1
|
Muratori BG, da Veiga IET, Medeiros GN, Silva SMSE, Soliani AG, Prado CM, Cerutti SM. Standardized extract of Ginkgo biloba induced memory consolidation in female mice with hypofunction of vesicular acetylcholine transporter. Behav Brain Res 2025; 482:115455. [PMID: 39892653 DOI: 10.1016/j.bbr.2025.115455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
Basal forebrain cholinergic neurons are pivotal for cholinergic signaling in the neocortex and hippocampal formation, crucially implicated in neurodegenerative diseases like late-onset Alzheimer's disease (LOAD), recognition memory impairments, and decision-making. The acetylcholine transporter (VAChT) is essential for loading acetylcholine into synaptic vesicles. Building on our previous findings showing that Ginkgo biloba extract (EGb) preserves recognition memory, we hypothesized EGb would enhance memory in female mice with varying VAChT reductions. We also explored whether reduced cholinergic signaling induces anxiety-like behavior and whether EGb could alleviate such symptoms. Three-month-old female mice with severe VAChT reduction (knockdown homozygotes; VAChT KDHOM), moderate reduction (heterozygotes; VAChT KDHET), and wild-type (WT) mice received the vehicle, 5 mg/kg Donepezil, or EGb at doses of 250, 500, and 1000 mg/kg for 30 days. Memory assessments included aversive tasks like discriminative avoidance memory and non-aversive tasks like object recognition and location memory. We assessed VAChT protein expression in the hippocampal formation (HF) using Western blotting and quantified VAChT-immunopositive cells (IR+) in specific HF subfields (dCA1, dCA3, dDG) using immunohistochemistry. Chronic EGb treatment significantly improved long-term memory in female VAChT KDHOM mice in object recognition and locations memories in a dose-dependent manner, unlike Donepezil. Enhanced memory was correlated with an increase in VAChT-IR+ cells in the dCA1 of VAChT KDHOM mice. Additionally, EGb reduced VAChT-IR+ cells in the dDG of VAChT KDHET mice, which was associated with decreased anxiety-like behavior. These findings suggest that EGb effectively mitigates deficits caused by cholinergic deficiency in hippocampal-dependent memory consolidation, thereby improving our understanding of its role in modulating long-term memory and hippocampal plasticity.
Collapse
Affiliation(s)
- Beatriz G Muratori
- Cellular and Behavioral Neuropharmacology Laboratory, Department of Biological Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, SP, Brazil
| | - Irina Emanuela T da Veiga
- Cellular and Behavioral Neuropharmacology Laboratory, Department of Biological Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, SP, Brazil
| | - Gleiciene N Medeiros
- Cellular and Behavioral Neuropharmacology Laboratory, Department of Biological Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, SP, Brazil
| | - Sofia M S E Silva
- Cellular and Behavioral Neuropharmacology Laboratory, Department of Biological Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, SP, Brazil
| | - Andressa G Soliani
- Cellular and Behavioral Neuropharmacology Laboratory, Department of Biological Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, SP, Brazil
| | - Carla Máximo Prado
- Department of Biosciences, Universidade Federal de São Paulo, Campus Baixada Santista, Santos, SP, Brazil
| | - Suzete M Cerutti
- Cellular and Behavioral Neuropharmacology Laboratory, Department of Biological Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Berbert-Gomes C, Ramos JS, Silveira-Rodrigues JG, Leite DMM, Melo BP, Soares DD. An acute bout of resistance exercise increases BDNF in hippocampus and restores the long-term memory of insulin-resistant rats. Exp Brain Res 2024; 242:901-912. [PMID: 38453752 DOI: 10.1007/s00221-024-06795-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/24/2024] [Indexed: 03/09/2024]
Abstract
A sedentary lifestyle, inadequate diet, and obesity are substantial risk factors for Type 2 diabetes mellitus (T2DM) development. A major picture of T2DM is insulin resistance (IR), which causes many impairments in brain physiology, such as increased proinflammatory state and decreased brain-derived neurotrophic factor (BDNF) concentration, hence reducing cognitive function. Physical exercise is a non-pharmacological tool for managing T2DM/IR and its complications. Thus, this study investigated the effects of IR induction and the acute effects of resistance exercise (RE) on memory, neurotrophic, and inflammatory responses in the hippocampus and prefrontal cortex of insulin-resistant rats. IR was induced by a high-fat diet and fructose-rich beverage. Insulin-resistant rats performed acute resistance exercise (IR.RE; vertical ladder climb at 50-100% of the maximum load) or rest (IR.REST; 20 min). Cognitive parameters were assessed by novel object recognition (NOR) tasks, and biochemical analyses were performed to assess BDNF concentrations and inflammatory profile in the hippocampus and prefrontal cortex. Insulin-resistant rats had 20% worse long-term memory (LTM) (p < 0.01) and lower BDNF concentration in the hippocampus (-14.6%; p < 0.05) when compared to non-insulin-resistant rats (CON). An acute bout of RE restored LTM (-9.7% pre vs. post; p > 0.05) and increased BDNF concentration in the hippocampus (9.1%; p < 0.05) of insulin-resistant rats compared to REST. Thus, an acute bout of RE can attenuate the adverse effects of IR on memory and neurotrophic factors in rats, representing a therapeutic tool to alleviate the IR impact on the brain.
Collapse
Affiliation(s)
- Camila Berbert-Gomes
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais (Universidade Federal de Minas Gerais -UFMG), Belo Horizonte, MG, 31270‑901, Brazil
| | - Júlia S Ramos
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais (Universidade Federal de Minas Gerais -UFMG), Belo Horizonte, MG, 31270‑901, Brazil
| | - João G Silveira-Rodrigues
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais (Universidade Federal de Minas Gerais -UFMG), Belo Horizonte, MG, 31270‑901, Brazil
| | - Daniel M M Leite
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais (Universidade Federal de Minas Gerais -UFMG), Belo Horizonte, MG, 31270‑901, Brazil
| | - Bruno P Melo
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais (Universidade Federal de Minas Gerais -UFMG), Belo Horizonte, MG, 31270‑901, Brazil
| | - Danusa D Soares
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais (Universidade Federal de Minas Gerais -UFMG), Belo Horizonte, MG, 31270‑901, Brazil.
| |
Collapse
|
3
|
Rocha-Gomes A, Alvarenga E Castro TP, Almeida PR, Balsamão Paes Leme PS, da Silva AA, Riul TR, Bastos CP, Leite HR. High-intensity interval training improves long-term memory and increases hippocampal antioxidant activity and BDNF levels in ovariectomized Wistar rats. Behav Brain Res 2023; 453:114605. [PMID: 37517574 DOI: 10.1016/j.bbr.2023.114605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Menopause is the period in which women cease to produce the hormone estrogen, which can trigger physiological, cognitive, and behavioral changes. In this context, alternatives are needed that can reduce the effects provided by menopause, specifically in terms of cognitive and behavioral aspects. High-intensity interval training (HIIT) is an exercise protocol that has shown the potential to improve cognition by promoting an increase in antioxidant defenses and BDNF levels. Therefore, the aim of this study was to evaluate the effects of HIIT on behavior and hippocampal neurochemistry in ovariectomized adult rats. Four groups of rats were divided into: females without ovariectomy surgery and sedentary (SHAM-SED); females with ovariectomy surgery and sedentary (OVX-SED); females without ovariectomy surgery and trained (SHAM-HIIT); females with ovariectomy surgery and trained (OVX-HIIT). After the surgical procedure and the HIIT protocol, the animals underwent anxiety (elevated plus maze and open field) and memory (novel object recognition) tests. Corticosterone was measured in blood and BDNF levels and redox status were evaluated in the hippocampus. The OVX-SED group showed low BDNF levels and antioxidant enzymes, which may be linked to the observed memory impairments. The HIIT protocol (SHAM-HIIT and OVX-HIIT groups) increased the BDNF levels and antioxidant enzymes in the hippocampus, improving the animals' memory. However, HIIT also led to increased plasma corticosterone and anxiety-like behaviors. The ovariectomy procedure induced memory impairment probably due to reductions in hippocampal BDNF levels and redox imbalance. The HIIT protocol demonstrates promising results as an alternative to improve memory in ovariectomized rats.
Collapse
Affiliation(s)
- Arthur Rocha-Gomes
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil.
| | | | - Pedro Rodrigues Almeida
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG, Brazil
| | - Paula Silveira Balsamão Paes Leme
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG, Brazil
| | - Alexandre Alves da Silva
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG, Brazil
| | - Tania Regina Riul
- Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG, Brazil
| | - Cristiane Perácio Bastos
- Departamento de Enfermagem, Faculdade de Ciências Humanas de Curvelo (FACIC), Curvelo, MG, Brazil
| | - Hércules Ribeiro Leite
- Programa de Pós-Graduação em Ciências da Reabilitação, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
4
|
Jefferson T, Kim HR, Martina M. Impaired muscarinic modulation of the rat prelimbic cortex in neuropathic pain is sexually dimorphic and associated with cold allodynia. Front Cell Neurosci 2023; 17:984287. [PMID: 36846207 PMCID: PMC9947152 DOI: 10.3389/fncel.2023.984287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/12/2023] [Indexed: 02/11/2023] Open
Abstract
Cholinergic modulation of the brain cortex is critical for cognitive processes, and altered cholinergic modulation of the prefrontal cortex is emerging as an important mechanism of neuropathic pain. Sex differences in pain prevalence and perception are well known, yet the precise nature of the mechanisms responsible for sexual dimorphism in chronic neuropathic pain are poorly understood. Here we investigated potential sex differences in cholinergic modulation of layer five commissural pyramidal neurons of the rat prelimbic cortex in control conditions and in the SNI model of neuropathic pain. We discovered that cholinergic modulation is stronger in cells from male compared with female rats, and that in neuropathic pain rats, cholinergic excitation of pyramidal neurons was more severely impaired in males than in females. Finally, we found that selective pharmacological blockade of the muscarinic M1 subunit in the prefrontal cortex induces cold sensitivity (but not mechanical allodynia) in naïve animals of both sexes.
Collapse
Affiliation(s)
| | | | - Marco Martina
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
5
|
Betts GD, Hynes TJ, Winstanley CA. Pharmacological evidence of a cholinergic contribution to elevated impulsivity and risky decision-making caused by adding win-paired cues to a rat gambling task. J Psychopharmacol 2021; 35:701-712. [PMID: 33573446 DOI: 10.1177/0269881120972421] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Pairing rewards with sensory stimulation, in the form of auditory and visual cues, increases risky decision-making in both rats and humans. Understanding the neurobiological basis of this effect could help explain why electronic gambling machines are so addictive, and inform treatment development for compulsive gambling and gaming. Numerous studies implicate the dopamine system in mediating the motivational influence of reward-paired cues; recent data suggest the cholinergic system also plays a critical role. Previous work also indicates that cholinergic drugs alter decision-making under uncertainty. AIMS We investigated whether the addition of reward-concurrent cues to the rat gambling task (crGT) altered the effects of peripherally administered cholinergic compounds. METHODS Muscarinic and nicotinic agonists and antagonists were administered to 16 male, Long-Evans rats trained on the crGT. Measures of optimal/risky decision-making and motor impulsivity were the main dependent variables of interest. RESULTS The muscarinic receptor antagonist scopolamine improved decision-making overall, decreasing selection of one of the risky options while increasing choice of the more advantageous options. The muscarinic agonist oxotremorine increased choice latency but did not significantly affect option preference. Neither the nicotinic antagonist mecamylamine nor the agonist nicotine affected choice patterns, but mecamylamine decreased premature responding, an index of motor impulsivity. CONCLUSIONS These results contrast sharply from those obtained previously using the uncued rGT, and suggest that the deleterious effects of win-paired cues on decision-making and impulse control may result from elevated cholinergic tone.
Collapse
Affiliation(s)
- Graeme D Betts
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Tristan J Hynes
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
6
|
Djiogue S, Djiyou Djeuda AB, Seke Etet PF, Ketcha Wanda GJM, Djikem Tadah RN, Njamen D. Memory and exploratory behavior impairment in ovariectomized Wistar rats. Behav Brain Funct 2018; 14:14. [PMID: 30012162 PMCID: PMC6047120 DOI: 10.1186/s12993-018-0146-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/10/2018] [Indexed: 01/01/2023] Open
Abstract
Background Estrogen deficiency is linked to changes in several physiological processes, but the extent to which it associates with cognitive changes in menopause context is controversial. Rationale We evaluated the impact of ovariectomy on memory processes and normal exploratory behavior in Wistar rats. Methods Young adult rats (4–6 months) were either ovariectomized (OVX group) (N = 10), sham operated (N = 10), or untouched (naïve controls) (N = 8). Afterwards, they were monitored for 12 weeks during which their cognitive functions were evaluated at first week (S1), second (S2), every 3 weeks (S5, S8) and then at week 12 (S12) using: (i) object recognition test to evaluate the short-term and long-term non-spatial memory; (ii) the object placement test to assess the spatial memory; and (iii) normal exploratory behavior components like locomotor and vertical activities in an open field arena. Results Marked changes in ovariectomized rats were observed in long-term non-spatial memory (~ 40% change vs. naïve and sham, P < 0.001) and spatial memory (~ 30% change, P < 0.05) from S2. Instead, from S5 the exploratory behavior was affected, with decreases in line crossing and rearing episode numbers (~ 40% change, P < 0.01), and in the time spent in the center of open field arena (~ 60% change, P < 0.01). Conclusions Our findings support the involvement of sex hormones in cognitive functions in female rats and suggest that controversy on the importance of cognitive affections in menopause context may emerge from differences between short-term and long-term memory processes.
Collapse
Affiliation(s)
- Sefirin Djiogue
- Laboratory of Animal Physiology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaoundé, Cameroon.
| | - Armando Blondel Djiyou Djeuda
- Laboratory of Animal Physiology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaoundé, Cameroon
| | - Paul Faustin Seke Etet
- Center for Sustainable Health and Development, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon
| | | | - Rudig Nikanor Djikem Tadah
- Laboratory of Animal Physiology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaoundé, Cameroon
| | - Dieudonne Njamen
- Laboratory of Animal Physiology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaoundé, Cameroon
| |
Collapse
|
7
|
Pereira LM, Guimarães IM, Oliveira VE, Bastos CP, Ribeiro FM, Prado VF, Prado MA, Pereira GS. Estradiol effect on short-term object memory under hypocholinergic condition. Brain Res Bull 2018; 140:411-417. [DOI: 10.1016/j.brainresbull.2018.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 01/10/2018] [Accepted: 01/16/2018] [Indexed: 12/20/2022]
|
8
|
Mitra S, Bastos CP, Bates K, Pereira GS, Bult-Ito A. Ovarian Sex Hormones Modulate Compulsive, Affective and Cognitive Functions in A Non-Induced Mouse Model of Obsessive-Compulsive Disorder. Front Behav Neurosci 2016; 10:215. [PMID: 27881956 PMCID: PMC5101197 DOI: 10.3389/fnbeh.2016.00215] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/25/2016] [Indexed: 01/12/2023] Open
Abstract
There is currently a lack of understanding of how surgical menopause can influence obsessions, compulsions and associated affective and cognitive functions in female obsessive-compulsive disorder (OCD) patients. Early menopause in women due to surgical removal of ovaries not only causes dramatic hormonal changes, but also may induce affective and cognitive disorders. Here, we tested if surgical removal of ovaries (ovariectomy, OVX), which mimics surgical menopause in humans, would result in exacerbation of compulsive, affective and cognitive behaviors in mice strains that exhibit a spontaneous compulsive-like phenotype. Female mice from compulsive-like BIG, non-compulsive SMALL and randomly-bred Control strains were subjected to OVX or sham-surgery. After 7 days animals were tested for nest building and marble burying to measure compulsive-like behavior. The elevated plus maze and open field tests measured anxiety-like behaviors, while memory was assessed by the novel object recognition. Acute OVX resulted in exacerbation of compulsive-like and anxiety-like behaviors in compulsive-like BIG mice. No significant effects of OVX were observed for the non-compulsive SMALL and Control strains. Object recognition memory was impaired in compulsive-like BIG female mice compared to the Control mice, without an effect of OVX on the BIG mice. We also tested whether 17 β-estradiol (E2) or progesterone (P4) could reverse the effects of OVX. E2, but not P4, attenuated the compulsive-like behaviors in compulsive-like BIG OVX female mice. The actions of the sex steroids on anxiety-like behaviors in OVX females were strain and behavioral test dependent. Altogether, our results indicate that already existing compulsions can be worsened during acute ovarian deprivation concomitant with exacerbation of affective behaviors and responses to hormonal intervention in OVX female mice can be influenced by genetic background.
Collapse
Affiliation(s)
- Swarup Mitra
- Department of Chemistry and Biochemistry, University of Alaska FairbanksFairbanks, AK, USA; IDeA Network of Biomedical Research Excellence (INBRE), University of Alaska FairbanksFairbanks, AK, USA
| | - Cristiane P Bastos
- IDeA Network of Biomedical Research Excellence (INBRE), University of Alaska FairbanksFairbanks, AK, USA; Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Katherine Bates
- Department of Biology and Wildlife, University of Alaska Fairbanks Fairbanks, AK, USA
| | - Grace S Pereira
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Abel Bult-Ito
- IDeA Network of Biomedical Research Excellence (INBRE), University of Alaska FairbanksFairbanks, AK, USA; Department of Biology and Wildlife, University of Alaska FairbanksFairbanks, AK, USA
| |
Collapse
|
9
|
Palmer D, Creighton S, Prado VF, Prado MA, Choleris E, Winters BD. Mice deficient for striatal Vesicular Acetylcholine Transporter (VAChT) display impaired short-term but normal long-term object recognition memory. Behav Brain Res 2016; 311:267-278. [DOI: 10.1016/j.bbr.2016.05.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 10/21/2022]
|
10
|
Bastos CP, Pereira LM, Ferreira-Vieira TH, Drumond LE, Massensini AR, Moraes MFD, Pereira GS. Object recognition memory deficit and depressive-like behavior caused by chronic ovariectomy can be transitorialy recovered by the acute activation of hippocampal estrogen receptors. Psychoneuroendocrinology 2015; 57:14-25. [PMID: 25867995 DOI: 10.1016/j.psyneuen.2015.03.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/18/2015] [Accepted: 03/21/2015] [Indexed: 01/29/2023]
Abstract
It is well known that estradiol (E2) replacement therapy is effective on restoring memory deficits and mood disorders that may occur during natural menopause or after surgical ovarian removal (ovariectomy, OVX). However, it is still unknown the effectiveness of acute and localized E2 administration on the effects of chronic OVX. Here we tested the hypothesis that the intra-hippocampal E2 infusion, as well as specific agonists of estrogen receptors (ERs) alpha (ERα) and beta (ERβ), are able to mend novel object recognition (NOR) memory deficit and depressive-like behavior caused by 12 weeks of OVX. We found that both ERα and ERβ activation, at earlier stages of consolidation, recovered the NOR memory deficit caused by 12 w of OVX. Conversely, only the ERβ activation was effective in decreasing the depressive-like behavior caused by 12 w of OVX. Furthermore, we investigated the effect of OVX on hippocampal volume and ERs expression. The structural MRI showed no alteration in the hippocampus volume of 12 w OVX animals. Interestingly, ERα expression in the hippocampus decreased after one week of OVX, but increased in 12 w OVX animals. Overall, we may conclude that the chronic estrogen deprivation, induced by 12 weeks of OVX, modulates the hippocampal ERα expression and induces NOR memory deficit and depressive-like behaviors. Nonetheless, it is noteworthy that the acute effects of E2 on NOR memory and depressive-like behavior are still apparent even after 12 weeks of OVX.
Collapse
Affiliation(s)
- Cristiane P Bastos
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Brazil
| | - Luciana M Pereira
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Brazil
| | - Talita H Ferreira-Vieira
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Brazil
| | - Luciana E Drumond
- Centro de Tecnologia e Pesquisa em Magneto-Ressonância, CTPMAG, Universidade Federal de Minas Gerais, Brazil; Universidade Federal de São João Del Rey, Brazil
| | - André R Massensini
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Brazil
| | - Márcio F D Moraes
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Brazil; Centro de Tecnologia e Pesquisa em Magneto-Ressonância, CTPMAG, Universidade Federal de Minas Gerais, Brazil
| | - Grace S Pereira
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Brazil.
| |
Collapse
|
11
|
Pereira LM, Bastos CP, de Souza JM, Ribeiro FM, Pereira GS. Estradiol enhances object recognition memory in Swiss female mice by activating hippocampal estrogen receptor α. Neurobiol Learn Mem 2014; 114:1-9. [PMID: 24726465 DOI: 10.1016/j.nlm.2014.04.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 03/28/2014] [Accepted: 04/01/2014] [Indexed: 11/29/2022]
Abstract
In rodents, 17β-estradiol (E2) enhances hippocampal function and improves performance in several memory tasks. Regarding the object recognition paradigm, E2 commonly act as a cognitive enhancer. However, the types of estrogen receptor (ER) involved, as well as the underlying molecular mechanisms are still under investigation. In the present study, we asked whether E2 enhances object recognition memory by activating ERα and/or ERβ in the hippocampus of Swiss female mice. First, we showed that immediately post-training intraperitoneal (i.p.) injection of E2 (0.2 mg/kg) allowed object recognition memory to persist 48 h in ovariectomized (OVX) Swiss female mice. This result indicates that Swiss female mice are sensitive to the promnesic effects of E2 and is in accordance with other studies, which used C57/BL6 female mice. To verify if the activation of hippocampal ERα or ERβ would be sufficient to improve object memory, we used PPT and DPN, which are selective ERα and ERβ agonists, respectively. We found that PPT, but not DPN, improved object memory in Swiss female mice. However, DPN was able to improve memory in C57/BL6 female mice, which is in accordance with other studies. Next, we tested if the E2 effect on improving object memory depends on ER activation in the hippocampus. Thus, we tested if the infusion of intra-hippocampal TPBM and PHTPP, selective antagonists of ERα and ERβ, respectively, would block the memory enhancement effect of E2. Our results showed that TPBM, but not PHTPP, blunted the promnesic effect of E2, strongly suggesting that in Swiss female mice, the ERα and not the ERβ is the receptor involved in the promnesic effect of E2. It was already demonstrated that E2, as well as PPT and DPN, increase the phospho-ERK2 level in the dorsal hippocampus of C57/BL6 mice. Here we observed that PPT increased phospho-ERK1, while DPN decreased phospho-ERK2 in the dorsal hippocampus of Swiss female mice subjected to the object recognition sample phase. Taken together, our results suggest that the type of receptor as well as the molecular mechanism used by E2 to improve object memory may differ in Swiss female mice.
Collapse
Affiliation(s)
- Luciana M Pereira
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Cristiane P Bastos
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Jéssica M de Souza
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Fabíola M Ribeiro
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Grace S Pereira
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil.
| |
Collapse
|
12
|
Object recognition memory and temporal lobe activation after delayed estrogen replacement therapy. Neurobiol Learn Mem 2013; 101:19-25. [PMID: 23298786 DOI: 10.1016/j.nlm.2012.12.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/12/2012] [Accepted: 12/30/2012] [Indexed: 01/02/2023]
Abstract
The critical window hypothesis predicts that estrogen replacement therapy (ERT) must be administered early on the menopause or ovariectomy (OVX) to positively affect cognition. However, the neural substrates, underling the time dependent efficacy of ERT, are still not completely known. In order to address this issue, we submitted female mice to 12 weeks of OVX followed by 5 weeks of chronic ERT (OVX(E2)). Within the first 12 weeks, the OVX animals showed a progressive compromised performance in the object recognition memory (ORM) task. After ERT, OVXE2 mice, but not the control group (OVXoil), were able to recognize the new object in the test session. Further, we evaluated the c-Fos expression in hippocampus, perirhinal cortex (PC) and central amygdala (CeA) of OVXoil and OVX(E2) mice, after context exposure (CTX) or object exploration (OBJ). We observed that ERT increased c-Fos expression unspecifically for CTX and OBJ. In addition, only the OVX(E2) group showed significantly higher c-Fos expression in the PC and CeA after object exploration. Thus, our results showed that delayed chronic ERT improves ORM (compromised by OVX) and increases constitutive c-Fos expression in temporal lobe regions. Furthermore, we showed for the first time that PC and CeA, but not the hippocampus, present a distinct pattern of activation in response to object exploration in ovariectomized females that underwent delayed-ERT.
Collapse
|
13
|
Mazzone CM, Larese TP, Kiraly DD, Eipper BA, Mains RE. Analysis of kalirin-7 knockout mice reveals different effects in female mice. Mol Pharmacol 2012; 82:1241-9. [PMID: 22989522 PMCID: PMC3502624 DOI: 10.1124/mol.112.080838] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 09/18/2012] [Indexed: 11/22/2022] Open
Abstract
Estradiol treatment of ovariectomized rodents is known to affect the morphology of dendritic spines and produce behavioral and cognitive effects. Kalirin-7 (Kal7), a postsynaptic density (PSD)-localized Rho-guanine nucleotide exchange factor, is important for dendritic spine formation and stability. Male Kal7 knockout [Kal7(KO)] mice exhibit a number of abnormal behavioral and biochemical phenotypes. Given that chronic 17β-estradiol (E2) replacement of ovariectomized rats enhanced Kal7 expression in the hippocampus and primary hippocampal cultures, we assessed the behavioral and biochemical effects of chronic E2 treatment of ovariectomized female wild-type and Kal7(KO) mice. Both intact and ovariectomized Kal7(KO) female mice exhibited decreased anxiety-like behavior compared with the corresponding wild type in the elevated zero maze and were unaffected by E2 treatment. Chronic E2 decreased locomotor activity in the open field and enhanced performance in a passive-avoidance fear conditioning task, which were both unaffected by genotype. Kal7(KO) female mice engaged in significantly more object exploration, both familiar and novel, than did wild-type females. E2 enhanced the acute locomotor response to cocaine, with no significant effect of genotype. Similar to Kal7(KO) males, Kal7(KO) females had decreased levels of N-methyl-d-aspartate receptor 2B in hippocampal PSD fractions with no effect of E2 treatment. The differing behavioral effects of Kal7 ablation in female and male mice may offer insight into the molecular underpinnings of these differences.
Collapse
Affiliation(s)
- Christopher M Mazzone
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030-3401, USA
| | | | | | | | | |
Collapse
|
14
|
Odor-enriched environment rescues long-term social memory, but does not improve olfaction in social isolated adult mice. Behav Brain Res 2012; 228:440-6. [DOI: 10.1016/j.bbr.2011.12.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 12/22/2011] [Accepted: 12/25/2011] [Indexed: 11/18/2022]
|
15
|
Lazaroni TL, Raslan ACS, Fontes WR, de Oliveira ML, Bader M, Alenina N, Moraes MF, dos Santos RA, Pereira GS. Angiotensin-(1–7)/Mas axis integrity is required for the expression of object recognition memory. Neurobiol Learn Mem 2012; 97:113-23. [DOI: 10.1016/j.nlm.2011.10.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 09/28/2011] [Accepted: 10/17/2011] [Indexed: 12/22/2022]
|
16
|
Elimination of the vesicular acetylcholine transporter in the striatum reveals regulation of behaviour by cholinergic-glutamatergic co-transmission. PLoS Biol 2011; 9:e1001194. [PMID: 22087075 PMCID: PMC3210783 DOI: 10.1371/journal.pbio.1001194] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 09/29/2011] [Indexed: 11/30/2022] Open
Abstract
A novel mouse model that eliminates cholinergic neurotransmission in the striatum while leaving glutamate release intact reveals differential effects on cocaine-induced behavior and dopaminergic responses. Cholinergic neurons in the striatum are thought to play major regulatory functions in motor behaviour and reward. These neurons express two vesicular transporters that can load either acetylcholine or glutamate into synaptic vesicles. Consequently cholinergic neurons can release both neurotransmitters, making it difficult to discern their individual contributions for the regulation of striatal functions. Here we have dissected the specific roles of acetylcholine release for striatal-dependent behaviour in mice by selective elimination of the vesicular acetylcholine transporter (VAChT) from striatal cholinergic neurons. Analysis of several behavioural parameters indicates that elimination of VAChT had only marginal consequences in striatum-related tasks and did not affect spontaneous locomotion, cocaine-induced hyperactivity, or its reward properties. However, dopaminergic sensitivity of medium spiny neurons (MSN) and the behavioural outputs in response to direct dopaminergic agonists were enhanced, likely due to increased expression/function of dopamine receptors in the striatum. These observations indicate that previous functions attributed to striatal cholinergic neurons in spontaneous locomotor activity and in the rewarding responses to cocaine are mediated by glutamate and not by acetylcholine release. Our experiments demonstrate how one population of neurons can use two distinct neurotransmitters to differentially regulate a given circuitry. The data also raise the possibility of using VAChT as a target to boost dopaminergic function and decrease high striatal cholinergic activity, common neurochemical alterations in individuals affected with Parkinson's disease. The neurotransmitters dopamine and acetylcholine play opposite roles in the striatum (a brain region involved in motor control and reward-related behaviour), and their balance is thought to be critical for striatal function. Acetylcholine in the striatum has been linked to a number of functions, including control of locomotor activity and response to drugs of abuse. However, striatal cholinergic interneurons can also release glutamate (in addition to acetylcholine) and it is presently unclear how these two neurotransmitters regulate striatal-dependent behaviour. Previous work has attempted to resolve this issue by ablating cholinergic neurons in the striatum, but this causes loss of both cholinergic and glutamatergic neurotransmission. In this study, we created a novel genetic mouse model which allowed us to selectively interfere with secretion of acetylcholine in the striatum, while leaving total striatal glutamate release intact. In these mice, we observed minimally altered behavioural responses to cocaine, suggesting that striatal glutamate, rather than acetylcholine, is critical for cocaine-induced behavioural manifestations. Furthermore, elimination of striatal acetylcholine release affects how striatal output neurons respond to dopamine, by up-regulating dopaminergic receptors and changing behavioural responses to dopaminergic agonists. Our experiments highlight a previously unappreciated physiological role of cholinergic-glutamatergic co-transmission and demonstrate how a population of neurons can use two distinct neurotransmitters to differentially regulate behaviour.
Collapse
|