (αONs-RGCs), OPN+ Tbr2-Brn3a-RGCs (αONt-RGCs) and OPN+Brn3a+RGCs (αOFF-RGCs) at 3,7,14, or 21 days. The functional response was analyzed longitudinally with full-field electroretinograms. The mechanisms underlying DHF-afforded neuroprotection were assessed by western blot (WB) analysis of the levels of phosphorylated and total TrkB, phosphatidylinositol 3 kinase (PIK3/AKT) and mitogen-activated protein kinase (MAPK). RESULTS NMDA intravitreal injection resulted in a significant diminution of the mean amplitudes of the pSTR and b-waves, as well as in severe depletion of all RGCs studied except αONt-RGCs. DHF treatment resulted in rescued mean amplitudes of the pSTR and b-waves up to 21 days after NMDA. WB analysis revealed an increase in p-TrkB which correlates to the increase of TRKB protein and an increase in normalized pAKT/AKT. pMAPK/MAPK was upregulated earlier and significantly higher in DHF-treated retinas. DHF afforded survival of up to 49 % of the Brn3a+RGCs versus 25 % of the vehicle group at 21 days after NMDA, and improved survival of the α-RGC and αONs-RGCs but did not rescue the αOFF-RGCs. CONCLUSION Different RGC types exhibit variable susceptibilities to NMDA injury, and DHF-mediated activation of TrkB affords neuroprotection.
Collapse
Affiliation(s)
- Alejandro Gallego-Ortega
- Department of Ophthalmology, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), University of Murcia, Murcia, Spain; Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, USA.
| | - Caridad Galindo-Romero
- Department of Ophthalmology, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), University of Murcia, Murcia, Spain.
| | - Beatriz Vidal-Villegas
- Department of Ophthalmology, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), University of Murcia, Murcia, Spain; Moorfields Eye Hospital, London, United Kingdom
| | - José Manuel Bernal-Garro
- Department of Ophthalmology, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| | - Pedro de la Villa
- Department of Systems Biology, Laboratory of Visual Neurophysiology, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Marcelino Avilés-Trigueros
- Department of Ophthalmology, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| | - Manuel Vidal-Sanz
- Department of Ophthalmology, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| |
Collapse
|
2
|
Wang LH, Huang CH, Lin IC. Advances in Neuroprotection in Glaucoma: Pharmacological Strategies and Emerging Technologies. Pharmaceuticals (Basel) 2024; 17:1261. [PMID: 39458902 PMCID: PMC11510571 DOI: 10.3390/ph17101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Glaucoma is a major global health concern and the leading cause of irreversible blindness worldwide, characterized by the progressive degeneration of retinal ganglion cells (RGCs) and their axons. This review focuses on the need for neuroprotective strategies in glaucoma management, addressing the limitations of current treatments that primarily target intraocular pressure (IOP) reduction. Despite effective IOP management, many patients continue to experience RGC degeneration, leading to irreversible blindness. This review provides an overview of both pharmacological interventions and emerging technologies aimed at directly protecting RGCs and the optic nerve, independent of IOP reduction. Pharmacological agents such as brimonidine, neurotrophic factors, memantine, Ginkgo biloba extract, citicoline, nicotinamide, insulin, and resveratrol show promise in preclinical and early clinical studies for their neuroprotective properties. Emerging technologies, including stem cell therapy, gene therapy, mitochondrial-targeted therapies, and nanotechnologies, offer innovative approaches for neuroprotection and regeneration of damaged RGCs. While these interventions hold significant potential, further research and clinical trials are necessary to confirm their efficacy and establish their role in clinical practice. This review highlights the multifaceted nature of neuroprotection in glaucoma, aiming to guide future research and clinical practice toward more effective management of glaucoma-induced neurodegeneration.
Collapse
Affiliation(s)
- Li-Hsin Wang
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
| | - Chun-Hao Huang
- Department of Ophthalmology, Wan Fang Hospital, Taipei Medical University, Taipei 110301, Taiwan;
| | - I-Chan Lin
- Department of Ophthalmology, Wan Fang Hospital, Taipei Medical University, Taipei 110301, Taiwan;
- Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
3
|
Lucas-Ruiz F, Galindo-Romero C, Albaladejo-García V, Vidal-Sanz M, Agudo-Barriuso M. Mechanisms implicated in the contralateral effect in the central nervous system after unilateral injury: focus on the visual system. Neural Regen Res 2021; 16:2125-2131. [PMID: 33818483 PMCID: PMC8354113 DOI: 10.4103/1673-5374.310670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/21/2020] [Accepted: 01/11/2021] [Indexed: 12/21/2022] Open
Abstract
The retina, as part of the central nervous system is an ideal model to study the response of neurons to injury and disease and to test new treatments. During the last decade is becoming clear that unilateral lesions in bilateral areas of the central nervous system trigger an inflammatory response in the contralateral uninjured site. This effect has been better studied in the visual system where, as a rule, one retina is used as experimental and the other as control. Contralateral retinas in unilateral models of retinal injury show neuronal degeneration and glial activation. The mechanisms by which this adverse response in the central nervous system occurs are discussed in this review, focusing primarily on the visual system.
Collapse
Affiliation(s)
- Fernando Lucas-Ruiz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIBArrixaca) Murcia, Spain
| | - Caridad Galindo-Romero
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIBArrixaca) Murcia, Spain
| | - Virginia Albaladejo-García
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIBArrixaca) Murcia, Spain
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIBArrixaca) Murcia, Spain
| | - Marta Agudo-Barriuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIBArrixaca) Murcia, Spain
| |
Collapse
|
4
|
7,8-Dihydroxiflavone Maintains Retinal Functionality and Protects Various Types of RGCs in Adult Rats with Optic Nerve Transection. Int J Mol Sci 2021; 22:ijms222111815. [PMID: 34769247 PMCID: PMC8584116 DOI: 10.3390/ijms222111815] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022] Open
Abstract
To analyze the neuroprotective effects of 7,8-Dihydroxyflavone (DHF) in vivo and ex vivo, adult albino Sprague-Dawley rats were given a left intraorbital optic nerve transection (IONT) and were divided in two groups: One was treated daily with intraperitoneal (ip) DHF (5 mg/kg) (n = 24) and the other (n = 18) received ip vehicle (1% DMSO in 0.9% NaCl) from one day before IONT until processing. At 5, 7, 10, 12, 14, and 21 days (d) after IONT, full field electroretinograms (ERG) were recorded from both experimental and one additional naïve-control group (n = 6). Treated rats were analyzed 7 (n = 14), 14 (n = 14) or 21 d (n = 14) after IONT, and the retinas immune stained against Brn3a, Osteopontin (OPN) and the T-box transcription factor T-brain 2 (Tbr2) to identify surviving retinal ganglion cells (RGCs) (Brn3a+), α-like (OPN+), α-OFF like (OPN+Brn3a+) or M4-like/α-ON sustained RGCs (OPN+Tbr+). Naïve and right treated retinas showed normal ERG recordings. Left vehicle-treated retinas showed decreased amplitudes of the scotopic threshold response (pSTR) (as early as 5 d), the rod b-wave, the mixed response and the cone response (as early as 10 d), which did not recover with time. In these retinas, by day 7 the total numbers of Brn3a+RGCs, OPN+RGCs and OPN+Tbr2+RGCs decreased to less than one half and OPN+Brn3a+RGCs decreased to approximately 0.5%, and Brn3a+RGCs showed a progressive loss with time, while OPN+RGCs and OPN+Tbr2+RGCs did not diminish after seven days. Compared to vehicle-treated, the left DHF-treated retinas showed significantly greater amplitudes of the pSTR, normal b-wave values and significantly greater numbers of OPN+RGCs and OPN+Tbr2+RGCs for up to 14 d and of Brn3a+RGCs for up to 21 days. DHF affords significant rescue of Brn3a+RGCs, OPN+RGCs and OPN+Tbr2+RGCs, but not OPN+Brn3a+RGCs, and preserves functional ERG responses after IONT.
Collapse
|
5
|
Galindo-Romero C, Vidal-Villegas B, Asís-Martínez J, Lucas-Ruiz F, Gallego-Ortega A, Vidal-Sanz M. 7,8-Dihydroxiflavone Protects Adult Rat Axotomized Retinal Ganglion Cells through MAPK/ERK and PI3K/AKT Activation. Int J Mol Sci 2021; 22:ijms221910896. [PMID: 34639236 PMCID: PMC8509499 DOI: 10.3390/ijms221910896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 12/16/2022] Open
Abstract
We analyze the 7,8-dihydroxyflavone (DHF)/TrkB signaling activation of two main intracellular pathways, mitogen-activated protein kinase (MAPK)/ERK and phosphatidylinositol 3 kinase (PI3K)/AKT, in the neuroprotection of axotomized retinal ganglion cells (RGCs). Methods: Adult albino Sprague-Dawley rats received left intraorbital optic nerve transection (IONT) and were divided in two groups. One group received daily intraperitoneal DHF (5 mg/kg) and another vehicle (1%DMSO in 0.9%NaCl) from one day before IONT until processing. Additional intact rats were employed as control (n = 4). At 1, 3 or 7 days (d) after IONT, phosphorylated (p)AKT, p-MAPK, and non-phosphorylated AKT and MAPK expression levels were analyzed in the retina by Western blotting (n = 4/group). Radial sections were also immunodetected for the above-mentioned proteins, and for Brn3a and vimentin to identify RGCs and Müller cells (MCs), respectively (n = 3/group). Results: IONT induced increased levels of p-MAPK and MAPK at 3d in DHF- or vehicle-treated retinas and at 7d in DHF-treated retinas. IONT induced a fast decrease in AKT in retinas treated with DHF or vehicle, with higher levels of phosphorylation in DHF-treated retinas at 7d. In intact retinas and vehicle-treated groups, no p-MAPK or MAPK expression in RGCs was observed. In DHF- treated retinas p-MAPK and MAPK were expressed in the ganglion cell layer and in the RGC nuclei 3 and 7d after IONT. AKT was observed in intact and axotomized RGCs, but the signal intensity of p-AKT was stronger in DHF-treated retinas. Finally, MCs expressed higher quantities of both MAPK and AKT at 3d in both DHF- and vehicle-treated retinas, and at 7d the phosphorylation of p-MAPK was higher in DHF-treated groups. Conclusions: Phosphorylation and increased levels of AKT and MAPK through MCs and RGCs in retinas after DHF-treatment may be responsible for the increased and long-lasting RGC protection afforded by DHF after IONT.
Collapse
Affiliation(s)
- Caridad Galindo-Romero
- Departamento de Oftalmología, Campus de CC de la Salud, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, El Palmar, 30120 Murcia, Spain; (B.V.-V.); (J.A.-M.); (F.L.-R.); (A.G.-O.); (M.V.-S.)
- Correspondence: ; Tel.: +34-8-688-893-09
| | - Beatriz Vidal-Villegas
- Departamento de Oftalmología, Campus de CC de la Salud, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, El Palmar, 30120 Murcia, Spain; (B.V.-V.); (J.A.-M.); (F.L.-R.); (A.G.-O.); (M.V.-S.)
- Servicio de Oftalmología, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Javier Asís-Martínez
- Departamento de Oftalmología, Campus de CC de la Salud, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, El Palmar, 30120 Murcia, Spain; (B.V.-V.); (J.A.-M.); (F.L.-R.); (A.G.-O.); (M.V.-S.)
| | - Fernando Lucas-Ruiz
- Departamento de Oftalmología, Campus de CC de la Salud, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, El Palmar, 30120 Murcia, Spain; (B.V.-V.); (J.A.-M.); (F.L.-R.); (A.G.-O.); (M.V.-S.)
| | - Alejandro Gallego-Ortega
- Departamento de Oftalmología, Campus de CC de la Salud, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, El Palmar, 30120 Murcia, Spain; (B.V.-V.); (J.A.-M.); (F.L.-R.); (A.G.-O.); (M.V.-S.)
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Campus de CC de la Salud, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, El Palmar, 30120 Murcia, Spain; (B.V.-V.); (J.A.-M.); (F.L.-R.); (A.G.-O.); (M.V.-S.)
| |
Collapse
|
6
|
Conti F, Romano GL, Eandi CM, Toro MD, Rejdak R, Di Benedetto G, Lazzara F, Bernardini R, Drago F, Cantarella G, Bucolo C. Brimonidine is Neuroprotective in Animal Paradigm of Retinal Ganglion Cell Damage. Front Pharmacol 2021; 12:705405. [PMID: 34366858 PMCID: PMC8333612 DOI: 10.3389/fphar.2021.705405] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/07/2021] [Indexed: 12/20/2022] Open
Abstract
To investigate the neuroprotective effect of brimonidine after retinal ischemia damage on mouse eye. Glaucoma is an optic neuropathy characterized by retinal ganglion cells (RGCs) death, irreversible peripheral and central visual field loss, and high intraocular pressure. Ischemia reperfusion (I/R) injury model was used in C57BL/6J mice to mimic conditions of glaucomatous neurodegeneration. Mouse eyes were treated topically with brimonidine and pattern electroretinogram were used to assess the retinal ganglion cells (RGCs) function. A wide range of inflammatory markers, as well as anti-inflammatory and neurotrophic molecules, were investigated to figure out the potential protective effects of brimonidine in mouse retina. In particular, brain-derived neurotrophic factor (BDNF), IL-6, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its death receptor DR-5, TNF-α, GFAP, Iba-1, NOS, IL-1β and IL-10 were assessed in mouse retina that underwent to I/R insult with or without brimonidine treatment. Brimonidine provided remarkable RGCs protection in our paradigm. PERG amplitude values were significantly (p < 0.05) higher in brimonidine-treated eyes in comparison to I/R retinas. Retinal BDNF mRNA levels in the I/R group dropped significantly (p < 0.05) compared to the control group (normal mice); brimonidine treatment counteracted the downregulation of retinal BDNF mRNA in I/R eyes. Retinal inflammatory markers increased significantly (p < 0.05) in the I/R group and brimonidine treatment was able to revert that. The anti-inflammatory IL-10 decreased significantly (p < 0.05) after retinal I/R insult and increased significantly (p < 0.05) in the group treated with brimonidine. In conclusion, brimonidine was effective in preventing loss of function of RGCs and in regulating inflammatory biomarkers elicited by retinal I/R injury.
Collapse
Affiliation(s)
- Federica Conti
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Giovanni Luca Romano
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Chiara Maria Eandi
- Department of Ophthalmology, Jules Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, Lausanne, Switzerland
| | - Mario Damiano Toro
- Department of Ophthalmology, University of Zurich, Zurich, Switzerland.,Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, Lublin, Poland
| | - Robert Rejdak
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, Lublin, Poland
| | - Giulia Di Benedetto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Francesca Lazzara
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| |
Collapse
|
7
|
Wang Z, Wu J, Hu Z, Luo C, Wang P, Zhang Y, Li H. Dexmedetomidine Alleviates Lipopolysaccharide-Induced Acute Kidney Injury by Inhibiting p75NTR-Mediated Oxidative Stress and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5454210. [PMID: 33194004 PMCID: PMC7648709 DOI: 10.1155/2020/5454210] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/22/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023]
Abstract
Oxidative stress and apoptosis play a key role in the pathogenesis of sepsis-associated acute kidney injury (AKI). Dexmedetomidine (DEX) may present renal protective effects in sepsis. Therefore, we studied antioxidant effects and the mechanism of DEX in an inflammatory proximal tubular epithelial cell model and lipopolysaccharide- (LPS-) induced AKI in mice. Methods. We assessed renal function (creatinine, urea nitrogen), histopathology, oxidative stress (malondialdehyde (MDA) and superoxide dismutase (SOD)), and apoptosis (TUNEL staining and Cleaved caspase-3) in mice. In vitro experiments including Cleaved caspase-3 and p75NTR/p38MAPK/JNK signaling pathways were evaluated using western blot. Reactive oxidative species (ROS) production and apoptosis were determined using flow cytometry. Results. DEX significantly improved renal function and kidney injury and also revert the substantially increased level of MDA concentrations as well as the reduction of the SOD enzyme activity found in LPS-induced AKI mice. In parallel, DEX treatment also reduced the apoptosis and Cleaved caspase-3 expression evoked by LPS. The expression of p75NTR was increased in kidney tissues of mice with AKI but decreased after treatment with DEX. In cultured human renal tubular epithelial cell line (HK-2 cells), DEX inhibited LPS-induced apoptosis and generation of ROS, but this was reversed by overexpression of p75NTR. Furthermore, pretreatment with DEX significantly downregulated phosphorylation of JNK and p38MAPK in LPS-stimulated HK-2 cells, and this effect was abolished by overexpression of p75NTR. Conclusion. DEX ameliorated AKI in mice with sepsis by partially reducing oxidative stress and apoptosis through regulation of p75NTR/p38MAPK/JNK signaling pathways.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiali Wu
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhaolan Hu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Cong Luo
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Pengfei Wang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yanling Zhang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hui Li
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Pigment Epithelium-Derived Factor (PEDF) Fragments Prevent Mouse Cone Photoreceptor Cell Loss Induced by Focal Phototoxicity In Vivo. Int J Mol Sci 2020; 21:ijms21197242. [PMID: 33008127 PMCID: PMC7582775 DOI: 10.3390/ijms21197242] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 12/17/2022] Open
Abstract
Here, we evaluated the effects of PEDF (pigment epithelium-derived factor) and PEDF peptides on cone-photoreceptor cell damage in a mouse model of focal LED-induced phototoxicity (LIP) in vivo. Swiss mice were dark-adapted overnight, anesthetized, and their left eyes were exposed to a blue LED placed over the cornea. Immediately after, intravitreal injection of PEDF, PEDF-peptide fragments 17-mer, 17-mer[H105A] or 17-mer[R99A] (all at 10 pmol) were administered into the left eye of each animal. BDNF (92 pmol) and bFGF (27 pmol) injections were positive controls, and vehicle negative control. After 7 days, LIP resulted in a consistent circular lesion located in the supratemporal quadrant and the number of S-cones were counted within an area centered on the lesion. Retinas treated with effectors had significantly greater S-cone numbers (PEDF (60%), 17-mer (56%), 17-mer [H105A] (57%), BDNF (64%) or bFGF (60%)) relative to their corresponding vehicle groups (≈42%). The 17-mer[R99A] with no PEDF receptor binding and no neurotrophic activity, PEDF combined with a molar excess of the PEDF receptor blocker P1 peptide, or with a PEDF-R enzymatic inhibitor had undetectable effects in S-cone survival. The findings demonstrated that the cone survival effects were mediated via interactions between the 17-mer region of the PEDF molecule and its PEDF-R receptor.
Collapse
|
9
|
Gallego-Ortega A, Norte-Muñoz M, Miralles de Imperial-Ollero JA, Bernal-Garro JM, Valiente-Soriano FJ, de la Villa Polo P, Avilés-Trigueros M, Villegas-Pérez MP, Vidal-Sanz M. Functional and morphological alterations in a glaucoma model of acute ocular hypertension. PROGRESS IN BRAIN RESEARCH 2020; 256:1-29. [PMID: 32958209 DOI: 10.1016/bs.pbr.2020.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
To study short and long-term effects of acute ocular hypertension (AOHT) on inner and outer retinal layers, in adult Sprague-Dawley rats AOHT (87mmHg) was induced for 90min and the retinas were examined longitudinally in vivo with electroretinogram (ERG) recordings and optical coherent tomography (OCT) from 1 to 90 days (d). Ex vivo, the retinas were analyzed for rod (RBC) and cone (CBC) bipolar cells, with antibodies against protein kinase Cα and recoverin, respectively in cross sections, and for cones, horizontal (HZ) and ganglion (RGC) cells with antibodies against arrestin, calbindin and Brn3a, respectively in wholemounts. The inner retina thinned progressively up to 7d with no further changes, while the external retina had a normal thickness until 30d, with a 20% thinning between 30 and 90d. Functionally, the a-wave showed an initial reduction by 24h and a further reduction from 30 to 90d. All other main ERG waves were significantly reduced by 1d without significant recovery by 90d. Radial sections showed a normal population of RBCs but their terminals were reduced. The CBCs showed a progressive decrease with a loss of 56% by 30d. In wholemount retinas, RGCs diminished to 40% by 3d and to 16% by 30d without further loss. Cones diminished to 58% and 35% by 3 and 7d, respectively and further decreased between 30 and 90d. HZs showed normal values throughout the study. In conclusion, AOHT affects both the inner and outer retina, with a more pronounced degeneration of the cone than the rod pathway.
Collapse
Affiliation(s)
- Alejandro Gallego-Ortega
- Department of Ophthalmology, University of Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - María Norte-Muñoz
- Department of Ophthalmology, University of Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | | | - José Manuel Bernal-Garro
- Department of Ophthalmology, University of Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Francisco Javier Valiente-Soriano
- Department of Ophthalmology, University of Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Pedro de la Villa Polo
- Department of Systems Biology, University of Alcalá, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Marcelino Avilés-Trigueros
- Department of Ophthalmology, University of Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - María Paz Villegas-Pérez
- Department of Ophthalmology, University of Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Manuel Vidal-Sanz
- Department of Ophthalmology, University of Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.
| |
Collapse
|
10
|
Valiente-Soriano FJ, Ortín-Martínez A, Di Pierdomenico J, García-Ayuso D, Gallego-Ortega A, Miralles de Imperial-Ollero JA, Jiménez-López M, Villegas-Pérez MP, Wheeler LA, Vidal-Sanz M. Topical Brimonidine or Intravitreal BDNF, CNTF, or bFGF Protect Cones Against Phototoxicity. Transl Vis Sci Technol 2019; 8:36. [PMID: 31890348 PMCID: PMC6919195 DOI: 10.1167/tvst.8.6.36] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/07/2019] [Indexed: 01/20/2023] Open
Abstract
Purpose To develop a focal photoreceptor degeneration model by blue light-emitting diode (LED)-induced phototoxicity (LIP) and investigate the protective effects of topical brimonidine (BMD) or intravitreal brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), or basic fibroblast growth factor (bFGF). Methods In anesthetized, dark-adapted, adult female Swiss mice, the left eye was dilated and exposed to blue light (10 seconds, 200 lux). After LIP, full-field electroretinograms (ERG) and spectral-domain optical coherence tomography (SD-OCT) were obtained longitudinally, and reactive-Iba-1+monocytic cells, TUNEL+ cells and S-opsin+ cone outer segments were examined up to 7 days. Left eyes were treated topically with BMD (1%) or vehicle, before or right after LIP, or intravitreally with BDNF (2.5 μg), CNTF (0.2 μg), bFGF (0.5 μg), or corresponding vehicle right after LIP. At 7 days, S-opsin+ cone outer segments were counted within predetermined fixed-size areas (PFA) centered on the lesion in both flattened retinas. Results SD-OCT showed a circular region in the superior-temporal left retina with progressive thinning (207.9 ± 5.6 μm to 160.7 ± 6.8 μm [7 days], n = 8), increasing TUNEL+ cells (peak at 3 days), decreasing S-opsin+ cone outer segments, and strong microglia activation. ERGs were normal by 3 days. Total S-opsin+ cones in the PFA for LIP-treated and fellow-retinas were 2330 ± 262 and 5601 ± 583 (n = 8), respectively. All neuroprotectants (n = 7–11), including topical BMD pre- or post-LIP, or intravitreal BDNF, CNTF, and bFGF, showed significantly greater S-opsin+ cone survival than their corresponding vehicle-treated groups. Conclusions LIP is a reliable, quantifiable focal photoreceptor degeneration model. Topical BMD or intravitreal BDNF, CNTF, or bFGF protect against LIP-induced cone-photoreceptor loss. Translational Relevance Topical BMD or intravitreal BDNF, CNTF, or bFGF protect cones against phototoxicity.
Collapse
Affiliation(s)
- Francisco J Valiente-Soriano
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, e Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Arturo Ortín-Martínez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, e Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.,Present Address: Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Johnny Di Pierdomenico
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, e Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Diego García-Ayuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, e Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Alejandro Gallego-Ortega
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, e Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Juan A Miralles de Imperial-Ollero
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, e Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Manuel Jiménez-López
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, e Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - María Paz Villegas-Pérez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, e Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Larry A Wheeler
- Ophthalmology and Visual Science, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, e Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| |
Collapse
|
11
|
Neuronal Death in the Contralateral Un-Injured Retina after Unilateral Axotomy: Role of Microglial Cells. Int J Mol Sci 2019; 20:ijms20225733. [PMID: 31731684 PMCID: PMC6888632 DOI: 10.3390/ijms20225733] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 11/24/2022] Open
Abstract
For years it has been known that unilateral optic nerve lesions induce a bilateral response that causes an inflammatory and microglial response in the contralateral un-injured retinas. Whether this contralateral response involves retinal ganglion cell (RGC) loss is still unknown. We have analyzed the population of RGCs and the expression of several genes in both retinas of pigmented mice after a unilateral axotomy performed close to the optic nerve head (0.5 mm), or the furthest away that the optic nerve can be accessed intraorbitally in mice (2 mm). In both retinas, RGC-specific genes were down-regulated, whereas caspase 3 was up-regulated. In the contralateral retinas, there was a significant loss of 15% of RGCs that did not progress further and that occurred earlier when the axotomy was performed at 2 mm, that is, closer to the contralateral retina. Finally, the systemic treatment with minocycline, a tetracycline antibiotic that selectively inhibits microglial cells, or with meloxicam, a non-steroidal anti-inflammatory drug, rescued RGCs in the contralateral but not in the injured retina. In conclusion, a unilateral optic nerve axotomy triggers a bilateral response that kills RGCs in the un-injured retina, a death that is controlled by anti-inflammatory and anti-microglial treatments. Thus, contralateral retinas should not be used as controls.
Collapse
|
12
|
Melanopsin +RGCs Are fully Resistant to NMDA-Induced Excitotoxicity. Int J Mol Sci 2019; 20:ijms20123012. [PMID: 31226772 PMCID: PMC6627747 DOI: 10.3390/ijms20123012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 12/13/2022] Open
Abstract
We studied short- and long-term effects of intravitreal injection of N-methyl-d-aspartate (NMDA) on melanopsin-containing (m+) and non-melanopsin-containing (Brn3a+) retinal ganglion cells (RGCs). In adult SD-rats, the left eye received a single intravitreal injection of 5µL of 100nM NMDA. At 3 and 15 months, retinal thickness was measured in vivo using Spectral Domain-Optical Coherence Tomography (SD-OCT). Ex vivo analyses were done at 3, 7, or 14 days or 15 months after damage. Whole-mounted retinas were immunolabelled for brain-specific homeobox/POU domain protein 3A (Brn3a) and melanopsin (m), the total number of Brn3a+RGCs and m+RGCs were quantified, and their topography represented. In control retinas, the mean total numbers of Brn3a+RGCs and m+RGCs were 78,903 ± 3572 and 2358 ± 144 (mean ± SD; n = 10), respectively. In the NMDA injected retinas, Brn3a+RGCs numbers diminished to 49%, 28%, 24%, and 19%, at 3, 7, 14 days, and 15 months, respectively. There was no further loss between 7 days and 15 months. The number of immunoidentified m+RGCs decreased significantly at 3 days, recovered between 3 and 7 days, and were back to normal thereafter. OCT measurements revealed a significant thinning of the left retinas at 3 and 15 months. Intravitreal injections of NMDA induced within a week a rapid loss of 72% of Brn3a+RGCs, a transient downregulation of melanopsin expression (but not m+RGC death), and a thinning of the inner retinal layers.
Collapse
|
13
|
Bottasso E. Toward the Existence of a Sympathetic Neuroplasticity Adaptive Mechanism Influencing the Immune Response. A Hypothetical View-Part I. Front Endocrinol (Lausanne) 2019; 10:632. [PMID: 31616373 PMCID: PMC6763740 DOI: 10.3389/fendo.2019.00632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/30/2019] [Indexed: 12/21/2022] Open
Abstract
The nervous system exerts a profound influence on the function of the immune system (IS), mainly through the sympathetic arm of the autonomic nervous system. In fact, the sympathetic nervous system richly innervates secondary lymphoid organs (SLOs) such as the spleen and lymph nodes. For decades, different research groups working in the field have consistently reported changes in the sympathetic innervation of the SLOs during the activation of the IS, which are characterized by a decreased noradrenergic activity and retraction of these fibers. Most of these groups interpreted these changes as a pathological phenomenon, referred to as "damage" or "injury" of the noradrenergic fibers. Some of them postulated that this "injury" was probably due to toxic effects of released endogenous mediators. Others, working on animal models of chronic stimulation of the IS, linked it to the very chronic nature of processes. Unlike these views, this first part of the present work reviews evidence which supports the hypothesis of a specific adaptive mechanism of neural plasticity from sympathetic fibers innervating SLOs, encompassing structural and functional changes of noradrenergic nerves. This plasticity mechanism would involve segmental retraction and degeneration of these fibers during the activation of the IS with subsequent regeneration once the steady state is recovered. The candidate molecules likely to mediate this phenomenon are also here introduced. The second part will extend this view as to the potential changes in sympathetic innervation likely to occur in inflamed non-lymphoid peripheral tissues and its possible immunological implications.
Collapse
|
14
|
González Fleitas MF, Aranda ML, Dieguez HH, Devouassoux JD, Chianelli MS, Dorfman D, Rosenstein RE. Pre-ischemic enriched environment increases retinal resilience to acute ischemic damage in adult rats. Exp Eye Res 2019; 178:198-211. [DOI: 10.1016/j.exer.2018.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 10/02/2018] [Accepted: 10/12/2018] [Indexed: 01/10/2023]
|
15
|
Schultz R, Krug M, Precht M, Wohl SG, Witte OW, Schmeer C. Frataxin overexpression in Müller cells protects retinal ganglion cells in a mouse model of ischemia/reperfusion injury in vivo. Sci Rep 2018; 8:4846. [PMID: 29555919 PMCID: PMC5859167 DOI: 10.1038/s41598-018-22887-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/02/2018] [Indexed: 01/28/2023] Open
Abstract
Müller cells are critical for retinal function and neuronal survival but can become detrimental in response to retinal ischemia and increased oxidative stress. Elevated oxidative stress increases expression of the mitochondrial enzyme frataxin in the retina, and its overexpression is neuroprotective after ischemia. Whether frataxin expression in Müller cells might improve their function and protect neurons after ischemia is unknown. The aim of this study was to evaluate the effect of frataxin overexpression in Müller cells on neuronal survival after retinal ischemia/reperfusion in the mouse in vivo. Retinal ischemia/reperfusion was induced in mice overexpressing frataxin in Müller cells by transient elevation of intraocular pressure. Retinal ganglion cells survival was determined 14 days after lesion. Expression of frataxin, antioxidant enzymes, growth factors and inflammation markers was determined with qRT-PCR, Western blotting and immunohistochemistry 24 hours after lesion. Following lesion, there was a 65% increase in the number of surviving RGCs in frataxin overexpressing mice. Improved survival was associated with increased expression of the antioxidant enzymes Gpx1 and Sod1 as well as the growth factors Cntf and Lif. Additionally, microglial activation was decreased in these mice. Therefore, support of Müller cell function constitutes a feasible approach to reduce neuronal degeneration after ischemia.
Collapse
Affiliation(s)
- Rowena Schultz
- Department of Ophthalmology, Jena University Hospital, Jena, Germany
| | - Melanie Krug
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Michel Precht
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Stefanie G Wohl
- Department of Biological Structure, University of Washington Seattle, Seattle, United States
| | - Otto W Witte
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Christian Schmeer
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany.
| |
Collapse
|
16
|
Cortada M, Levano S, Bodmer D. Brimonidine Protects Auditory Hair Cells from in vitro-Induced Toxicity of Gentamicin. Audiol Neurootol 2017; 22:125-134. [PMID: 28889125 DOI: 10.1159/000479218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 07/05/2017] [Indexed: 12/11/2022] Open
Abstract
Brimonidine, an alpha-2 adrenergic receptor (α2-AR) agonist, has neuroprotective effects in the visual system and in spiral ganglion neurons. Auditory hair cells (HCs) express all 3 α2-AR subtypes, but their roles in HCs remain unknown. This study investigated the effects of brimonidine on auditory HCs that were also exposed to gentamicin, which is toxic to HCs. Organ of Corti explants were exposed to gentamicin in the presence or absence of brimonidine, and the α2-AR protein expression levels and Erk1/2 and Akt phosphorylation levels were determined. Brimonidine had a protective effect on auditory HCs against gentamicin-induced toxicity that was blocked by yohimbine. This suggested that the protective effect of brimonidine on HCs was mediated by the α2-AR. None of the treatments altered α2-AR protein expression levels, and brimonidine did not significantly change the activation levels of the Erk1/2 and Akt proteins. These observations indicated that brimonidine, acting directly via α2-AR, protects HCs from gentamicin-induced toxicity. Therefore, brimonidine shows potential for preventing or treating sensorineural hearing loss.
Collapse
Affiliation(s)
- Maurizio Cortada
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | | |
Collapse
|
17
|
García-Ayuso D, Galindo-Romero C, Di Pierdomenico J, Vidal-Sanz M, Agudo-Barriuso M, Villegas Pérez MP. Light-induced retinal degeneration causes a transient downregulation of melanopsin in the rat retina. Exp Eye Res 2017; 161:10-16. [PMID: 28552384 DOI: 10.1016/j.exer.2017.05.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/03/2017] [Accepted: 05/18/2017] [Indexed: 12/16/2022]
Abstract
In this work we study the effects of an acute light-induced retinal degeneration on the population of melanopsin positive retinal ganglion cells (m+RGCs) and the expression of the melanopsin protein in the retina. The m+RGCs may be more resistant than other RGCs to lesion, but the effects of an acute light exposure in this population are unknown. Albino rats were exposed to white light (3000 lux) continuously for 48 h and processed 0, 3, 7 or 30 days after light exposure (ALE). Whole-mounted retinas were immunodetected with antibodies against melanopsin, Brn3a, and rhodopsin to study the populations of m+RGC, Brn3a+RGC and rods (which are the most abundant photoreceptors in the rat retina). Three days ALE there was substantial rod loss in an arciform area of the superior retina and with time this loss expanded in the form of rings all throughout the retina. Light exposure did not affect the number of Brn3a+RGCs but diminished the numbers of m+RGCs. Immediately ALE there was a significant decrease in the mean number of immunodetected m+RGCs that was more marked in the superior retina. Later, the number of m+RGCs increased progressively and reached normal values one month ALE. Western blot analysis showed that melanopsin expression down-regulates shortly ALE and recovers thereafter, in accordance with the anatomical data. This study demonstrates that there is a transient downregulation of melanopsin expression in the RGCs during the first month ALE. Further studies would be needed to clarify the long-term effect of light exposure on the m+RGC population.
Collapse
Affiliation(s)
- Diego García-Ayuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Spain.
| | - Caridad Galindo-Romero
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Spain
| | - Johnny Di Pierdomenico
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Spain
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Spain
| | - Marta Agudo-Barriuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Spain
| | - María P Villegas Pérez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Spain.
| |
Collapse
|
18
|
Vidal-Sanz M, Galindo-Romero C, Valiente-Soriano FJ, Nadal-Nicolás FM, Ortin-Martinez A, Rovere G, Salinas-Navarro M, Lucas-Ruiz F, Sanchez-Migallon MC, Sobrado-Calvo P, Aviles-Trigueros M, Villegas-Pérez MP, Agudo-Barriuso M. Shared and Differential Retinal Responses against Optic Nerve Injury and Ocular Hypertension. Front Neurosci 2017; 11:235. [PMID: 28491019 PMCID: PMC5405145 DOI: 10.3389/fnins.2017.00235] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/07/2017] [Indexed: 12/05/2022] Open
Abstract
Glaucoma, one of the leading causes of blindness worldwide, affects primarily retinal ganglion cells (RGCs) and their axons. The pathophysiology of glaucoma is not fully understood, but it is currently believed that damage to RGC axons at the optic nerve head plays a major role. Rodent models to study glaucoma include those that mimic either ocular hypertension or optic nerve injury. Here we review the anatomical loss of the general population of RGCs (that express Brn3a; Brn3a+RGCs) and of the intrinsically photosensitive RGCs (that express melanopsin; m+RGCs) after chronic (LP-OHT) or acute (A-OHT) ocular hypertension and after complete intraorbital optic nerve transection (ONT) or crush (ONC). Our studies show that all of these insults trigger RGC death. Compared to Brn3a+RGCs, m+RGCs are more resilient to ONT, ONC, and A-OHT but not to LP-OHT. There are differences in the course of RGC loss both between these RGC types and among injuries. An important difference between the damage caused by ocular hypertension or optic nerve injury appears in the outer retina. Both axotomy and LP-OHT induce selective loss of RGCs but LP-OHT also induces a protracted loss of cone photoreceptors. This review outlines our current understanding of the anatomical changes occurring in rodent models of glaucoma and discusses the advantages of each one and their translational value.
Collapse
Affiliation(s)
- Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la ArrixacaMurcia, Spain
| | - Caridad Galindo-Romero
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la ArrixacaMurcia, Spain
| | - Francisco J Valiente-Soriano
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la ArrixacaMurcia, Spain
| | - Francisco M Nadal-Nicolás
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la ArrixacaMurcia, Spain
| | - Arturo Ortin-Martinez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la ArrixacaMurcia, Spain
| | - Giuseppe Rovere
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la ArrixacaMurcia, Spain
| | - Manuel Salinas-Navarro
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la ArrixacaMurcia, Spain
| | - Fernando Lucas-Ruiz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la ArrixacaMurcia, Spain
| | - Maria C Sanchez-Migallon
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la ArrixacaMurcia, Spain
| | - Paloma Sobrado-Calvo
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la ArrixacaMurcia, Spain
| | - Marcelino Aviles-Trigueros
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la ArrixacaMurcia, Spain
| | - María P Villegas-Pérez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la ArrixacaMurcia, Spain
| | - Marta Agudo-Barriuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la ArrixacaMurcia, Spain
| |
Collapse
|
19
|
Time-Dependent Nerve Growth Factor Signaling Changes in the Rat Retina During Optic Nerve Crush-Induced Degeneration of Retinal Ganglion Cells. Int J Mol Sci 2017; 18:ijms18010098. [PMID: 28067793 PMCID: PMC5297732 DOI: 10.3390/ijms18010098] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/20/2016] [Accepted: 12/24/2016] [Indexed: 01/06/2023] Open
Abstract
Nerve growth factor (NGF) is suggested to be neuroprotective after nerve injury; however, retinal ganglion cells (RGC) degenerate following optic-nerve crush (ONC), even in the presence of increased levels of endogenous NGF. To further investigate this apparently paradoxical condition, a time-course study was performed to evaluate the effects of unilateral ONC on NGF expression and signaling in the adult retina. Visually evoked potential and immunofluorescence staining were used to assess axonal damage and RGC loss. The levels of NGF, proNGF, p75NTR, TrkA and GFAP and the activation of several intracellular pathways were analyzed at 1, 3, 7 and 14 days after crush (dac) by ELISA/Western Blot and PathScan intracellular signaling array. The progressive RGC loss and nerve impairment featured an early and sustained activation of apoptotic pathways; and GFAP and p75NTR enhancement. In contrast, ONC-induced reduction of TrkA, and increased proNGF were observed only at 7 and 14 dac. We propose that proNGF and p75NTR contribute to exacerbate retinal degeneration by further stimulating apoptosis during the second week after injury, and thus hamper the neuroprotective effect of the endogenous NGF. These findings might aid in identifying effective treatment windows for NGF-based strategies to counteract retinal and/or optic-nerve degeneration.
Collapse
|
20
|
Non-amyloidogenic effects of α2 adrenergic agonists: implications for brimonidine-mediated neuroprotection. Cell Death Dis 2016; 7:e2514. [PMID: 27929541 PMCID: PMC5260990 DOI: 10.1038/cddis.2016.397] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 10/18/2016] [Accepted: 10/24/2016] [Indexed: 12/18/2022]
Abstract
The amyloid beta (Aβ) pathway is strongly implicated in neurodegenerative conditions such as Alzheimer's disease and more recently, glaucoma. Here, we identify the α2 adrenergic receptor agonists (α2ARA) used to lower intraocular pressure can prevent retinal ganglion cell (RGC) death via the non-amyloidogenic Aβ-pathway. Neuroprotective effects were confirmed in vivo and in vitro in different glaucoma-related models using α2ARAs brimonidine (BMD), clonidine (Clo) and dexmedetomidine. α2ARA treatment significantly reduced RGC apoptosis in experimental-glaucoma models by 97.7% and 92.8% (BMD, P<0.01) and 98% and 92.3% (Clo, P<0.01)) at 3 and 8 weeks, respectively. A reduction was seen in an experimental Aβ-induced neurotoxicity model (67% BMD and 88.6% Clo, both P<0.01, respectively), and in vitro, where α2ARAs significantly (P<0.05) prevented cell death, under both hypoxic (CoCl2) and stress (UV) conditions. In experimental-glaucoma, BMD induced ninefold and 25-fold and 36-fold and fourfold reductions in Aβ and amyloid precursor protein (APP) levels at 3 and 8 weeks, respectively, in the RGC layer, with similar results with Clo, and in vitro with all three α2ARAs. BMD significantly increased soluble APPα (sAPPα) levels at 3 and 8 weeks (2.1 and 1.6-fold) in vivo and in vitro with the CoCl2 and UV-light insults. Furthermore, treatment of UV-insulted cells with an sAPPα antibody significantly reduced cell viability compared with BMD-treated control (52%), co-treatment (33%) and untreated control (27%). Finally, we show that α2ARAs modulate levels of laminin and MMP-9 in RGCs, potentially linked to changes in Aβ through APP processing. Together, these results provide new evidence that α2ARAs are neuroprotective through their effects on the Aβ pathway and sAPPα, which to our knowledge, is the first description. Studies have identified the need for α-secretase activators and sAPPα-mimetics in neurodegeneration; α2ARAs, already clinically available, present a promising therapy, with applications not only to reducing RGC death in glaucoma but also other neurodegenerative processes involving Aβ.
Collapse
|
21
|
Luke MPS, LeVatte TL, Rutishauser U, Tremblay F, Clarke DB. Polysialylated Neural Cell Adhesion Molecule Protects Against Light-Induced Retinal Degeneration. Invest Ophthalmol Vis Sci 2016; 57:5066-5075. [PMID: 27661859 PMCID: PMC6012193 DOI: 10.1167/iovs.16-19499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Purpose We previously demonstrated that neural cell adhesion molecule (NCAM) plays an important role in supporting the survival of injured retinal ganglion cells. In the current study, we used light-induced retinal degeneration (LIRD) as a model to investigate whether NCAM plays a functional role in neuroprotection and whether NCAM influences p75NTR signaling in modulating retinal cell survival. Methods Retinas from wild-type (WT) and NCAM deficient (−/−) mice were tested by electroretinogram before and after LIRD, and changes in the protein expressions of NCAM, polysialic acid (PSA)-NCAM, p75NTR, and active caspase 3 were measured by immunoblot from 0 to 4 days after light induction. The effects of NCAM and PSA-NCAM on p75NTR were examined by intraocular injections of the p75NTR function-blocking antibody and/or the removal of PSA with endoneuraminidase-N prior to LIRD. Results In WT mice, low levels of active caspase 3 activation were detected on the first day, followed by increases up to 4 days after LIRD. Conversely, in NCAM−/− mice, higher cleaved caspase 3 levels along with rapid reductions in electroretinogram amplitudes were found earlier at day 1, followed by reduced levels by day 4. The removal of PSA prior to LIRD induced earlier onset of retinal cell death, an effect delayed by the coadministration of endoneuraminidase-N and the p75NTR function-blocking antibody antiserum. Conclusions These results indicate that NCAM protects WT retinas from LIRD; furthermore, the protective effect of NCAM is, at least in part, attributed to its effects on p75NTR.
Collapse
Affiliation(s)
- Margaret Po-Shan Luke
- Department of Medical Neuroscience, Dalhousie University, Life Science Research Institute, Halifax, Nova Scotia, Canada
| | - Terry L LeVatte
- Department of Medical Neuroscience, Dalhousie University, Life Science Research Institute, Halifax, Nova Scotia, Canada
| | - Urs Rutishauser
- Cellular and Developmental Neuroscience, Department of Cell Biology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York, United States
| | - François Tremblay
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada 4Department of Ophthalmology & Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - David B Clarke
- Department of Medical Neuroscience, Dalhousie University, Life Science Research Institute, Halifax, Nova Scotia, Canada 4Department of Ophthalmology & Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada 5Department of Surgery (Neurosurgery), Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
22
|
Galindo-Romero C, Harun-Or-Rashid M, Jiménez-López M, Vidal-Sanz M, Agudo-Barriuso M, Hallböök F. Neuroprotection by α2-Adrenergic Receptor Stimulation after Excitotoxic Retinal Injury: A Study of the Total Population of Retinal Ganglion Cells and Their Distribution in the Chicken Retina. PLoS One 2016; 11:e0161862. [PMID: 27611432 PMCID: PMC5017579 DOI: 10.1371/journal.pone.0161862] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/14/2016] [Indexed: 11/28/2022] Open
Abstract
We have studied the effect of α2-adrenergic receptor stimulation on the total excitotoxically injured chicken retinal ganglion cell population. N-methyl-D-aspartate (NMDA) was intraocularly injected at embryonic day 18 and Brn3a positive retinal ganglion cells (Brn3a+ RGCs) were counted in flat-mounted retinas using automated routines. The number and distribution of the Brn3a+ RGCs were analyzed in series of normal retinas from embryonic day 8 to post-hatch day 11 retinas and in retinas 7 or 14 days post NMDA lesion. The total number of Brn3a+ RGCs in the post-hatch retina was approximately 1.9x106 with a density of approximately 9.2x103 cells/mm2. The isodensity maps of normal retina showed that the density decreased with age as the retinal size increased. In contrast to previous studies, we did not find any specific region with increased RGC density, rather the Brn3a+ RGCs were homogeneously distributed over the central retina with decreasing density in the periphery and in the region of the pecten oculli. Injection of 5–10 μg NMDA caused 30–50% loss of Brn3a+ cells and the loss was more severe in the dorsal than in the ventral retina. Pretreatment with brimonidine reduced the loss of Brn3a+ cells both 7 and 14 days post lesion and the protective effect was higher in the dorsal than in the ventral retina. We conclude that α2-adrenergic receptor stimulation reduced the impact of the excitotoxic injury in chicken similarly to what has been shown in mammals. Furthermore, the data show that the RGCs are evenly distributed over in the retina, which challenges previous results that indicate the presence of specific high RGC-density regions of the chicken retina.
Collapse
Affiliation(s)
- Caridad Galindo-Romero
- Department of Neuroscience, Uppsala University, Box 593, 751 24 Uppsala, Sweden
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca) and Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | | | - Manuel Jiménez-López
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca) and Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | - Manuel Vidal-Sanz
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca) and Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | - Marta Agudo-Barriuso
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca) and Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | - Finn Hallböök
- Department of Neuroscience, Uppsala University, Box 593, 751 24 Uppsala, Sweden
- * E-mail:
| |
Collapse
|
23
|
Yukita M, Omodaka K, Machida S, Yasuda M, Sato K, Maruyama K, Nishiguchi KM, Nakazawa T. Brimonidine Enhances the Electrophysiological Response of Retinal Ganglion Cells through the Trk-MAPK/ERK and PI3K Pathways in Axotomized Eyes. Curr Eye Res 2016; 42:125-133. [PMID: 27314704 DOI: 10.3109/02713683.2016.1153112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE To investigate changes in retinal ganglion cell (RGC) activity by measuring the positive scotopic threshold response (pSTR) of the electroretinogram (ERG) in axotomized eyes after brimonidine injection. METHODS In 50 adult Sprague-Dawley rats, the left eye was axotomized and injected with phosphate buffered saline (PBS) or brimonidine and the contralateral right eye was left untreated. Scotopic ERGs were recorded simultaneously from both eyes on days 1, 2, 3, 7, and 10 after the intravitreal injection, and the amplitude of the a- and b-waves and the pSTR were measured. Surviving RGCs in the flat-mounted retinas were counted 10 days after axotomy. In addition to brimonidine, K252a (an inhibitor of tyrosine kinase phosphorylation of the Trk receptors), U0126 (a MAPK/ERK kinase inhibitor), and LY294002 (phosphoinositide 3-kinases [PI3Ks]) were also injected intravitreally into the left eye, and ERGs were recorded using the same protocol. RESULTS The pSTR amplitude increased significantly in the axotomized eyes with brimonidine, to 122.9 ± 5.0%, 161.8 ± 8.3%, and 133.6 ± 8.1% on days 1, 2, and 3 (P < 0.01), respectively, compared to the axotomized eyes treated with PBS (control). The increased pSTR amplitude returned to normal (103.6 ± 6.7%) on day 7, although there were a greater number of surviving RGCs in the treatment groups than in the controls. The intravitreal injection of K252a, U0126, or LY294002 significantly attenuated the increase in pSTR induced by intravitreal brimonidine (P < 0.01). CONCLUSION Intravitreal brimonidine enhanced the survival and electrophysiological activity of the RGCs in rats. The mechanism of this electrophysiological change may involve activation of the Trk-MAPK/ERK and Trk-PI3K signals.
Collapse
Affiliation(s)
- Masayoshi Yukita
- a Department of Ophthalmology , Tohoku University Graduate School of Medicine , Sendai , Japan
| | - Kazuko Omodaka
- a Department of Ophthalmology , Tohoku University Graduate School of Medicine , Sendai , Japan
| | - Shigeki Machida
- b Department of Ophthalmology , Koshigaya Hospital, Dokkyo Medical University , Koshigaya , Japan.,c Department of Ophthalmology , Iwate Medical University School of Medicine , Morioka , Japan
| | - Masayuki Yasuda
- a Department of Ophthalmology , Tohoku University Graduate School of Medicine , Sendai , Japan
| | - Kota Sato
- a Department of Ophthalmology , Tohoku University Graduate School of Medicine , Sendai , Japan
| | - Kazuichi Maruyama
- a Department of Ophthalmology , Tohoku University Graduate School of Medicine , Sendai , Japan
| | - Koji M Nishiguchi
- d Department of Advanced Ophthalmic Medicine , Tohoku University Graduate School of Medicine , Sendai , Japan
| | - Toru Nakazawa
- a Department of Ophthalmology , Tohoku University Graduate School of Medicine , Sendai , Japan.,d Department of Advanced Ophthalmic Medicine , Tohoku University Graduate School of Medicine , Sendai , Japan.,e Department of Retinal Disease Control , Tohoku University Graduate School of Medicine , Sendai , Japan
| |
Collapse
|
24
|
Vidal-Sanz M, Valiente-Soriano FJ, Ortín-Martínez A, Nadal-Nicolás FM, Jiménez-López M, Salinas-Navarro M, Alarcón-Martínez L, García-Ayuso D, Avilés-Trigueros M, Agudo-Barriuso M, Villegas-Pérez MP. Retinal neurodegeneration in experimental glaucoma. PROGRESS IN BRAIN RESEARCH 2015; 220:1-35. [PMID: 26497783 DOI: 10.1016/bs.pbr.2015.04.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In rats and mice, limbar tissues of the left eye were laser-photocoagulated (LP) and ocular hypertension (OHT) effects were investigated 1 week to 6 months later. To investigate the innermost layers, retinas were examined in wholemounts using tracing from the superior colliculi to identify retinal ganglion cells (RGCs) with intact retrograde axonal transport, melanopsin immunodetection to identify intrinsically photosensitive RGCs (m(+)RGC), Brn3a immunodetection to identify most RGCs but not m(+)RGCs, RECA1 immunodetection to examine the inner retinal vessels, and DAPI staining to detect all nuclei in the GC layer. The outer retinal layers (ORLs) were examined in cross sections analyzed morphometrically or in wholemounts to study S- and L-cones. Innervation of the superior colliculi was examined 10 days to 14 weeks after LP with orthogradely transported cholera toxin subunit B. By 2 weeks, OHT resulted in pie-shaped sectors devoid of FG(+)RGCs or Brn3a(+)RGCs but with large numbers of DAPI(+)nuclei. Brn3a(+)RGCs were significantly greater than FG(+)RGCs, indicating the survival of large numbers of RGCs with their axonal transport impaired. The inner retinal vasculature showed no abnormalities that could account for the sectorial loss of RGCs. m(+)RGCs decreased to approximately 50-51% in a diffuse loss across the retina. Cross sections showed focal areas of degeneration in the ORLs. RGC loss at 1m diminished to 20-25% and did not progress further with time, whereas the S- and L-cone populations diminished progressively up to 6m. The retinotectal projection was reduced by 10 days and did not progress further. LP-induced OHT results in retrograde degeneration of RGCs and m(+)RGCs, severe damage to the ORL, and loss of retinotectal terminals.
Collapse
Affiliation(s)
- Manuel Vidal-Sanz
- Departamento de Oftalmología, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.
| | - Francisco J Valiente-Soriano
- Departamento de Oftalmología, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Arturo Ortín-Martínez
- Departamento de Oftalmología, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Francisco M Nadal-Nicolás
- Departamento de Oftalmología, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Manuel Jiménez-López
- Departamento de Oftalmología, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Manuel Salinas-Navarro
- Departamento de Oftalmología, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Luis Alarcón-Martínez
- Departamento de Oftalmología, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Diego García-Ayuso
- Departamento de Oftalmología, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Marcelino Avilés-Trigueros
- Departamento de Oftalmología, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Marta Agudo-Barriuso
- Departamento de Oftalmología, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Maria P Villegas-Pérez
- Departamento de Oftalmología, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| |
Collapse
|
25
|
Ramírez AI, Salazar JJ, de Hoz R, Rojas B, Gallego BI, Salobrar-García E, Valiente-Soriano FJ, Triviño A, Ramirez JM. Macro- and microglial responses in the fellow eyes contralateral to glaucomatous eyes. PROGRESS IN BRAIN RESEARCH 2015; 220:155-72. [PMID: 26497789 DOI: 10.1016/bs.pbr.2015.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Most studies employing experimental models of unilateral glaucoma have used the normotensive contralateral eye as the normal control. However, some studies have recently reported the activation of the retinal macroglia and microglia in the uninjured eye, suggesting that the eye contralateral to experimental glaucoma should not be used as a control. This review analyzes the studies describing the contralateral findings and discusses some of the routes through which the signals can reach the contralateral eye to initiate the glial reactivation.
Collapse
Affiliation(s)
- Ana I Ramírez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Spain.
| | - Juan J Salazar
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Spain
| | - Rosa de Hoz
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Spain
| | - Blanca Rojas
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Departamento de Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid, Spain
| | - Beatriz I Gallego
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Spain
| | - Elena Salobrar-García
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Spain
| | - Francisco J Valiente-Soriano
- Laboratorio de Oftalmología Experimental, Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Spain
| | - Alberto Triviño
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Departamento de Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid, Spain
| | - José M Ramirez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Departamento de Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid, Spain
| |
Collapse
|
26
|
Nadal-Nicolás FM, Valiente-Soriano FJ, Salinas-Navarro M, Jiménez-López M, Vidal-Sanz M, Agudo-Barriuso M. Retino-retinal projection in juvenile and young adult rats and mice. Exp Eye Res 2015; 134:47-52. [PMID: 25797477 DOI: 10.1016/j.exer.2015.03.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 01/21/2023]
Abstract
Identification of retino-retinal projecting RGCs (ret-ret RGCs) has been accomplished by tracing RGCs in one retina after intravitreal injection of different tracers in the other eye. In mammals, rabbit and rat, ret-ret RGCs are scarce and more abundant in newborn than in adult animals. To our knowledge, ret-ret RGCs have not been studied in mice. Here we purpose to revisit the presence of ret-ret RGCs in juvenile and young adult rats and mice by using retrograde tracers applied to the contralateral optic nerve instead of intravitreally. In P20 (juvenile) and P60 (young adult) animals, the left optic nerve was intraorbitally transected and Fluorogold (rats) or its analogue OHSt (mice) were applied onto its distal stump. P20 animals were sacrificed 3 (mice) or 5 (rats) days later and adult animals at 5 (mice) or 7 (rats) days. Right retinas were dissected as flat-mounts and double immunodetected for Brn3a and melanopsin. Ret-ret RGCs were those with tracer accumulation in their somas. Out of them some expressed Brn3a and/or melanopsin, while other were negative for both markers. In young adult rats, we found 2 ret-ret RGCs displaced to the inner nuclear layer. In both species, ret-ret RGCs are quite scarce and found predominantly in the nasal retina. In juvenile animals there are significantly more ret-ret RGCs (9 ± 3, rats, 13 ± 3 mice) than in young adult ones (5 ± 6 rats, 7 ± 3 mice). Finally, juvenile and young adult mice have more ret-ret RGCs than rats.
Collapse
Affiliation(s)
- F M Nadal-Nicolás
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain; Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | - F J Valiente-Soriano
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain; Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | - M Salinas-Navarro
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain; Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | - M Jiménez-López
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain; Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | - M Vidal-Sanz
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain; Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain.
| | - M Agudo-Barriuso
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain; Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain.
| |
Collapse
|
27
|
Ortín-Martínez A, Salinas-Navarro M, Nadal-Nicolás FM, Jiménez-López M, Valiente-Soriano FJ, García-Ayuso D, Bernal-Garro JM, Avilés-Trigueros M, Agudo-Barriuso M, Villegas-Pérez MP, Vidal-Sanz M. Laser-induced ocular hypertension in adult rats does not affect non-RGC neurons in the ganglion cell layer but results in protracted severe loss of cone-photoreceptors. Exp Eye Res 2015; 132:17-33. [PMID: 25576772 DOI: 10.1016/j.exer.2015.01.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/19/2014] [Accepted: 01/07/2015] [Indexed: 01/09/2023]
Abstract
To investigate the long-term effects of laser-photocoagulation (LP)-induced ocular hypertension (OHT) in the innermost and outermost (outer-nuclear and outer segment)-retinal layers (ORL). OHT was induced in the left eye of adult rats. To investigate the ganglion cell layer (GCL) wholemounts were examined at 1, 3 or 6 months using Brn3a-immunodetection to identify retinal ganglion cells (RGCs) and DAPI-staining to detect all nuclei in this layer. To study the effects of LP on the ORL up to 6 months, retinas were: i) fresh extracted to quantify the levels of rod-, S- and L-opsin; ii) cut in cross-sections for morphometric analysis, or; iii) prepared as wholemounts to quantify and study retinal distributions of entire populations of RGCs (retrogradely labeled with fluorogold, FG), S- and L-cones (immunolabeled). OHT resulted in wedge-like sectors with their apex on the optic disc devoid of Brn3a(+)RGCs but with large numbers of DAPI(+)nuclei. The levels of all opsins diminished by 2 weeks and further decreased to 20% of basal-levels by 3 months. Cross-sections revealed focal areas of ORL degeneration. RGC survival at 15 days represented approximately 28% and did not change with time, whereas the S- and L-cone populations diminished to 65% and 80%, or to 20 and 35% at 1 or 6 months, respectively. In conclusion, LP induces in the GCL selective RGCs loss that does not progress after 1 month, and S- and L-cone loss that progresses for up to 6 months. Thus, OHT results in severe damage to both the innermost and the ORL.
Collapse
Affiliation(s)
- Arturo Ortín-Martínez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), 30100 Murcia, Spain
| | - Manuel Salinas-Navarro
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), 30100 Murcia, Spain
| | - Francisco Manuel Nadal-Nicolás
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), 30100 Murcia, Spain
| | - Manuel Jiménez-López
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), 30100 Murcia, Spain
| | - Francisco Javier Valiente-Soriano
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), 30100 Murcia, Spain
| | - Diego García-Ayuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), 30100 Murcia, Spain
| | - José Manuel Bernal-Garro
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), 30100 Murcia, Spain
| | - Marcelino Avilés-Trigueros
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), 30100 Murcia, Spain
| | - Marta Agudo-Barriuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), 30100 Murcia, Spain
| | - María Paz Villegas-Pérez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), 30100 Murcia, Spain
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), 30100 Murcia, Spain.
| |
Collapse
|
28
|
Ortín-Martínez A, Valiente-Soriano FJ, García-Ayuso D, Alarcón-Martínez L, Jiménez-López M, Bernal-Garro JM, Nieto-López L, Nadal-Nicolás FM, Villegas-Pérez MP, Wheeler LA, Vidal-Sanz M. A novel in vivo model of focal light emitting diode-induced cone-photoreceptor phototoxicity: neuroprotection afforded by brimonidine, BDNF, PEDF or bFGF. PLoS One 2014; 9:e113798. [PMID: 25464513 PMCID: PMC4252057 DOI: 10.1371/journal.pone.0113798] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 10/30/2014] [Indexed: 11/19/2022] Open
Abstract
We have investigated the effects of light-emitting diode (LED)-induced phototoxicity (LIP) on cone-photoreceptors and their protection with brimonidine (BMD), brain-derived neurotrophic factor (BDNF), pigment epithelium-derived factor (PEDF), ciliary neurotrophic factor (CNTF) or basic fibroblast growth factor (bFGF). In anesthetized, dark adapted, adult albino rats a blue (400 nm) LED was placed perpendicular to the cornea (10 sec, 200 lux) and the effects were investigated using Spectral Domain Optical Coherence Tomography (SD-OCT) and/or analysing the retina in oriented cross-sections or wholemounts immune-labelled for L- and S-opsin and counterstained with the nuclear stain DAPI. The effects of topical BMD (1%) or, intravitreally injected BDNF (5 µg), PEDF (2 µg), CNTF (0.4 µg) or bFGF (1 µg) after LIP were examined on wholemounts at 7 days. SD-OCT showed damage in a circular region of the superotemporal retina, whose diameter varied from 1,842.4±84.5 µm (at 24 hours) to 1,407.7±52.8 µm (at 7 days). This region had a progressive thickness diminution from 183.4±5 µm (at 12 h) to 114.6±6 µm (at 7 d). Oriented cross-sections showed within the light-damaged region of the retina massive loss of rods and cone-photoreceptors. Wholemounts documented a circular region containing lower numbers of L- and S-cones. Within a circular area (1 mm or 1.3 mm radius, respectively) in the left and in its corresponding region of the contralateral-fellow-retina, total L- or S-cones were 7,118±842 or 661±125 for the LED exposed retinas (n = 7) and 14,040±1,860 or 2,255±193 for the fellow retinas (n = 7), respectively. BMD, BDNF, PEDF and bFGF but not CNTF showed significant neuroprotective effects on L- or S-cones. We conclude that LIP results in rod and cone-photoreceptor loss, and is a reliable, quantifiable model to study cone-photoreceptor degeneration. Intravitreal BDNF, PEDF or bFGF, or topical BMD afford significant cone neuroprotection in this model.
Collapse
Affiliation(s)
- Arturo Ortín-Martínez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Francisco Javier Valiente-Soriano
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Diego García-Ayuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Luis Alarcón-Martínez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Manuel Jiménez-López
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - José Manuel Bernal-Garro
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Leticia Nieto-López
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Francisco Manuel Nadal-Nicolás
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - María Paz Villegas-Pérez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Larry A. Wheeler
- Zeteo Drug Discovery LLC, Irvine, California, United States of America
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| |
Collapse
|
29
|
Dysregulation of neurotrophic and inflammatory systems accompanied by decreased CREB signaling in ischemic rat retina. Exp Eye Res 2014; 125:156-63. [PMID: 24954538 DOI: 10.1016/j.exer.2014.06.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 05/30/2014] [Accepted: 06/03/2014] [Indexed: 12/22/2022]
Abstract
Although permanent bilateral common carotid artery occlusion (2VO) has been demonstrated to induce retinal injury, there is still a lack of systematic research on the complex processing of retinal degeneration. In the present study, time-dependent (at three, 14, 60 days after 2VO surgery) changes of neurotrophic and inflammatory systems, as well as cAMP-responsive element binding protein (CREB) signaling, which has been previously reported to effectively regulate these two systems, were evaluated. First, a morphological study confirmed that 2VO surgery progressively induced severe inner retinal degeneration and down-regulation of synaptic proteins, PSD95 and synaptophysin. The mRNA or protein levels of neurotrophic factors (NGF, BDNF, NT-3 and GDNF) and their receptors (TrkA, TrkB and TrkC) showed marked and persistent down-regulation in the rat retina since three days after 2VO surgery, whereas the gene transcription levels of CNTF were increased and p75(NTR) mRNA levels remained unchanged. In contrast to inner retinal degeneration, retinal Müller cells displayed rapid and prolonged activation since three days after 2VO lesion, whereas the microglia cell number, and TNF-α and IL-1β levels showed a robust increase with a maximal effect at three days and returned to levels that were slightly over baseline at 14 and 60 days after 2VO lesion. Interestingly, the gene expression levels of iNOS significantly decreased in the rat retina at both three and 14 days after 2VO surgery. Finally, as we hypothesized, remarkable reduction of CREB and extracellular signal-regulated kinase (ERK) phosphorylation levels were observed in the rat retina at three days after 2VO surgery. Thus, for the first time, our study demonstrated that chronic ischemia induced long-term aberrant CREB signaling and time-dependent progressive dysregulation of neurotrophic and inflammatory systems in the retina, which may provide important clues for a better understanding of the pathogenesis of retinal ischemic damage.
Collapse
|
30
|
Gencer B, Karaca T, Tufan HA, Kara S, Arikan S, Toman H, Karaboga I, Hanci V. The protective effects of dexmedetomidine against apoptosis in retinal ischemia/reperfusion injury in rats. Cutan Ocul Toxicol 2014; 33:283-8. [PMID: 24517497 DOI: 10.3109/15569527.2013.857677] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Dexmedetomidine is an alpha 2 adrenoceptor agonist and can be used for postoperative sedation, analgesia and anesthesia-sparing properties. Furthermore, the neuroprotective effects against ischemia/reperfusion (I/R) injury in the central nervous system have been shown in experimental studies. This study aimed to investigate the protective effects of dexmedetomidine against apoptosis in retinal I/R injury in the rat. MATERIALS AND METHODS Retinal I/R injury was induced by transient elevation of intraocular pressure. Eighteen animals were divided into three groups (n = 6): sham, I/R and treatment. The I/R injury and protective effects of the dexmedetomidine were evaluated by retinal thickness determined by histological sections, terminal deoxynucleotidyl transferase-mediated biotin-deoxyuridine triphosphate nick-end labeling (TUNEL) and immunohistochemistry of caspases 3. RESULTS A decrease in the retinal thickness and an increase in the apoptotic cells were found to be statistically significant in I/R and treatment groups when compared with the control group. However, in comparison with the I/R group we realized that the administration of dexmedetomidine reduced the thinning of retinal thickness and also decreased the number of caspases 3 and TUNEL-positive cells. CONCLUSION Dexmedetomidine is protective against apoptosis in retinal I/R injury in rats.
Collapse
Affiliation(s)
- Baran Gencer
- Department of Ophthalmology, Faculty of Medicine, Canakkale 18 Mart University , Canakkale , Turkey
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Trophic factors in the pathogenesis and therapy for retinal degenerative diseases. Surv Ophthalmol 2014; 59:134-65. [PMID: 24417953 DOI: 10.1016/j.survophthal.2013.09.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 09/11/2013] [Accepted: 09/17/2013] [Indexed: 12/27/2022]
Abstract
Trophic factors are endogenously secreted proteins that act in an autocrine and/or paracrine fashion to affect vital cellular processes such as proliferation, differentiation, and regeneration, thereby maintaining overall cell homeostasis. In the eye, the major contributors of these molecules are the retinal pigment epithelial (RPE) and Müller cells. The primary paracrine targets of these secreted proteins include the photoreceptors and choriocapillaris. Retinal degenerative diseases such as age-related macular degeneration and retinitis pigmentosa are characterized by aberrant function and/or eventual death of RPE cells, photoreceptors, choriocapillaris, and other retinal cells. We discuss results of in vitro and in vivo animal studies in which candidate trophic factors, either singly or in combination, were used in an attempt to ameliorate photoreceptor and/or retinal degeneration. We also examine current trophic factor therapies as they relate to the treatment of retinal degenerative diseases in clinical studies.
Collapse
|
32
|
Chua B, Goldberg I. Neuroprotective agents in glaucoma therapy: recent developments and future directions. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.10.55] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Shen W, Zhu L, Lee SR, Chung SH, Gillies MC. Involvement of NT3 and P75(NTR) in photoreceptor degeneration following selective Müller cell ablation. J Neuroinflammation 2013; 10:137. [PMID: 24224958 PMCID: PMC3831588 DOI: 10.1186/1742-2094-10-137] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/01/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neurotrophins can regulate opposing functions that result in cell survival or apoptosis, depending on which form of the protein is secreted and which receptor and signaling pathway is activated. We have recently developed a transgenic model in which inducible and patchy Müller cell ablation leads to photoreceptor degeneration. This study aimed to examine the roles of mature neurotrophin-3 (NT3), pro-NT3 and p75 neurotrophin receptor (P75(NTR)) in photoreceptor degeneration in this model. METHODS Transgenic mice received tamoxifen to induce Müller cell ablation. Changes in the status of Müller and microglia cells as well as expression of mature NT3, pro-NT3 and P75(NTR) were examined by immunohistochemistry and Western blot analysis. Recombinant mature NT3 and an antibody neutralizing 75(NTR) were injected intravitreally 3 and 6 days after Müller cell ablation to examine their effects on photoreceptor degeneration and microglial activation. RESULTS We found that patchy loss of Müller cells was associated with activation of surviving Müller cells and microglial cells, concurrently with reduced expression of mature NT3 and upregulation of pro-NT3 and P75(NTR). Intravitreal injection of mature NT3 and a neutralizing antibody to P75NTR, either alone or in combination, attenuated photoreceptor degeneration and the beneficial effect was associated with inhibition of microglial activation. CONCLUSIONS Our data suggest that Müller cell ablation alters the balance between the protective and deleterious effects of mature NT3 and pro-NT3. Modulation of the neuroprotective action of mature NT3 and pro-apoptotic pro-NT3/P75(NTR) signaling may represent a novel pharmacological strategy for photoreceptor protection in retinal disease.
Collapse
Affiliation(s)
- Weiyong Shen
- Save Sight Institute, the University of Sydney, 8 Macquarie Street, Sydney 2000, Australia
| | - Ling Zhu
- Save Sight Institute, the University of Sydney, 8 Macquarie Street, Sydney 2000, Australia
| | - So-Ra Lee
- Save Sight Institute, the University of Sydney, 8 Macquarie Street, Sydney 2000, Australia
| | - Sook H Chung
- Save Sight Institute, the University of Sydney, 8 Macquarie Street, Sydney 2000, Australia
| | - Mark C Gillies
- Save Sight Institute, the University of Sydney, 8 Macquarie Street, Sydney 2000, Australia
| |
Collapse
|
34
|
Sagawa H, Terasaki H, Nakanishi K, Tokita Y, Watanabe M. Regeneration of optic nerve fibers with unoprostone, a prostaglandin-related antiglaucoma drug, in adult cats. Jpn J Ophthalmol 2013; 58:100-9. [PMID: 24129676 DOI: 10.1007/s10384-013-0282-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 08/26/2013] [Indexed: 01/01/2023]
Abstract
PURPOSE We investigated the effects of unoprostone on neurite extension of cultured retinal pieces and axonal regeneration of retinal ganglion cells in the crushed optic nerve of adult cats. METHODS The retinal pieces were cultured with unoprostone or its primary metabolite, M1, dissolved in DMSO or polysorbate for 14 days, and the number and length of Tau-1-positive neurites and glial processes labeled with anti-glial fibrillary acidic protein antibodies were examined. After the optic nerve was crushed, unoprostone was injected into the vitreous body and the crushed site. On day 12, wheat germ agglutinin-conjugated horseradish peroxidase was injected into the vitreous body to anterogradely label the regenerated axons. On day 14, the optic nerve was excised and longitudinally sectioned. After peroxidase reaction, the number of axons regenerating beyond the crush site was examined. RESULTS The greatest number of neurites protruded from the cultured retinal pieces in 3 μM unoprostone and 3 μM M1. The neurite length was also the longest at 3 μM unoprostone and 3 μM M1, in which no glial processes were detected. After injections of 3 μM unoprostone, the final concentration in the vitreous humor, into the vitreous body and the crush site, the optic nerve fibers regenerated and extended beyond the crush site. In contrast, almost no fibers extended beyond the crush site after injection of phosphate-buffered saline. CONCLUSIONS The results indicate that intravitreal injection of unoprostone promotes regeneration of crushed optic nerve fibers in adult cats.
Collapse
Affiliation(s)
- Hiroe Sagawa
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | |
Collapse
|
35
|
Fujita Y, Sato A, Yamashita T. Brimonidine promotes axon growth after optic nerve injury through Erk phosphorylation. Cell Death Dis 2013; 4:e763. [PMID: 23928702 PMCID: PMC3763459 DOI: 10.1038/cddis.2013.298] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/27/2013] [Accepted: 07/15/2013] [Indexed: 11/25/2022]
Abstract
It is well known that axons of the adult mammalian central nervous system have a very limited ability to regenerate after injury. Therefore, the neurodegenerative process of glaucoma results in irreversible functional deficits, such as blindness. Brimonidine (BMD) is an alpha2-adrenergic receptor agonist that is used commonly to lower intraocular pressure in glaucoma. Although it has been suggested that BMD has neuroprotective effects, the underlying mechanism remains unknown. In this study, we explored the molecular mechanism underlying the neuroprotective effect of BMD in an optic nerve injury (ONI) model. BMD treatment promoted optic nerve regeneration by inducing Erk1/2 phosphorylation after ONI. In addition, an Erk1/2 antagonist suppressed BMD-mediated axonal regeneration. A gene expression analysis revealed that the expression of the neurotrophin receptor gene p75 was increased and that the expression of the tropomyosin receptor kinase B (TrkB) gene was decreased after ONI. BMD treatment abrogated the changes in the expression of these genes. These results indicate that BMD promotes optic nerve regeneration via the activation of Erk1/2.
Collapse
Affiliation(s)
- Y Fujita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Osaka, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, 5 Sanbancho, Tokyo, Japan
| | - A Sato
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Osaka, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, 5 Sanbancho, Tokyo, Japan
| | - T Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Osaka, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, 5 Sanbancho, Tokyo, Japan
| |
Collapse
|
36
|
Cai J, Li J, Liu W, Han Y, Wang H. Alpha2-adrenergic receptors in spiral ganglion neurons may mediate protective effects of brimonidine and yohimbine against glutamate and hydrogen peroxide toxicity. Neuroscience 2013; 228:23-35. [DOI: 10.1016/j.neuroscience.2012.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 09/29/2012] [Accepted: 10/01/2012] [Indexed: 10/27/2022]
|
37
|
Kaneko E, Wada T, Minagawa Y, Inoue Y. [Pharmacological profile and clinical efficacy of brimonidine tartrate (AIPHAGAN(®) ophthalmic solution 0.1%)]. Nihon Yakurigaku Zasshi 2012; 140:177-182. [PMID: 23059902 DOI: 10.1254/fpj.140.177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
|
38
|
Changes in fibroblast growth factor-2 and FGF receptors in the frog visual system during optic nerve regeneration. J Chem Neuroanat 2012; 46:35-44. [PMID: 22940608 DOI: 10.1016/j.jchemneu.2012.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/15/2012] [Accepted: 08/16/2012] [Indexed: 02/02/2023]
Abstract
We have previously shown that application of fibroblast growth factor-2 (FGF-2) to cut optic nerve axons enhances retinal ganglion cell (RGC) survival in the adult frog visual system. These actions are mediated via activation of its high affinity receptor FGFR1, enhanced BDNF and TrkB expression, increased CREB phosphorylation, and by promoting MAPK and PKA signaling pathways. The role of endogenous FGF-2 in this system is less well understood. In this study, we determine the distribution of FGF-2 and its receptors in normal animals and in animals at different times after optic nerve cut. Immunohistochemistry and Western blot analysis were conducted using specific antibodies against FGF-2 and its receptors in control retinas and optic tecta, and after one, three, and six weeks post nerve injury. FGF-2 was transiently increased in the retina while it was reduced in the optic tectum just one week after optic nerve transection. Axotomy induced a prolonged upregulation of FGFR1 and FGFR3 in both retina and tectum. FGFR4 levels decreased in the retina shortly after axotomy, whereas a significant increase was detected in the optic tectum. FGFR2 distribution was not affected by the optic nerve lesion. Changes in the presence of these proteins after axotomy suggest a potential role during regeneration.
Collapse
|
39
|
Girmens JF, Sahel JA, Marazova K. Dry age-related macular degeneration: A currently unmet clinical need. Intractable Rare Dis Res 2012; 1:103-14. [PMID: 25343081 PMCID: PMC4204600 DOI: 10.5582/irdr.2012.v1.3.103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 07/25/2012] [Indexed: 01/08/2023] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of severe visual impairment and disability in older people worldwide. Although considerable advances in the management of the neovascular form of AMD have been made in the last decade, no therapy is yet available for the advanced dry form of AMD (geographic atrophy). This review focuses on current trends in the development of new therapies targeting specific pathophysiological pathways of dry AMD. Increased understanding of the complex mechanisms that underlie dry AMD will help to address this largely unmet clinical need.
Collapse
Affiliation(s)
- Jean-François Girmens
- French National Institute of Health and Medical Research, Paris, France
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, France
- Address correspondence to: Dr. Jean-François Girmens, Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, 28 rue de Charenton, 75571 Paris Cedex 12, France. E-mail:
| | - José-Alain Sahel
- French National Institute of Health and Medical Research, Paris, France
- French Academy of Sciences, Paris, France
| | - Katia Marazova
- French National Institute of Health and Medical Research, Paris, France
- National Center for Scientific Research, Paris, France
- Dr. Katia Marazova, Institut de la Vision, 17 rue Moreau, 75012 Paris, France. E-mail:
| |
Collapse
|
40
|
Ibáñez CF, Simi A. p75 neurotrophin receptor signaling in nervous system injury and degeneration: paradox and opportunity. Trends Neurosci 2012; 35:431-40. [DOI: 10.1016/j.tins.2012.03.007] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 03/15/2012] [Accepted: 03/15/2012] [Indexed: 12/28/2022]
|
41
|
Vidal-Sanz M, Salinas-Navarro M, Nadal-Nicolás FM, Alarcón-Martínez L, Valiente-Soriano FJ, Miralles de Imperial J, Avilés-Trigueros M, Agudo-Barriuso M, Villegas-Pérez MP. Understanding glaucomatous damage: Anatomical and functional data from ocular hypertensive rodent retinas. Prog Retin Eye Res 2012; 31:1-27. [DOI: 10.1016/j.preteyeres.2011.08.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/23/2011] [Accepted: 08/24/2011] [Indexed: 12/24/2022]
|
42
|
|
43
|
Abstract
New neurons continue to be produced in adult mammals, including humans, predominantly in the anterior subventricular zone of the lateral ventricle and the subgranular zone of the dentate gyrus. This update focuses on the emerging concept that adult CNS neurogenesis can be regulated by targeting neurotransmitter receptors, which, in turn, drive expression of crucial neurotrophic and growth factors. Such an approach might enable the development of pharmacological treatments that harness the endogenous potential of the CNS to replace lost cells in neurological disorders such as stroke and Alzheimer's and Huntington's diseases. This review samples in vivo studies in adult mammals from 2006 to mid-2008. It also provides some considerations for navigating toward translation to human disorders. Among them are the formidable problems of scaling up production of new neurons within the two "niches" of the brain and delivering sufficient numbers to distant degenerating regions for cell replacement. However, an expedition can only succeed if started.
Collapse
Affiliation(s)
- Theo Hagg
- Kentucky Spinal Cord Injury Research Center, Departments of Neurological Surgery and of Pharmacology and Toxicology, University of Louisville, Kentucky, USA.
| |
Collapse
|
44
|
Cooper NGF, Laabich A, Fan W, Wang X. The relationship between neurotrophic factors and CaMKII in the death and survival of retinal ganglion cells. PROGRESS IN BRAIN RESEARCH 2008; 173:521-40. [PMID: 18929132 DOI: 10.1016/s0079-6123(08)01136-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The scientific discourse relating to the causes and treatments for glaucoma are becoming reflective of the need to protect and preserve retinal neurons from degenerative changes, which result from the injurious environment associated with this disease. Knowledge, in particular, of the signal transduction pathways which affect death and survival of the retinal ganglion cells is critical to this discourse and to the development of a suitable neurotherapeutic strategy for this disease. The goal of this chapter is to review what is known of the chief suspects involved in initiating the cell death/survival pathways in these cells, and what still remains to be uncovered. The least controversial aspect of the subject relates to the potential role of neurotrophic factors in the protection of the retinal ganglion cells. On the other hand, the postulated triggers for signaling cell death in glaucoma remain controversial. Certainly, the restricted flow of neurotrophic factors has been cited as one possible trigger. However, the connections between glaucoma and other factors present in the retina, such as glutamate, long held to be a prospective culprit in retinal ganglion cell death are still being questioned. Whatever the outcome of this particular debate, it is clear that the downstream intersections between the cell death and survival pathways should provide important foci for future studies whose goal is to protect retinal neurons, situated as they are, in the stressful environment of a cell destroying disease. The evidence for CaMKII being one of these intersecting points is discussed.
Collapse
Affiliation(s)
- N G F Cooper
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| | | | | | | |
Collapse
|