1
|
Yi M, Ji X, Chen C, Gao Z, Zhang S. Functional characterization of growth hormone releasing hormone and its receptor in amphioxus with implication for origin of hypothalamic-pituitary axis. Gen Comp Endocrinol 2024; 355:114560. [PMID: 38806133 DOI: 10.1016/j.ygcen.2024.114560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/13/2024] [Accepted: 05/25/2024] [Indexed: 05/30/2024]
Abstract
Growth hormone-releasing hormone (GHRH) has been widely shown to stimulate growth hormone (GH) production via binding to GHRH receptor GHRHR in various species of vertebrates, but information regarding the functional roles of GHRH and GHRHR in the protochordate amphioxus remains rather scarce. We showed here that two mature peptides, BjGHRH-1 and BjGHRH-2, encoded by BjGHRH precursor, and a single BjGHRHR protein were identified in the amphioxus Branchiostoma. japonicum. Like the distribution profiles of vertebrate GHRHs and GHRHRs, both the genes Bjghrh and Bjghrhr were widely expressed in the different tissues of amphioxus, including in the cerebral vesicle, Hatschek's pit, neural tube, gill, hepatic caecum, notochord, testis and ovary. Moreover, both BjGHRH-1 and BjGHRH-2 interacted with BjGHRHR, and triggered the cAMP/PKA signal pathway in a dose-dependent manner. Importantly, BjGHRH-1 and BjGHRH-2 were both able to activate the expression of GH-like gene in the cells of Hatschek's pit. These indicate that a functional vertebrate-like GHRH-GHRHR axis had already emerged in amphioxus, which is a seminal innovation making physiological divergence including reproduction, growth, metabolism, stress and osmoregulation possible during the early evolution of vertebrates.
Collapse
Affiliation(s)
- Mengmeng Yi
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Xiaohan Ji
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Chaoyi Chen
- University of Science and Technology of China, China
| | - Zhan Gao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| | - Shicui Zhang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Department of Marine Biology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, 266237 Qingdao, China.
| |
Collapse
|
2
|
Mallatt J. Vertebrate origins are informed by larval lampreys (ammocoetes): a response to Miyashita et al., 2021. Zool J Linn Soc 2022. [DOI: 10.1093/zoolinnean/zlac086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
This paper addresses a recent claim by Miyashita and co-authors that the filter-feeding larval lamprey is a new evolutionary addition to the lamprey life-cycle and does not provide information about early vertebrates, in contrast to the traditional view that this ammocoete stage resembles the first vertebrates. The evidence behind this revolutionary claim comes from fossil lampreys from 360–306 Mya that include young stages – even yolk-sac hatchlings – with adult (predacious) feeding structures. However, the traditional view is not so easily dismissed. The phylogeny on which the non-ammocoete theory is based was not tested in a statistically meaningful way. Additionally, the target article did not consider the known evidence for the traditional view, namely that the complex filter-feeding structures are highly similar in ammocoetes and the invertebrate chordates, amphioxus and tunicates. In further support of the traditional view, I show that ammocoetes are helpful for reconstructing the first vertebrates and the jawless, fossil stem gnathostomes called ostracoderms – their pharynx, oral cavity, mouth opening, lips and filter-feeding mode (but, ironically, not their mandibular/jaw region). From these considerations, I offer a scenario for the evolution of vertebrate life-cycles that fits the traditional, ammocoete-informed theory and puts filter feeding at centre stage.
Collapse
Affiliation(s)
- Jon Mallatt
- The University of Washington WWAMI Medical Education Program at The University of Idaho , Moscow, Idaho 83843 , USA
| |
Collapse
|
3
|
Cisek P. Evolution of behavioural control from chordates to primates. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200522. [PMID: 34957850 PMCID: PMC8710891 DOI: 10.1098/rstb.2020.0522] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
This article outlines a hypothetical sequence of evolutionary innovations, along the lineage that produced humans, which extended behavioural control from simple feedback loops to sophisticated control of diverse species-typical actions. I begin with basic feedback mechanisms of ancient mobile animals and follow the major niche transitions from aquatic to terrestrial life, the retreat into nocturnality in early mammals, the transition to arboreal life and the return to diurnality. Along the way, I propose a sequence of elaboration and diversification of the behavioural repertoire and associated neuroanatomical substrates. This includes midbrain control of approach versus escape actions, telencephalic control of local versus long-range foraging, detection of affordances by the dorsal pallium, diversified control of nocturnal foraging in the mammalian neocortex and expansion of primate frontal, temporal and parietal cortex to support a wide variety of primate-specific behavioural strategies. The result is a proposed functional architecture consisting of parallel control systems, each dedicated to specifying the affordances for guiding particular species-typical actions, which compete against each other through a hierarchy of selection mechanisms. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.
Collapse
Affiliation(s)
- Paul Cisek
- Department of Neuroscience, University of Montreal CP 6123 Succursale Centre-ville, Montréal, Québec, Canada H3C 3J7
| |
Collapse
|
4
|
Mallatt J, Feinberg TE. Multiple Routes to Animal Consciousness: Constrained Multiple Realizability Rather Than Modest Identity Theory. Front Psychol 2021; 12:732336. [PMID: 34630245 PMCID: PMC8497802 DOI: 10.3389/fpsyg.2021.732336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
The multiple realizability thesis (MRT) is an important philosophical and psychological concept. It says any mental state can be constructed by multiple realizability (MR), meaning in many distinct ways from different physical parts. The goal of our study is to find if the MRT applies to the mental state of consciousness among animals. Many things have been written about MRT but the ones most applicable to animal consciousness are by Shapiro in a 2004 book called The Mind Incarnate and by Polger and Shapiro in their 2016 work, The Multiple Realization Book. Standard, classical MRT has been around since 1967 and it says that a mental state can have very many different physical realizations, in a nearly unlimited manner. To the contrary, Shapiro's book reasoned that physical, physiological, and historical constraints force mental traits to evolve in just a few, limited directions, which is seen as convergent evolution of the associated neural traits in different animal lineages. This is his mental constraint thesis (MCT). We examined the evolution of consciousness in animals and found that it arose independently in just three animal clades-vertebrates, arthropods, and cephalopod mollusks-all of which share many consciousness-associated traits: elaborate sensory organs and brains, high capacity for memory, directed mobility, etc. These three constrained, convergently evolved routes to consciousness fit Shapiro's original MCT. More recently, Polger and Shapiro's book presented much the same thesis but changed its name from MCT to a "modest identity thesis." Furthermore, they argued against almost all the classically offered instances of MR in animal evolution, especially against the evidence of neural plasticity and the differently expanded cerebrums of mammals and birds. In contrast, we argue that some of these classical examples of MR are indeed valid and that Shapiro's original MCT correction of MRT is the better account of the evolution of consciousness in animal clades. And we still agree that constraints and convergence refute the standard, nearly unconstrained, MRT.
Collapse
Affiliation(s)
- Jon Mallatt
- The University of Washington WWAMI Medical Education Program at The University of Idaho, Moscow, ID, United States
| | - Todd E Feinberg
- Department of Psychiatry and Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
5
|
Abstract
This article proposes that biologically plausible theories of behavior can be constructed by following a method of "phylogenetic refinement," whereby they are progressively elaborated from simple to complex according to phylogenetic data on the sequence of changes that occurred over the course of evolution. It is argued that sufficient data exist to make this approach possible, and that the result can more effectively delineate the true biological categories of neurophysiological mechanisms than do approaches based on definitions of putative functions inherited from psychological traditions. As an example, the approach is used to sketch a theoretical framework of how basic feedback control of interaction with the world was elaborated during vertebrate evolution, to give rise to the functional architecture of the mammalian brain. The results provide a conceptual taxonomy of mechanisms that naturally map to neurophysiological and neuroanatomical data and that offer a context for defining putative functions that, it is argued, are better grounded in biology than are some of the traditional concepts of cognitive science.
Collapse
Affiliation(s)
- Paul Cisek
- Department of Neuroscience, University of Montréal, Montréal, Québec, Canada.
| |
Collapse
|
6
|
Baker ME, Lathe R. The promiscuous estrogen receptor: Evolution of physiological estrogens and response to phytochemicals and endocrine disruptors. J Steroid Biochem Mol Biol 2018; 184:29-37. [PMID: 30009950 DOI: 10.1016/j.jsbmb.2018.07.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 06/25/2018] [Accepted: 07/03/2018] [Indexed: 01/03/2023]
Abstract
Many actions of estradiol (E2), the principal physiological estrogen in vertebrates, are mediated by estrogen receptor-α (ERα) and ERβ. An important physiological feature of vertebrate ERs is their promiscuous response to several physiological steroids, including estradiol (E2), Δ5-androstenediol, 5α-androstanediol, and 27-hydroxycholesterol. A novel structural characteristic of Δ5-androstenediol, 5α-androstanediol, and 27-hydroxycholesterol is the presence of a C19 methyl group, which precludes the presence of an aromatic A ring with a C3 phenolic group that is a defining property of E2. The structural diversity of these estrogens can explain the response of the ER to synthetic chemicals such as bisphenol A and DDT, which disrupt estrogen physiology in vertebrates, and the estrogenic activity of a variety of plant-derived chemicals such as genistein, coumestrol, and resveratrol. Diversity in the A ring of physiological estrogens also expands potential structures of industrial chemicals that can act as endocrine disruptors. Compared to E2, synthesis of 27-hydroxycholesterol and Δ5-androstenediol is simpler, leading us, based on parsimony, to propose that one or both of these steroids or a related metabolite was a physiological estrogen early in the evolution of the ER, with E2 assuming this role later as the canonical estrogen. In addition to the well-studied role of the ER in reproductive physiology, the ER also is an important transcription factor in non-reproductive tissues such as the cardiovascular system, kidney, bone, and brain. Some of these ER actions in non-reproductive tissues appeared early in vertebrate evolution, long before the emergence of mammals.
Collapse
Affiliation(s)
- Michael E Baker
- Division of Nephrology-Hypertension, Department of Medicine, 0693, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0693, USA.
| | - Richard Lathe
- Division of Infection and Pathway Medicine, University of Edinburgh, Little France, Edinburgh, UK.
| |
Collapse
|
7
|
Somorjai IML, Martí-Solans J, Diaz-Gracia M, Nishida H, Imai KS, Escrivà H, Cañestro C, Albalat R. Wnt evolution and function shuffling in liberal and conservative chordate genomes. Genome Biol 2018; 19:98. [PMID: 30045756 PMCID: PMC6060547 DOI: 10.1186/s13059-018-1468-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/22/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND What impact gene loss has on the evolution of developmental processes, and how function shuffling has affected retained genes driving essential biological processes, remain open questions in the fields of genome evolution and EvoDevo. To investigate these problems, we have analyzed the evolution of the Wnt ligand repertoire in the chordate phylum as a case study. RESULTS We conduct an exhaustive survey of Wnt genes in genomic databases, identifying 156 Wnt genes in 13 non-vertebrate chordates. This represents the most complete Wnt gene catalog of the chordate subphyla and has allowed us to resolve previous ambiguities about the orthology of many Wnt genes, including the identification of WntA for the first time in chordates. Moreover, we create the first complete expression atlas for the Wnt family during amphioxus development, providing a useful resource to investigate the evolution of Wnt expression throughout the radiation of chordates. CONCLUSIONS Our data underscore extraordinary genomic stasis in cephalochordates, which contrasts with the liberal and dynamic evolutionary patterns of gene loss and duplication in urochordate genomes. Our analysis has allowed us to infer ancestral Wnt functions shared among all chordates, several cases of function shuffling among Wnt paralogs, as well as unique expression domains for Wnt genes that likely reflect functional innovations in each chordate lineage. Finally, we propose a potential relationship between the evolution of WntA and the evolution of the mouth in chordates.
Collapse
Affiliation(s)
- Ildikó M L Somorjai
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews, KY16 9ST, Scotland, UK.
- Scottish Oceans Institute, School of Biology, University of St Andrews, East Sands, St Andrews, KY16 8LB, Scotland, UK.
| | - Josep Martí-Solans
- Departament de Genètica, , Microbiologia i Estadística, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Miriam Diaz-Gracia
- Departament de Genètica, , Microbiologia i Estadística, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Kaoru S Imai
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Hector Escrivà
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650, Banyuls/Mer, France
| | - Cristian Cañestro
- Departament de Genètica, , Microbiologia i Estadística, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain.
| | - Ricard Albalat
- Departament de Genètica, , Microbiologia i Estadística, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
8
|
A Conserved Developmental Mechanism Builds Complex Visual Systems in Insects and Vertebrates. Curr Biol 2017; 26:R1001-R1009. [PMID: 27780043 DOI: 10.1016/j.cub.2016.08.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The visual systems of vertebrates and many other bilaterian clades consist of complex neural structures guiding a wide spectrum of behaviors. Homologies at the level of cell types and even discrete neural circuits have been proposed, but many questions of how the architecture of visual neuropils evolved among different phyla remain open. In this review we argue that the profound conservation of genetic and developmental steps generating the eye and its target neuropils in fish and fruit flies supports a homology between some core elements of bilaterian visual circuitries. Fish retina and tectum, and fly optic lobe, develop from a partitioned, unidirectionally proliferating neurectodermal domain that combines slowly dividing neuroepithelial stem cells and rapidly amplifying progenitors with shared genetic signatures to generate large numbers and different types of neurons in a temporally ordered way. This peculiar 'conveyor belt neurogenesis' could play an essential role in generating the topographically ordered circuitry of the visual system.
Collapse
|
9
|
Boutet A. The evolution of asymmetric photosensitive structures in metazoans and the Nodal connection. Mech Dev 2017; 147:49-60. [PMID: 28986126 DOI: 10.1016/j.mod.2017.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 07/26/2017] [Accepted: 09/25/2017] [Indexed: 01/12/2023]
Abstract
Asymmetries are observed in a great number of taxa in metazoans. More particularly, functional lateralization and neuroanatomical asymmetries within the central nervous system have been a matter of intense research for at least two hundred years. While asymmetries of some paired structures/organs (e.g. eyes, ears, kidneys, legs, arms) constitute random deviations from a pure bilateral symmetry, brain asymmetries such as those observed in the cortex and epithalamus are directional. This means that molecular and anatomical features located on one side of a given structure are observed in most individuals. For instance, in humans, the neuronal tract connecting the language areas is enlarged in the left hemisphere. When asymmetries are fixed, their molecular mechanisms can be studied using mutants displaying different phenotypes: left or right isomerism of the structure, reversed asymmetry or random asymmetry. Our understanding of asymmetry in the nervous system has been widely enriched thanks to the characterization of mutants affecting epithalamus asymmetry. Furthermore, two decades ago, pioneering studies revealed that a specific morphogen, Nodal, active only on one side of the embryo during development is an important molecule in asymmetry patterning. In this review, I have gathered important data bringing insight into the origin and evolution of epithalamus asymmetry and the role of Nodal in metazoans. After a short introduction on brain asymmetries (chapter I), I secondly focus on the molecular and anatomical characteristics of the epithalamus in vertebrates and explore some functional aspects such as its photosensitive ability related to the pineal complex (chapter II). Third, I discuss homology relationship of the parapineal organ among vertebrates (chapter III). Fourth, I discuss the possible origin of the epithalamus, presenting cells displaying photosensitive properties and/or asymmetry in the anterior part of the body in non-vertebrates (chapter IV). Finally, I report Nodal signaling expression data and functional experiments performed in different metazoan groups (chapter V).
Collapse
Affiliation(s)
- Agnès Boutet
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 8227, Laboratoire de Biologie Intégrative des Modèles Marins, Station Biologique, F-29688 Roscoff, France.
| |
Collapse
|
10
|
Bozzo M, Macrì S, Calzia D, Sgarra R, Manfioletti G, Ramoino P, Lacalli T, Vignali R, Pestarino M, Candiani S. The HMGA gene family in chordates: evolutionary perspectives from amphioxus. Dev Genes Evol 2017; 227:201-211. [PMID: 28474175 DOI: 10.1007/s00427-017-0581-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 04/24/2017] [Indexed: 02/07/2023]
Abstract
High mobility group A proteins of vertebrates, HMGA1 and 2, are chromatin architectural factors involved in development, cell differentiation, and neoplastic transformation. Here, we characterize an amphioxus HMGA gene ortholog and analyze its expression. As a basal chordate, amphioxus is well placed to provide insights into the evolution of the HMGA gene family, particularly in the transition from invertebrates to vertebrates. Our phylogenetic analysis supports the basal position of amphioxus, echinoderm, and hemichordate HMGA sequences to those of vertebrate HMGA1 and HMGA2. Consistent with this, the genomic landscape around amphioxus HMGA shares features with both. Whole mount in situ hybridization shows that amphioxus HMGA mRNA is detectable from neurula stage onwards in both nervous and non-nervous tissues. This correlates with protein expression monitored immunocytochemically using antibodies against human HMGA2 protein, revealing especially high levels of expression in cells of the lamellar body, the amphioxus homolog of the pineal, suggesting that the gene may have, among its many functions, an evolutionarily conserved role in photoreceptor differentiation.
Collapse
Affiliation(s)
- Matteo Bozzo
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita (DISTAV), Università di Genova, viale Benedetto XV 5, 16132, Genoa, Italy
| | - Simone Macrì
- Dipartimento di Biologia, Unità di Biologia Cellulare e dello Sviluppo, SS12 Abetone e Brennero 4, 56127, Pisa, Italy
- Institute of Biotechnology, University of Helsinki, Biocenter 3, Viikinkaari 1, PO box 65, FI-00014, Helsinki, Finland
| | - Daniela Calzia
- Laboratorio di Biochimica, Dipartimento di Farmacia (DIFAR), Università di Genova, viale Benedetto XV 3, 16132, Genoa, Italy
| | - Riccardo Sgarra
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via Giorgieri 5, 34127, Trieste, Italy
| | - Guidalberto Manfioletti
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via Giorgieri 5, 34127, Trieste, Italy
| | - Paola Ramoino
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita (DISTAV), Università di Genova, viale Benedetto XV 5, 16132, Genoa, Italy
| | - Thurston Lacalli
- Biology Department, University of Victoria, BC V8W-3N5, Victoria, Canada
| | - Robert Vignali
- Dipartimento di Biologia, Unità di Biologia Cellulare e dello Sviluppo, SS12 Abetone e Brennero 4, 56127, Pisa, Italy
| | - Mario Pestarino
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita (DISTAV), Università di Genova, viale Benedetto XV 5, 16132, Genoa, Italy
| | - Simona Candiani
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita (DISTAV), Università di Genova, viale Benedetto XV 5, 16132, Genoa, Italy.
| |
Collapse
|
11
|
Lacalli T, Candiani S. Locomotory control in amphioxus larvae: new insights from neurotransmitter data. EvoDevo 2017; 8:4. [PMID: 28239444 PMCID: PMC5314712 DOI: 10.1186/s13227-017-0067-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/03/2017] [Indexed: 11/25/2022] Open
Abstract
Amphioxus larvae have a midbrain-level locomotory control center whose overall organization is known from serial TEM reconstructions. How it functions has been a puzzle, owing to uncertainty as to the transmitters used by each class of neurons, but this has recently become clearer. We summarize what is now known, and correct past misconceptions: The large paired neurons at the core of the control center are glutamatergic, and hence excitatory, the commissural neurons are GABAergic, hence probably inhibitory, and both motoneurons and ipsilateral projection neurons are cholinergic, suggesting that the latter, a class of interneurons, may be derived evolutionarily from the former. The data clarify some aspects of how fast and slow swimming are controlled and prevented from interfering with one another, but leave open the source of pacemaker activity, which could reside in the large paired neurons or circuits associated with them. A unusual type of non-synaptic junction links the fast and slow systems, but how these junctions function is open to interpretation, depending chiefly on whether they act to couple adjacent cells independent of cell type, or can have differential effects that vary with cell type. Some evolutionary implications are discussed.
Collapse
Affiliation(s)
| | - Simona Candiani
- Laboratory of Developmental Neurobiology, DISTAV, Università di Genova, Genoa, Italy
| |
Collapse
|
12
|
Kusakabe TG. Identifying Vertebrate Brain Prototypes in Deuterostomes. DIVERSITY AND COMMONALITY IN ANIMALS 2017. [DOI: 10.1007/978-4-431-56469-0_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Holland LZ. The origin and evolution of chordate nervous systems. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0048. [PMID: 26554041 DOI: 10.1098/rstb.2015.0048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In the past 40 years, comparisons of developmental gene expression and mechanisms of development (evodevo) joined comparative morphology as tools for reconstructing long-extinct ancestral forms. Unfortunately, both approaches typically give congruent answers only with closely related organisms. Chordate nervous systems are good examples. Classical studies alone left open whether the vertebrate brain was a new structure or evolved from the anterior end of an ancestral nerve cord like that of modern amphioxus. Evodevo plus electron microscopy showed that the amphioxus brain has a diencephalic forebrain, small midbrain, hindbrain and spinal cord with parts of the genetic mechanisms for the midbrain/hindbrain boundary, zona limitans intrathalamica and neural crest. Evodevo also showed how extra genes resulting from whole-genome duplications in vertebrates facilitated evolution of new structures like neural crest. Understanding how the chordate central nervous system (CNS) evolved from that of the ancestral deuterostome has been truly challenging. The majority view is that this ancestor had a CNS with a brain that gave rise to the chordate CNS and, with loss of a discrete brain, to one of the two hemichordate nerve cords. The minority view is that this ancestor had no nerve cord; those in chordates and hemichordates evolved independently. New techniques such as phylostratigraphy may help resolve this conundrum.
Collapse
Affiliation(s)
- Linda Z Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USA
| |
Collapse
|
14
|
Feinberg TE, Mallatt J. The nature of primary consciousness. A new synthesis. Conscious Cogn 2016; 43:113-27. [DOI: 10.1016/j.concog.2016.05.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/20/2016] [Indexed: 01/20/2023]
|
15
|
Loonen AJM, Ivanova SA. Circuits regulating pleasure and happiness: the evolution of reward-seeking and misery-fleeing behavioral mechanisms in vertebrates. Front Neurosci 2015; 9:394. [PMID: 26557051 PMCID: PMC4615821 DOI: 10.3389/fnins.2015.00394] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/07/2015] [Indexed: 12/21/2022] Open
Abstract
The very first free-moving animals in the oceans over 540 million years ago must have been able to obtain food, territory, and shelter, as well as reproduce. Therefore, they would have needed regulatory mechanisms to induce movements enabling achievement of these prerequisites for survival. It can be useful to consider these mechanisms in primitive chordates, which represent our earliest ancestors, to develop hypotheses addressing how these essential parts of human behavior are regulated and relate to more sophisticated behavioral manifestations such as mood. An animal comparable to lampreys was the earliest known vertebrate with a modern forebrain consisting of old and new cortical parts. Lampreys have a separate dorsal pallium, the forerunner of the most recently developed part of the cerebral cortex. In addition, the lamprey extrapyramidal system (EPS), which regulates movement, is modern. However, in lampreys and their putative forerunners, the hagfishes, the striatum, which is the input part of this EPS, probably corresponds to the human centromedial amygdala, which in higher vertebrates is part of a system mediating fear and anxiety. Both animals have well-developed nuclear habenulae, which are involved in several critical behaviors; in lampreys this system regulates the reward system that reinforces appetitive-seeking behavior or the avoidance system that reinforces flight behavior resulting from negative inputs. Lampreys also have a distinct glutamatergic nucleus, the so-called habenula-projection globus pallidus, which receives input from glutamatergic and GABAergic signals and gives output to the lateral habenula. Via this route, this nucleus influences midbrain monoaminergic nuclei and regulates the food acquisition system. These various structures involved in motor regulation in the lampreys may be conserved in humans and include two complementary mechanisms for reward reinforcement and avoidance behaviors. The first system is associated with experiencing pleasure and the second with happiness. The activities of these mechanisms are regulated by a tract running via the habenula to the upper brainstem. Identifying the human correlate of the lamprey habenula-projecting globus pallidus may help in elucidating the mechanism of the antidepressant effects of glutamatergic drugs.
Collapse
Affiliation(s)
- Anton J M Loonen
- Department of Pharmacy, Geestelijke GezondheidsZorg Westelijk Noord-Brabant Chair of Pharmacotherapy in Psychiatric Patients, University of Groningen Groningen, Netherlands ; Mental Health Institute Westelijk Noord-Brabant Halsteren, Netherlands
| | - Svetlana A Ivanova
- Molecular Biology and Biological Psychiatry, Mental Health Research Institute Tomsk, Russia ; Department of Ecology and Basic Safety, National Research Tomsk Polytechnic University Tomsk, Russia
| |
Collapse
|
16
|
Šestak MS, Domazet-Lošo T. Phylostratigraphic profiles in zebrafish uncover chordate origins of the vertebrate brain. Mol Biol Evol 2014; 32:299-312. [PMID: 25415965 PMCID: PMC4298178 DOI: 10.1093/molbev/msu319] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
An elaborated tripartite brain is considered one of the important innovations of vertebrates. Other extant chordate groups have a more basic brain organization. For instance, cephalochordates possess a relatively simple brain possibly homologous to the vertebrate forebrain and hindbrain, whereas tunicates display the tripartite organization, but without the specialized brain centers. The difference in anatomical complexity is even more pronounced if one compares chordates with other deuterostomes that have only a diffuse nerve net or alternatively a rather simple central nervous system. To gain a new perspective on the evolutionary roots of the complex vertebrate brain, we made here a phylostratigraphic analysis of gene expression patterns in the developing zebrafish (Danio rerio). The recovered adaptive landscape revealed three important periods in the evolutionary history of the zebrafish brain. The oldest period corresponds to preadaptive events in the first metazoans and the emergence of the nervous system at the metazoan-eumetazoan transition. The origin of chordates marks the next phase, where we found the overall strongest adaptive imprint in almost all analyzed brain regions. This finding supports the idea that the vertebrate brain evolved independently of the brains within the protostome lineage. Finally, at the origin of vertebrates we detected a pronounced signal coming from the dorsal telencephalon, in agreement with classical theories that consider this part of the cerebrum a genuine vertebrate innovation. Taken together, these results reveal a stepwise adaptive history of the vertebrate brain where most of its extant organization was already present in the chordate ancestor.
Collapse
Affiliation(s)
- Martin Sebastijan Šestak
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Tomislav Domazet-Lošo
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia Catholic University of Croatia, Zagreb, Croatia
| |
Collapse
|
17
|
|
18
|
Feinberg TE, Mallatt J. The evolutionary and genetic origins of consciousness in the Cambrian Period over 500 million years ago. Front Psychol 2013; 4:667. [PMID: 24109460 PMCID: PMC3790330 DOI: 10.3389/fpsyg.2013.00667] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 09/05/2013] [Indexed: 11/21/2022] Open
Abstract
Vertebrates evolved in the Cambrian Period before 520 million years ago, but we do not know when or how consciousness arose in the history of the vertebrate brain. Here we propose multiple levels of isomorphic or somatotopic neural representations as an objective marker for sensory consciousness. All extant vertebrates have these, so we deduce that consciousness extends back to the group's origin. The first conscious sense may have been vision. Then vision, coupled with additional sensory systems derived from ectodermal placodes and neural crest, transformed primitive reflexive systems into image forming brains that map and perceive the external world and the body's interior. We posit that the minimum requirement for sensory consciousness and qualia is a brain including a forebrain (but not necessarily a developed cerebral cortex/pallium), midbrain, and hindbrain. This brain must also have (1) hierarchical systems of intercommunicating, isomorphically organized, processing nuclei that extensively integrate the different senses into representations that emerge in upper levels of the neural hierarchy; and (2) a widespread reticular formation that integrates the sensory inputs and contributes to attention, awareness, and neural synchronization. We propose a two-step evolutionary history, in which the optic tectum was the original center of multi-sensory conscious perception (as in fish and amphibians: step 1), followed by a gradual shift of this center to the dorsal pallium or its cerebral cortex (in mammals, reptiles, birds: step 2). We address objections to the hypothesis and call for more studies of fish and amphibians. In our view, the lamprey has all the neural requisites and is likely the simplest extant vertebrate with sensory consciousness and qualia. Genes that pattern the proposed elements of consciousness (isomorphism, neural crest, placodes) have been identified in all vertebrates. Thus, consciousness is in the genes, some of which are already known.
Collapse
Affiliation(s)
- Todd E. Feinberg
- Neurology and Psychiatry, Albert Einstein College of Medicine and Beth Israel Medical CenterNew York, NY, USA
| | - Jon Mallatt
- School of Biological Sciences, Washington State UniversityPullman, WA, USA
| |
Collapse
|
19
|
Abstract
Historically, the position of the site of gastrulation has been used to understand the developmental basis for body plan diversity. A recent molecular study, however, challenges long-held views and shows that molecular patterning mechanisms can be used to understand body plan evolution despite variation in gastrulation movements.
Collapse
Affiliation(s)
- Mark Q Martindale
- Kewalo Marine Laboratory, University of Hawaii, Honolulu, HI 96813, USA.
| |
Collapse
|
20
|
MALLATT JON, HOLLAND NICHOLAS. Pikaia gracilensWalcott: Stem Chordate, or Already Specialized in the Cambrian? JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:247-71. [DOI: 10.1002/jez.b.22500] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 03/11/2013] [Indexed: 12/25/2022]
Affiliation(s)
- JON MALLATT
- School of Biological Sciences; Washington State University; Pullman; Washington
| | - NICHOLAS HOLLAND
- Scripps Institution of Oceanography; University of California; San Diego, La Jolla; California
| |
Collapse
|
21
|
The central and peripheral nervous system of Cephalodiscus gracilis (Pterobranchia, Deuterostomia). ZOOMORPHOLOGY 2012. [DOI: 10.1007/s00435-011-0144-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
22
|
Butts T, Holland PWH, Ferrier DEK. Ancient homeobox gene loss and the evolution of chordate brain and pharynx development: deductions from amphioxus gene expression. Proc Biol Sci 2010; 277:3381-9. [PMID: 20554554 PMCID: PMC2982225 DOI: 10.1098/rspb.2010.0647] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 05/21/2010] [Indexed: 12/24/2022] Open
Abstract
Homeobox genes encode a large superclass of transcription factors with widespread roles in animal development. Within chordates there are over 100 homeobox genes in the invertebrate cephalochordate amphioxus and over 200 in humans. Set against this general trend of increasing gene number in vertebrate evolution, some ancient homeobox genes that were present in the last common ancestor of chordates have been lost from vertebrates. Here, we describe the embryonic expression of four amphioxus descendants of these genes--AmphiNedxa, AmphiNedxb, AmphiMsxlx and AmphiNKx7. All four genes are expressed with a striking asymmetry about the left-right axis in the pharyngeal region of neurula embryos, mirroring the pronounced asymmetry of amphioxus embryogenesis. AmphiMsxlx and AmphiNKx7 are also transiently expressed in an anterior neural tube region destined to become the cerebral vesicle. These findings suggest significant rewiring of developmental gene regulatory networks occurred during chordate evolution, coincident with homeobox gene loss. We propose that loss of otherwise widely conserved genes is possible when these genes function in a confined role in development that is subsequently lost or significantly modified during evolution. In the case of these homeobox genes, we propose that this has occurred in relation to the evolution of the chordate pharynx and brain.
Collapse
Affiliation(s)
- Thomas Butts
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Peter W. H. Holland
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - David E. K. Ferrier
- Scottish Oceans Institute, University of St Andrews, East Sands, St Andrews, Fife KY16 8LB, UK
| |
Collapse
|
23
|
Kaul S, Stach T. Ontogeny of the collar cord: neurulation in the hemichordate Saccoglossus kowalevskii. J Morphol 2010; 271:1240-59. [PMID: 20665533 DOI: 10.1002/jmor.10868] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The chordate body plan is characterized by a central notochord, a pharynx perforated by gill pores, and a dorsal central nervous system. Despite progress in recent years, the evolutionary origin of each of theses characters remains controversial. In the case of the nervous system, two contradictory hypotheses exist. In the first, the chordate nervous system is derived directly from a diffuse nerve net; whereas, the second proposes that a centralized nervous system is found in hemichordates and, therefore, predates chordate evolution. Here, we document the ontogeny of the collar cord of the enteropneust Saccoglossus kowalevskii using transmission electron microscopy and 3D-reconstruction based on completely serially sectioned stages. We demonstrate that the collar cord develops from a middorsal neural plate that is closed in a posterior to anterior direction. Transversely oriented ependymal cells possessing myofilaments mediate this morphogenetic process and surround the remnants of the neural canal in juveniles. A mid-dorsal glandular complex is present in the collar. The collar cord in juveniles is clearly separated into a dorsal saddle-like region of somata and a ventral neuropil. We characterize two cell types in the somata region, giant neurons and ependymal cells. Giant neurons connect via a peculiar cell junction that seems to function in intercellular communication. Synaptic junctions containing different vesicle types are present in the neuropil. These findings support the hypotheses that the collar cord constitutes a centralized element of the nervous system and that the morphogenetic process in the ontogeny of the collar cord is homologous to neurulation in chordates. Moreover, we suggest that these similarities are indicative of a close phylogenetic relationship between enteropneusts and chordates.
Collapse
Affiliation(s)
- Sabrina Kaul
- Department of Zoology, Systematics and Evolutionary Research, Faculty of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Königin-Luise-Strasse 1-3, 14195 Berlin, Germany
| | | |
Collapse
|
24
|
|
25
|
Larhammar D, Nordström K, Larsson TA. Evolution of vertebrate rod and cone phototransduction genes. Philos Trans R Soc Lond B Biol Sci 2009; 364:2867-80. [PMID: 19720650 DOI: 10.1098/rstb.2009.0077] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Vertebrate cones and rods in several cases use separate but related components for their signal transduction (opsins, G-proteins, ion channels, etc.). Some of these proteins are also used differentially in other cell types in the retina. Because cones, rods and other retinal cell types originated in early vertebrate evolution, it is of interest to see if their specific genes arose in the extensive gene duplications that took place in the ancestor of the jawed vertebrates (gnathostomes) by two tetraploidizations (genome doublings). The ancestor of teleost fishes subsequently underwent a third tetraploidization. Our previously reported analyses showed that several gene families in the vertebrate visual phototransduction cascade received new members in the basal tetraploidizations. We here expand these data with studies of additional gene families and vertebrate species. We conclude that no less than 10 of the 13 studied phototransduction gene families received additional members in the two basal vertebrate tetraploidizations. Also the remaining three families seem to have undergone duplications during the same time period but it is unclear if this happened as a result of the tetraploidizations. The implications of the many early vertebrate gene duplications for functional specialization of specific retinal cell types, particularly cones and rods, are discussed.
Collapse
Affiliation(s)
- Dan Larhammar
- Department of Neuroscience, Unit of Pharmacology, Uppsala University, SE-751 24 Uppsala, Sweden.
| | | | | |
Collapse
|
26
|
Martindale MQ, Hejnol A. A developmental perspective: changes in the position of the blastopore during bilaterian evolution. Dev Cell 2009; 17:162-74. [PMID: 19686678 DOI: 10.1016/j.devcel.2009.07.024] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Progress in resolving the phylogenetic relationships among animals and the expansion of molecular developmental studies to a broader variety of organisms has provided important insights into the evolution of developmental programs. These new studies make it possible to reevaluate old hypotheses about the evolution of animal body plans and to elaborate new ones. Here, we review recent studies that shed light on the transition from a radially organized ancestor to the last common ancestor of the Bilateria ("Urbilaterian") and present an integrative hypothesis about plausible developmental scenarios for the evolution of complex multicellular animals.
Collapse
Affiliation(s)
- Mark Q Martindale
- Kewalo Marine Laboratory, PBRC, University of Hawaii, 41 Ahui Street, Honolulu, HI, 96813, USA.
| | | |
Collapse
|
27
|
Lacalli TC. Serial EM analysis of a copepod larval nervous system: Naupliar eye, optic circuitry, and prospects for full CNS reconstruction. ARTHROPOD STRUCTURE & DEVELOPMENT 2009; 38:361-375. [PMID: 19376268 DOI: 10.1016/j.asd.2009.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 04/07/2009] [Accepted: 04/08/2009] [Indexed: 05/27/2023]
Abstract
The medial eye and optic center of the first nauplius of Dactylopusia (=Dactylopodia) tisboides, a harpacticoid copepod, were reconstructed from serial EM micrographs. Axons from the eye project to a set of matching cartridges defined by glial cells processes, and input is then processed in sequence through two synaptic fields. A single class of local relay neurons provides the main pathway between these, subject to modulatory input from a class of densely stained neurons with distinctive dense terminals. The importance of other outside sources of synaptic input to the second synaptic field indicates that the latter is a major site for integrating the optic input with signals originating elsewhere in the CNS. This accords with physiological data on the shadow response in barnacles, whose visual system is also derived from a naupliar eye. With a body length of ca. 80microns, copepod larvae like that of Dactylopusia are arguably among the smallest functional metazoans with a complex nervous system. Hence they are promising subjects for full reconstruction of neural circuitry at the EM level that could, in principle, reveal where key decision-making functions are localized.
Collapse
|
28
|
Centralization of the Deuterostome Nervous System Predates Chordates. Curr Biol 2009; 19:1264-9. [DOI: 10.1016/j.cub.2009.05.063] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 05/25/2009] [Accepted: 05/26/2009] [Indexed: 11/23/2022]
|
29
|
Abstract
A unique feature of the vertebrate brain is the ventricular system, a series of connected cavities which are filled with cerebrospinal fluid (CSF) and surrounded by neuroepithelium. While CSF is critical for both adult brain function and embryonic brain development, neither development nor function of the brain ventricular system is fully understood. In this review, we discuss the mystery of why vertebrate brains have ventricles, and whence they originate. The brain ventricular system develops from the lumen of the neural tube, as the neuroepithelium undergoes morphogenesis. The molecular mechanisms underlying this ontogeny are described. We discuss possible functions of both adult and embryonic brain ventricles, as well as major brain defects that are associated with CSF and brain ventricular abnormalities. We conclude that vertebrates have taken advantage of their neural tube to form the essential brain ventricular system.
Collapse
Affiliation(s)
| | - Hazel Sive
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge MA 02142 and Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| |
Collapse
|
30
|
Andrew RJ. Origins of asymmetry in the CNS. Semin Cell Dev Biol 2008; 20:485-90. [PMID: 19041408 DOI: 10.1016/j.semcdb.2008.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 11/04/2008] [Indexed: 11/15/2022]
Abstract
Vertebrate ancestors had extreme asymmetry of the CNS, largely imposed by bodily asymmetry. In the zebrafish a key asymmetry is that of the habenulae. Their major outflow on the left is concerned with visual control of sustained response to targets, and on the right with response to potent releasers of innate responses. Mammals retain comparable outflows but without obvious asymmetry. Behavioural asymmetries associated with the processing of perceptual information are, if anything, exaggerated. Evidence from insects suggests that these latter asymmetries are of great value in any complex CNS. Bodily asymmetry may therefore not be essential for their evolution.
Collapse
Affiliation(s)
- R J Andrew
- Biology and Environmental Sciences, School of Life Sciences, University of Sussex, Brighton, UK.
| |
Collapse
|
31
|
Candiani S, Lacalli TC, Parodi M, Oliveri D, Pestarino M. The cholinergic gene locus in amphioxus: molecular characterization and developmental expression patterns. Dev Dyn 2008; 237:1399-411. [PMID: 18407548 DOI: 10.1002/dvdy.21541] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cholinergic gene locus (CGL), consisting of the vesicular acetylcholine transporter (VAChT)/choline acetyltransferase (ChAT) gene, encodes two specific cholinergic neuronal markers used extensively to study cholinergic transmission. In the present work, we isolated the amphioxus homologs of VAChT and ChAT and examined their expression during development. Analysis of the 5' untranslated region of VAChT and ChAT suggests that the splicing of the VAChT/ChAT mRNA has been evolutionarily conserved in amphioxus and mammals. By double whole-mount in situ hybridization, we demonstrate that VAChT and ChAT are coexpressed in the same cells. They are first expressed in four pairs of differentiating cells in the neural plate. Their later expression is primarily in the anterior nerve cord in several types of motoneurons, some of the interneurons and in the receptor cells of the larval ocellus.
Collapse
|
32
|
Lacalli TC. Head organization and the head/trunk relationship in protochordates: problems and prospects. Integr Comp Biol 2008; 48:620-9. [PMID: 21669821 DOI: 10.1093/icb/icn012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The fossil record has been an invaluable aid for reconstructing the major events of vertebrate evolution. There is no comparable record for protochordates, however, which severely limits our knowledge of their ancestral morphology, habits, and mode of life. The alternative is inference based on an interpretation of living protochordates but this is fraught with problems, not least being our own biases of what we think an ancestral chordate ought to look like. Relevant to the present symposium is the problem of head/trunk relationships and whether or not the myotomes of the trunk originally extended into the head in vertebrates. I will review what is currently known of patterns of innervation in tunicates and amphioxus in relation to Romer's somaticovisceral concept of the vertebrate body to show how little progress has been made in resolving this problem. There are, in contrast, surprisingly good prospects for solving some other puzzles concerning chordate origins. Dorsoventral inversion provides a good example. A consensus is now emerging, based largely on molecular data from hemichordates that casts new light on the asymmetry of the head in amphioxus. Specifically, the morphogenetic growth process that reestablishes symmetry in late-stage larvae can now be seen, at least in part, as a recapitulation of past evolutionary events, and this has important implications for the origin and basic organization of the brain.
Collapse
Affiliation(s)
- Thurston C Lacalli
- Biology Department, University of Victoria, Victoria, BC, Canada, V8W-3N5
| |
Collapse
|
33
|
Lacalli T. Mucus secretion and transport in amphioxus larvae: organization and ultrastructure of the food trapping system, and implications for head evolution. ACTA ZOOL-STOCKHOLM 2007. [DOI: 10.1111/j.1463-6395.2007.00310.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|