1
|
Li RY, Guo L. Exercise in Diabetic Nephropathy: Protective Effects and Molecular Mechanism. Int J Mol Sci 2024; 25:3605. [PMID: 38612417 PMCID: PMC11012151 DOI: 10.3390/ijms25073605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Diabetic nephropathy (DN) is a serious complication of diabetes, and its progression is influenced by factors like oxidative stress, inflammation, cell death, and fibrosis. Compared to drug treatment, exercise offers a cost-effective and low-risk approach to slowing down DN progression. Through multiple ways and mechanisms, exercise helps to control blood sugar and blood pressure and reduce serum creatinine and albuminuria, thereby alleviating kidney damage. This review explores the beneficial effects of exercise on DN improvement and highlights its potential mechanisms for ameliorating DN. In-depth understanding of the role and mechanism of exercise in improving DN would pave the way for formulating safe and effective exercise programs for the treatment and prevention of DN.
Collapse
Affiliation(s)
- Ruo-Ying Li
- School of Exercise and Health, Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China;
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Liang Guo
- School of Exercise and Health, Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China;
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
2
|
P2X7 receptor in multifaceted cellular signalling and its relevance as a potential therapeutic target in different diseases. Eur J Pharmacol 2021; 906:174235. [PMID: 34097884 DOI: 10.1016/j.ejphar.2021.174235] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023]
Abstract
P2X7 receptor, a purinergic receptor family member, is abundantly expressed on many cells, including immune, muscle, bone, neuron, and glia. It acts as an ATP-activated cation channel that permits the influx of Ca2+, Na+ and efflux of K+ ions. The P2X7 receptor plays crucial roles in many physiological processes including cytokine and chemokine secretion, NLRP3 inflammasome activation, cellular growth and differentiation, locomotion, wound healing, transcription factors activation, cell death and T-lymphocyte survival. Past studies have demonstrated the up-regulation and direct association of this receptor in many pathophysiological conditions such as cancer, diabetics, arthritis, tuberculosis (TB) and inflammatory diseases. Hence, targeting this receptor is considered a worthwhile approach to lessen the afflictions associated with the disorders mentioned above by understanding the receptor architecture and downstream signalling processes. Here, in the present review, we have dissected the structural and functional aspects of the P2X7 receptor, emphasizing its role in various diseased conditions. This information will provide in-depth knowledge about the receptor and help to develop apt curative methodologies for the betterment of humanity in the coming years.
Collapse
|
3
|
Sivcev S, Slavikova B, Ivetic M, Knezu M, Kudova E, Zemkova H. Lithocholic acid inhibits P2X2 and potentiates P2X4 receptor channel gating. J Steroid Biochem Mol Biol 2020; 202:105725. [PMID: 32652201 DOI: 10.1016/j.jsbmb.2020.105725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/21/2020] [Accepted: 07/05/2020] [Indexed: 02/02/2023]
Abstract
The family of ATP-gated purinergic P2X receptors comprises seven bunits (P2X1-7) that are unevenly distributed in the central and peripheral nervous systems as well as other organs. Endogenous modulators of P2X receptors are phospholipids, steroids and neurosteroids. Here, we analyzed whether bile acids, which are natural products derived from cholesterol, affect P2X receptor activity. We examined the effects of primary and secondary bile acids and newly synthesized derivatives of lithocholic acid on agonist-induced responses in HEK293T cells expressing rat P2X2, P2X4 and P2X7 receptors. Electrophysiology revealed that low micromolar concentrations of lithocholic acid and its structural analog 4-dafachronic acid strongly inhibit ATP-stimulated P2X2 but potentiate P2X4 responses, whereas primary bile acids and other secondary bile acids exhibit no or reduced effects only at higher concentrations. Agonist-stimulated P2X7 responses are significantly potentiated by lithocholic acid at moderate concentrations. Structural modifications of lithocholic acid at positions C-3, C-5 or C-17 abolish both inhibitory and potentiation effects to varying degrees, and the 3α-hydroxy group contributes to the ability of the molecule to switch between potentiation and inhibition. Lithocholic acid allosterically modulates P2X2 and P2X4 receptor sensitivity to ATP, reduces the rate of P2X4 receptor desensitization and antagonizes the effect of ivermectin on P2X4 receptor deactivation. Alanine-scanning mutagenesis of the upper halve of P2X4 transmembrane domain-1 revealed that residues Phe48, Val43 and Tyr42 are important for potentiating effect of lithocholic acid, indicating that modulatory sites for lithocholic acid and ivermectin partly overlap. Lithocholic acid also inhibits ATP-evoked currents in pituitary gonadotrophs expressing native P2X2, and potentiates ATP currents in nonidentified pituitary cells expressing P2X4 receptors. These results indicate that lithocholic acid is a bioactive steroid that may help to further unveil the importance of the P2X2, and P2X4 receptors in many physiological processes.
Collapse
Affiliation(s)
- Sonja Sivcev
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbora Slavikova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Milorad Ivetic
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Michal Knezu
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Zemkova
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
4
|
Munoz FM, Patel PA, Gao X, Mei Y, Xia J, Gilels S, Hu H. Reactive oxygen species play a role in P2X7 receptor-mediated IL-6 production in spinal astrocytes. Purinergic Signal 2020; 16:97-107. [PMID: 32146607 DOI: 10.1007/s11302-020-09691-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/11/2020] [Indexed: 01/29/2023] Open
Abstract
Astrocytes mediate a remarkable variety of cellular functions, including gliotransmitter release. Under pathological conditions, high concentrations of the purinergic receptor agonist adenosine triphosphate (ATP) are released into the extracellular space leading to the activation of the purinergic P2X7 receptor, which in turn can initiate signaling cascades. It is well-established that reactive oxygen species (ROS) increase in macrophages and microglia following P2X7 receptor activation. However, direct evidence that activation of P2X7 receptor leads to ROS production in astrocytes is lacking to date. While it is known that P2X7R activation induces cytokine production, the mechanism involved in this process is unclear. In the present study, we demonstrated that P2X7 receptor activation induced ROS production in spinal astrocytes in a concentration-dependent manner. We also found that P2X7R-mediated ROS production is at least partially through NADPH oxidase. In addition, our ELISA data show that P2X7R-induced IL-6 release was dependent on NADPH oxidase-mediated production of ROS. Collectively, these results reveal that activation of the P2X7 receptor on spinal astrocytes increases ROS production through NADPH oxidase, subsequently leading to IL-6 release. Our results reveal a role of ROS in the P2X7 signaling pathway in mouse spinal cord astrocytes and may indicate a potential mechanism for the astrocytic P2X7 receptor in chronic pain.
Collapse
Affiliation(s)
- Frances M Munoz
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Priya A Patel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Xinghua Gao
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Yixiao Mei
- Department of Anesthesiology, Rutgers New Jersey Medical School, 185 S. Orange Ave., Newark, NJ, 07103, USA
| | - Jingsheng Xia
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Sofia Gilels
- Department of Anesthesiology, Rutgers New Jersey Medical School, 185 S. Orange Ave., Newark, NJ, 07103, USA
| | - Huijuan Hu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA. .,Department of Anesthesiology, Rutgers New Jersey Medical School, 185 S. Orange Ave., Newark, NJ, 07103, USA.
| |
Collapse
|
5
|
Attenuation of diabetic retinopathy and neuropathy by resveratrol: Review on its molecular mechanisms of action. Life Sci 2020; 245:117350. [PMID: 31982401 DOI: 10.1016/j.lfs.2020.117350] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 12/16/2022]
Abstract
Resveratrol is an important phenolic phytochemical from the therapeutic perspective. It has therapeutic impacts over wide range of diseases, especially the ones related to oxidative stress. Resveratrol, being primarily a potent anti-oxidant phytochemical, has significant impact against major diseases as inflammatory disorders, diabetes, and cancer. In the current review article, we intend to highlight the molecular aspects of the mechanism of action of resveratrol against major diabetic implications, namely, retinopathy and neuropathy. Both these diabetic implications are among the first fallouts of chronic hyperglycaemia. Resveratrol, via multiple molecular pathways, tend to attenuate and reverse these deformity and other disease-causing implications.
Collapse
|
6
|
Sivcev S, Slavikova B, Rupert M, Ivetic M, Nekardova M, Kudova E, Zemkova H. Synthetic testosterone derivatives modulate rat P2X2 and P2X4 receptor channel gating. J Neurochem 2019; 150:28-43. [PMID: 31069814 DOI: 10.1111/jnc.14718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 12/25/2022]
Abstract
P2X receptors (P2XRs) are ATP-gated cationic channels that are allosterically modulated by numerous compounds, including steroids and neurosteroids. These compounds may both inhibit and potentiate the activity of P2XRs, but sex steroids such as 17β-estradiol or progesterone are reported to be inactive. Here, we tested a hypothesis that testosterone, another sex hormone, modulates activity of P2XRs. We examined actions of native testosterone and a series of testosterone derivatives on the gating of recombinant P2X2R, P2X4R and P2X7R and native channels expressed in pituitary cells and hypothalamic neurons. The 17β-ester derivatives of testosterone rapidly and positively modulate the 1 µM ATP-evoked currents in P2X2R- and P2X4R-expressing cells, but not agonist-evoked currents in P2X7R-expressing cells. In general, most of the tested testosterone derivatives are more potent modulators than endogenous testosterone. The comparison of chemical structures and whole-cell recordings revealed that their interactions with P2XRs depend on the lipophilicity and length of the alkyl chain at position C-17. Pre-treatment with testosterone butyrate or valerate increases the sensitivity of P2X2R and P2X4R to ATP by several fold, reduces the rate of P2X4R desensitization, accelerates resensitization, and enhances ethidium uptake by P2X4R. Native channels are also potentiated by testosterone derivatives, while endogenously expressed GABA receptors type A are inhibited. The effect of ivermectin, a P2X4R-specific allosteric modulator, on deactivation is antagonized by testosterone derivatives in a concentration-dependent manner. Together, our results provide evidence for potentiation of particular subtypes of P2XRs by testosterone derivatives and suggest a potential role of ivermectin binding site for steroid-induced modulation. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Sonja Sivcev
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbora Slavikova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Marian Rupert
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.,1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Milorad Ivetic
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Michaela Nekardova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Zemkova
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
7
|
Wu H, Wen F, Jiang M, Liu Q, Nie Y. LncRNA uc.48+ is involved in the diabetic immune and inflammatory responses mediated by P2X7 receptor in RAW264.7 macrophages. Int J Mol Med 2018; 42:1152-1160. [PMID: 29750294 DOI: 10.3892/ijmm.2018.3661] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/27/2018] [Indexed: 11/05/2022] Open
Abstract
High glucose combined with high FFAs can contribute to the unfavorable development of type 2 diabetes mellitus (T2DM) and monocytes/macrophages are important in the occurrence and development of T2DM, which is regarded as a type of low‑grade inflammation. Although our previous study demonstrated that increased expression of P2X7 receptor (P2X7R) in peripheral blood monocytes may alter the innate immune system and that long non‑coding (lnc)RNA uc.48+ was involved in diabetic neuropathic pain, the involvement of uc.48+ mediated by the P2X7R in monocyte/macrophages during T2DM has not been reported. In the present study, the effectsof uc.48+ small interference RNA (siRNA) on factors, including the mRNA and protein expression of P2X7R, apoptosis and proliferation, levels of reactive oxygen species (ROS), cytokine levels, and expression of phosphorylated (p‑) extracellular signal‑regulated kinase (ERK)1/2, were examined in RAW264.7 macrophages following exposure to high glucose and high plasma free fatty acids (FFAs). After RAW264.7 cells were transfected with uc.48+ siRNA under high glucose conditions and FFAs treatment, the mRNA expression levels of uc.48+ and P2X7 receptor were detected by reverse transcription‑polymerase chain reaction. The protein mass of P2X7 receptor and ERK signaling pathway were assessed by western blotting. ROS and calcium concentrations, and culture supernatant cytokine content [tumor necrosis factor‑α, interleukin (IL)‑10, IL‑1β] were detected by fluorescent probes and ELISA respectively. Cell viability and apoptosis were determined by MTS test and flow cytometry, respectively. It was found that treatment of RAW264.7 cells with high glucose and FFAs, which exhibited increased expression of uc.48+, evoked P2X7R‑mediated immune and inflammatory responses through several means, including cytokine secretion, ROS formation, and activation of the ERK signaling pathway. The uc.48+ siRNA regulated these factors and thus influenced the course and outcome of the immune and inflammatory responses mediated by P2X7R.
Collapse
Affiliation(s)
- Hong Wu
- Department of Clinical Laboratory, First Affiliated Hospital, Medical School of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Fang Wen
- Department of Clinical Laboratory, First Affiliated Hospital, Medical School of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Mei Jiang
- Department of Clinical Laboratory, First Affiliated Hospital, Medical School of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiang Liu
- Institute of Blood Transfusion, Jiangxi Province Blood Center, Nanchang, Jiangxi 330077, P.R. China
| | - Yijun Nie
- Department of Clinical Laboratory, First Affiliated Hospital, Medical School of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
8
|
Tu YM, Gong CX, Ding L, Liu XZ, Li T, Hu FF, Wang S, Xiong CP, Liang SD, Xu H. A high concentration of fatty acids induces TNF-α as well as NO release mediated by the P2X4 receptor, and the protective effects of puerarin in RAW264.7 cells. Food Funct 2018; 8:4336-4346. [PMID: 28937704 DOI: 10.1039/c7fo00544j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Circulating levels of free fatty acids (FFAs) are often found to be increased in patients with type 2 diabetes mellitus (T2DM) and metabolic syndrome (MS). High plasma FFA levels may give rise to maladaptive macrophage activation and promote inflammatory responses, which has been proposed as a potential mechanism for the development of DM and MS. P2X4 receptor (P2X4R), a ligand-gated cation channel activated by extracellular adenosine triphosphate (ATP), plays a primary role in the regulation of inflammatory responses. Puerarin has been reported to possess potential anti-inflammatory activity. However, the anti-inflammatory activity of puerarin and the underlying molecular mechanisms in a setting of a high concentration of FFAs remain unknown. In this study, we found that a high concentration of FFAs increased the expression of P2X4R, cytosolic Ca2+ concentration and the phosphorylation of extracellular signal-regulated kinase (ERK) and induced the expression of tumor necrosis factor (TNF)-α and inducible nitric oxide synthase (iNOS) mRNA and the release of TNF-α and nitric oxide (NO) in RAW264.7 macrophages. Such a high concentration FFA-induced inflammation may be reversed by the P2X4R selective antagonist 5-BDBD, which manifests the important role of P2X4R in the TNF-α and NO release caused by the high concentration of FFAs in RAW264.7 cells. Molecular docking data showed that puerarin could interfere with the activation of P2X4R by forming hydrogen bonding towards residue Arg267, an important residue essential for the canonical activation of P2X4R. Treatment with puerarin dose-dependently reduced high concentration FFA-elevated P2X4R expression and inhibited P2X4R-mediated inflammatory signalling, including high concentration FFA-evoked [Ca2+]i, ERK phosphorylation, expression of TNF-α and iNOS mRNA and release of TNF-α and NO. Our findings emphasize the critical role of P2X4R in high concentration FFA-induced TNF-α and NO release of RAW264.7 macrophages. Puerarin notably counteracts these high concentration FFA-induced adverse effects through its inhibition of P2X4R expression and P2X4R-mediated inflammatory signalling.
Collapse
Affiliation(s)
- Yun-Ming Tu
- Department of Endocrinology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Liu CL, Deng ZY, Du ER, Xu CS. Long non‑coding RNA BC168687 small interfering RNA reduces high glucose and high free fatty acid‑induced expression of P2X7 receptors in satellite glial cells. Mol Med Rep 2018; 17:5851-5859. [PMID: 29436679 PMCID: PMC5866030 DOI: 10.3892/mmr.2018.8601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/12/2017] [Indexed: 12/19/2022] Open
Abstract
Purinergic signaling contributes to inflammatory and immune responses. The activation of the P2X purinoceptor 7 (P2X7) in satellite glial cells (SGCs) may be an essential component in the promotion of inflammation and neuropathic pain. Long non-coding RNAs (lncRNAs) are involved in multiple physiological and pathological processes. The aim of the present study was to investigate the effects of a small interfering RNA for the lncRNA BC168687 on SGC P2X7 expression in a high glucose and high free fatty acids (HGHF) environment. It was demonstrated that BC168687 small interfering (si)RNA downregulated the co-expression of the P2X7 and glial fibrillary acidic protein and P2X7 mRNA expression. Additionally, HGHF may activate the mitogen-activated protein kinase signaling pathway by increasing the release of nitric oxide and reactive oxygen species in SGCs. Taken together, these results indicate that silencing BC168687 expression may downregulate the increased expression of P2X7 receptors in SGCs induced by a HGHF environment.
Collapse
Affiliation(s)
- Cheng-Long Liu
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ze-Yu Deng
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Er-Rong Du
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chang-Shui Xu
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
10
|
Li L, Sheng X, Zhao S, Zou L, Han X, Gong Y, Yuan H, Shi L, Guo L, Jia T, Liu S, Wu B, Yi Z, Liu H, Gao Y, Li G, Li G, Zhang C, Xu H, Liang S. Nanoparticle-encapsulated emodin decreases diabetic neuropathic pain probably via a mechanism involving P2X3 receptor in the dorsal root ganglia. Purinergic Signal 2017; 13:559-568. [PMID: 28840511 PMCID: PMC5714846 DOI: 10.1007/s11302-017-9583-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 08/10/2017] [Indexed: 02/06/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes mellitus (DM). More than 90% of all cases of DM belong to type 2 diabetes mellitus (T2DM). Emodin is the main active component of Radix et rhizoma rhei and has anti-bacterial, anti-viral, anti-ulcerogenic, anti-inflammatory, and anti-cancer effects. Nanoparticle encapsulation of drugs is beneficial for drug targeting and bioavailability as well as for lowering drug toxicity side effects. The aim of this study was to investigate the effects of nanoparticle-encapsulated emodin (nano emodin) on diabetic neuropathic pain (DNP) mediated by the Purin 2X3 (P2X3) receptor in the dorsal root ganglia (DRG). Mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) values in T2DM rats were lower than those of control rats. MWT and TWL in T2DM rats treated with nano emodin were higher compared with those in T2DM rats. Expression levels of P2X3 protein and messenger RNA (mRNA) in the DRG of T2DM rats were higher than those of controls, while levels in T2DM rats treated with nano emodin were significantly lower than those of the T2DM rats. Phosphorylation and activation of ERK1/2 in the T2DM DRG were decreased by nano emodin treatment. Nano emodin significantly inhibited currents activated by the P2X3 agonist α,β-meATP in HEK293 cells transfected with the P2X3 receptor. Therefore, nano emodin treatment may relieve DNP by decreasing excitatory transmission mediated by the DRG P2X3 receptor in T2DM rats.
Collapse
Affiliation(s)
- Lin Li
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Xuan Sheng
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Shanhong Zhao
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Lifang Zou
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Xinyao Han
- First Clinical Department, Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yingxin Gong
- First Clinical Department, Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Huilong Yuan
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Liran Shi
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Lili Guo
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Tianyu Jia
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Shuangmei Liu
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Bing Wu
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Zhihua Yi
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Hui Liu
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yun Gao
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Guilin Li
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Guodong Li
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Department of Clinical Translational Research, Singapore General Hospital, Singapore, Singapore
| | - Chunping Zhang
- Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, 330006, Jiangxi, People's Republic of China
- Department of Cell Biology, Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Hong Xu
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Shangdong Liang
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China.
- Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
11
|
Zou L, Gong Y, Zhao S, Yi Z, Han X, Wu B, Jia T, Li L, Yuan H, Shi L, Zhang C, Gao Y, Li G, Xu H, Liu H, Liang S, Liu S. Downregulation of P2Y12in the superior cervical ganglia alleviates abnormal sympathetic activity after myocardial ischemia. J Cell Physiol 2017; 233:3375-3383. [DOI: 10.1002/jcp.26184] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/14/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Lifang Zou
- Department of Physiology; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease; Nanchang Jiangxi P.R. China
| | - Yingxin Gong
- First Clinical Department; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
| | - Shanhong Zhao
- Department of Physiology; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease; Nanchang Jiangxi P.R. China
| | - Zhihua Yi
- Department of Physiology; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease; Nanchang Jiangxi P.R. China
- Nursing College; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
| | - Xinyao Han
- First Clinical Department; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
| | - Bing Wu
- Department of Physiology; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease; Nanchang Jiangxi P.R. China
| | - Tianyu Jia
- Department of Physiology; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease; Nanchang Jiangxi P.R. China
| | - Lin Li
- Department of Physiology; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease; Nanchang Jiangxi P.R. China
| | - Huilong Yuan
- Department of Physiology; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease; Nanchang Jiangxi P.R. China
| | - Liran Shi
- Department of Physiology; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease; Nanchang Jiangxi P.R. China
| | - Chunping Zhang
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease; Nanchang Jiangxi P.R. China
- Department of Cell Biology; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
| | - Yun Gao
- Department of Physiology; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease; Nanchang Jiangxi P.R. China
| | - Guilin Li
- Department of Physiology; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease; Nanchang Jiangxi P.R. China
| | - Hong Xu
- Department of Physiology; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease; Nanchang Jiangxi P.R. China
| | - Hui Liu
- Department of Physiology; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease; Nanchang Jiangxi P.R. China
| | - Shangdong Liang
- Department of Physiology; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease; Nanchang Jiangxi P.R. China
| | - Shuangmei Liu
- Department of Physiology; Medical School of Nanchang University; Nanchang Jiangxi P.R. China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease; Nanchang Jiangxi P.R. China
| |
Collapse
|
12
|
Song M, Zou L, Peng L, Liu S, Wu B, Yi Z, Gao Y, Zhang C, Xu H, Xu Y, Tang M, Wang S, Xue Y, Jia T, Zhao S, Liang S, Li G. LncRNA NONRATT021972 siRNA normalized the dysfunction of hepatic glucokinase through AKT signaling in T2DM rats. Endocr Res 2017; 42:180-190. [PMID: 28281841 DOI: 10.1080/07435800.2017.1292522] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED Hepatic glucokinase (GK) expression and activity are decreased in type 2 diabetes mellitus (T2DM), and glycogen synthase kinase-3 (GSK-3) inhibits the synthesis of GK. In hepatocytes, the activation of the protein kinase B (PKB/AKT) signaling pathway enhances GK expression and inhibits the phosphorylation of GSK-3β. The dysfunction of certain long noncoding RNAs (lncRNAs) has been associated with a variety of diseases. AIMS This study explored the effects of the lncRNA NONRATT021972 small interfering RNA (siRNA) on the dysfunction of hepatic GK through AKT signaling in T2DM rats. METHODS Livers from type 2 diabetic rats and hepatocytes cultured in high glucose and high fatty acid media were studied. The changes in expression of AKT, GK and GSK 3β were detected by western blotting or RT-PCR. The application of bioinformatics technology (CatRAPID) was used to identify the targets of NONRATT021972 RNA. RESULTS We found that lncRNA NONRATT021972 levels in the liver were increased in type 2 diabetic rats, and the increase was associated with an increase in the blood glucose levels. The NONRATT021972 siRNA enhanced phospho-AKT (p-AKT) levels, GK expression and hepatic glycogen synthesis. This siRNA also reduced phospho-glycogen synthase kinase-3β (p-GSK-3β) levels and hyperglycemia in T2DM rats, as well as in hepatocytes cultured in high glucose media with fatty acids. CatRAPID predicted that there was the interaction between NONRATT021972 and p-AKT. CONCLUSIONS LncRNA NONRATT021972 siRNA may have beneficial effects on T2DM.
Collapse
Affiliation(s)
- Miaomiao Song
- a Department of Physiology , Basic Medical College of Nanchang University , Nanchang , Jiangxi , People's Republic of China
| | - Lifang Zou
- a Department of Physiology , Basic Medical College of Nanchang University , Nanchang , Jiangxi , People's Republic of China
| | - Lichao Peng
- a Department of Physiology , Basic Medical College of Nanchang University , Nanchang , Jiangxi , People's Republic of China
| | - Shuangmei Liu
- a Department of Physiology , Basic Medical College of Nanchang University , Nanchang , Jiangxi , People's Republic of China
| | - Bing Wu
- a Department of Physiology , Basic Medical College of Nanchang University , Nanchang , Jiangxi , People's Republic of China
| | - Zhihua Yi
- a Department of Physiology , Basic Medical College of Nanchang University , Nanchang , Jiangxi , People's Republic of China
| | - Yun Gao
- a Department of Physiology , Basic Medical College of Nanchang University , Nanchang , Jiangxi , People's Republic of China
| | - Chunping Zhang
- b Department of Cell Biology , Basic Medical College of Nanchang University , Nanchang , Jiangxi , People's Republic of China
| | - Hong Xu
- a Department of Physiology , Basic Medical College of Nanchang University , Nanchang , Jiangxi , People's Republic of China
| | - Yurong Xu
- a Department of Physiology , Basic Medical College of Nanchang University , Nanchang , Jiangxi , People's Republic of China
| | - Mengxia Tang
- a Department of Physiology , Basic Medical College of Nanchang University , Nanchang , Jiangxi , People's Republic of China
| | - Shouyu Wang
- a Department of Physiology , Basic Medical College of Nanchang University , Nanchang , Jiangxi , People's Republic of China
| | - Yun Xue
- a Department of Physiology , Basic Medical College of Nanchang University , Nanchang , Jiangxi , People's Republic of China
| | - Tianyu Jia
- a Department of Physiology , Basic Medical College of Nanchang University , Nanchang , Jiangxi , People's Republic of China
| | - Shanhong Zhao
- a Department of Physiology , Basic Medical College of Nanchang University , Nanchang , Jiangxi , People's Republic of China
| | - Shangdong Liang
- a Department of Physiology , Basic Medical College of Nanchang University , Nanchang , Jiangxi , People's Republic of China
| | - Guilin Li
- a Department of Physiology , Basic Medical College of Nanchang University , Nanchang , Jiangxi , People's Republic of China
| |
Collapse
|
13
|
Nie J, Huang GL, Deng SZ, Bao Y, Liu YW, Feng ZP, Wang CH, Chen M, Qi ST, Pan J. The purine receptor P2X7R regulates the release of pro-inflammatory cytokines in human craniopharyngioma. Endocr Relat Cancer 2017; 24:287-296. [PMID: 28389503 PMCID: PMC5457505 DOI: 10.1530/erc-16-0338] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 04/07/2017] [Indexed: 12/22/2022]
Abstract
Craniopharyngiomas (CPs) are usually benign, non-metastasizing embryonic malformations originating from the sellar area. They are, however, locally invasive and generate adherent interfaces with the surrounding brain parenchyma. Previous studies have shown the tumor microenvironment is characterized by a local abundance of adenosine triphosphate (ATP), infiltration of leukocytes and elevated levels of pro-inflammatory cytokines that are thought to be responsible, at least in part, for the local invasion. Here, we examine whether ATP, via the P2X7R, participates in the regulation of cytokine expression in CPs. The expression of P2X7R and pro-inflammatory cytokines were measured at the RNA and protein levels both in tumor samples and in primary cultured tumor cells. Furthermore, cytokine modulation was measured after manipulating P2X7R in cultured tumor cells by siRNA-mediated knockdown, as well as pharmacologically by using selective agonists and antagonists. The following results were observed. A number of cytokines, in particular IL-6, IL-8 and MCP-1, were elevated in patient plasma, tumor tissue and cultured tumor cells. P2X7R was expressed in tumor tissue as well as in cultured tumor cells. RNA expression as measured in 48 resected tumors was positively correlated with the RNA levels of IL-6, IL-8 and MCP-1 in tumors. Furthermore, knockdown of P2X7R in primary tumor cultures reduced, and stimulation of P2XR7 by a specific agonist enhanced the expression of these cytokines. This latter stimulation involved a Ca2+-dependent mechanism and could be counteracted by the addition of an antagonist. In conclusion, the results suggest that P2X7R may promote IL-6, IL-8 and MCP-1 production and secretion and contribute to the invasion and adhesion of CPs to the surrounding tissue.
Collapse
Affiliation(s)
- Jing Nie
- Department of NeurosurgeryNanfang Hospital, Southern Medical University, Guangzhou, China
- Nanfang Neurosurgery Research InstitutionNanfang hospital, Southern Medical University, Guangzhou, China
| | - Guang-Long Huang
- Department of NeurosurgeryNanfang Hospital, Southern Medical University, Guangzhou, China
- Nanfang Neurosurgery Research InstitutionNanfang hospital, Southern Medical University, Guangzhou, China
| | - Sheng-Ze Deng
- Department of NeurosurgeryNanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yun Bao
- Department of NeurosurgeryNanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ya-Wei Liu
- Department of NeurosurgeryNanfang Hospital, Southern Medical University, Guangzhou, China
- Nanfang Neurosurgery Research InstitutionNanfang hospital, Southern Medical University, Guangzhou, China
| | - Zhan-Peng Feng
- Department of NeurosurgeryNanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chao-Hu Wang
- Department of NeurosurgeryNanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ming Chen
- Department of NeurosurgeryNanfang Hospital, Southern Medical University, Guangzhou, China
| | - Song-Tao Qi
- Department of NeurosurgeryNanfang Hospital, Southern Medical University, Guangzhou, China
- Nanfang Neurosurgery Research InstitutionNanfang hospital, Southern Medical University, Guangzhou, China
| | - Jun Pan
- Department of NeurosurgeryNanfang Hospital, Southern Medical University, Guangzhou, China
- Nanfang Neurosurgery Research InstitutionNanfang hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
14
|
The protective effect of resveratrol in the transmission of neuropathic pain mediated by the P2X 7 receptor in the dorsal root ganglia. Neurochem Int 2016; 103:24-35. [PMID: 28027922 DOI: 10.1016/j.neuint.2016.12.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/24/2016] [Accepted: 12/15/2016] [Indexed: 02/02/2023]
Abstract
The P2X7 receptor mediates afferent nerve activation and is related to chronic neuropathic pain. Resveratrol (RES) has also been reported to exhibit anti-inflammatory effects. In this study, we investigated the neuroprotective effect of RES on the transmission of neuropathic pain mediated by the P2X7 receptor. The P2X7 mRNA and protein expression levels in L4-L5 dorsal root ganglia (DRG)s of the chronic constriction injury (CCI) group were significantly higher than those observed in the Ctrl + NS, Sham + RES and Sham groups. RES increased the threshold of thermal and mechanical hypersensitivity in rats with chronic neuropathic pain. The P2X7 mRNA and protein expression levels in the CCI + RES group were decreased compared with those in the CCI group. Our results showed that RES inhibited the upregulated co-expression of P2X7 and glial fibrillary acidic protein (GFAP, a marker of satellite glial cells) in satellite glial cells of DRG in the CCI group. The results demonstrated that the expression of GFAP was increased in the CCI group and that RES inhibited the upregulated expression of GFAP in the rats in the CCI group. In addition, the phosphorylation levels of p38 and extracellular regulated protein kinases (ERK)1/2 in the CCI group were markedly higher than those observed in the Ctrl + NS, Sham + RES and Sham groups, whereas the phosphorylation levels of p38 and ERK1/2 in CCI + RES group were markedly lower than those observed in the CCI group. RES inhibited BzATP-activated currents in DRG non-neurons in the CCI rats. Our data provide evidence that RES may suppress the transmission of neuropathic pain mediated by the P2X7 receptor in the satellite glial cells of dorsal root ganglia.
Collapse
|
15
|
Li G, Sheng X, Xu Y, Jiang H, Zheng C, Guo J, Sun S, Yi Z, Qin S, Liu S, Gao Y, Zhang C, Xu H, Wu B, Zou L, Liang S, Zhu G. Co-expression changes of lncRNAs and mRNAs in the cervical sympathetic ganglia in diabetic cardiac autonomic neuropathic rats. J Neurosci Res 2016; 95:1690-1699. [DOI: 10.1002/jnr.24000] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 11/04/2016] [Accepted: 11/22/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Guilin Li
- Department of Physiology; Basic Medical College of Nanchang University; Nanchang 330006 PR China
| | - Xuan Sheng
- Department of Physiology; Basic Medical College of Nanchang University; Nanchang 330006 PR China
| | - Yurong Xu
- Department of Physiology; Basic Medical College of Nanchang University; Nanchang 330006 PR China
| | - Huaide Jiang
- Department of Physiology; Basic Medical College of Nanchang University; Nanchang 330006 PR China
| | - Chaoran Zheng
- Department of Physiology; Basic Medical College of Nanchang University; Nanchang 330006 PR China
| | - Jingjing Guo
- Department of Physiology; Basic Medical College of Nanchang University; Nanchang 330006 PR China
| | - Shanshan Sun
- Undergraduate Student of Second Clinical Medical College; Medical College of Nanchang University; Nanchang 330008 PR China
| | - Zhihua Yi
- Department of Physiology; Basic Medical College of Nanchang University; Nanchang 330006 PR China
| | - Shulan Qin
- Endocrine Department of Third Affiliated Hospital; Medical College of Nanchang University; Nanchang 330008 PR China
| | - Shuangmei Liu
- Department of Physiology; Basic Medical College of Nanchang University; Nanchang 330006 PR China
| | - Yun Gao
- Department of Physiology; Basic Medical College of Nanchang University; Nanchang 330006 PR China
| | - Chunping Zhang
- Department of Medical Genetics and Biology; Basic Medical College of Nanchang University; Nanchang 330006 PR China
| | - Hong Xu
- Department of Physiology; Basic Medical College of Nanchang University; Nanchang 330006 PR China
| | - Bing Wu
- Department of Physiology; Basic Medical College of Nanchang University; Nanchang 330006 PR China
| | - Lifang Zou
- Department of Physiology; Basic Medical College of Nanchang University; Nanchang 330006 PR China
| | - Shangdong Liang
- Department of Physiology; Basic Medical College of Nanchang University; Nanchang 330006 PR China
| | - Gaochun Zhu
- Department of Anatomy; Basic Medical College of Nanchang University; Nanchang 330006 PR China
| |
Collapse
|
16
|
Involvement of P2X7 receptor signaling on regulating the differentiation of Th17 cells and type II collagen-induced arthritis in mice. Sci Rep 2016; 6:35804. [PMID: 27775097 PMCID: PMC5075966 DOI: 10.1038/srep35804] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/03/2016] [Indexed: 12/29/2022] Open
Abstract
Interleukin (IL)-17 producing T helper (Th17) cells are major effector cells in the pathogenesis of rheumatoid arthritis (RA). The P2X7 receptor (P2X7R) has emerged as a potential site in the regulation of inflammation in RA but little is known of its functional role on the differentiation of Th17 cells. This study investigates the in vitro and in vivo effects of P2X7R on Th17 cell differentiation during type II collagen (CII) induced experimental arthritis model. In CII-treated dendritic cells (DCs) and DC/CD4+ T coculture system, pretreatment with pharmacological antagonists of P2X7R (Suramin and A-438079) caused strong inhibition of production of Th17-promoting cytokines (IL-1β, TGF-β1, IL-23p19 and IL-6). Exposure to CII induced the elevation of mRNAs encoding retinoic acid receptor-related orphan receptor α and γt, which were abolished by pretreatment with P2X7R antagonists. Furthermore, blocking P2X7R signaling abolished the CII-mediated increase in IL-17A. Blockade of P2X7R remarkably inhibited hind paw swelling and ameliorated pathological changes in ankle joint of the collagen-induced arthritis mice. Thus, we demonstrated a novel function for P2X7R signaling in regulating CII-induced differentiation of Th17 cells. P2X7R signaling facilitates the development of the sophisticated network of DC-derived cytokines that favors a Th17 phenotype.
Collapse
|
17
|
Xu H, Liu C, Rao S, He L, Zhang T, Sun S, Wu B, Zou L, Wang S, Xue Y, Jia T, Zhao S, Li G, Liu S, Li G, Liang S. LncRNA NONRATT021972 siRNA rescued decreased heart rate variability in diabetic rats in superior cervical ganglia. Auton Neurosci 2016; 201:1-7. [PMID: 27519467 DOI: 10.1016/j.autneu.2016.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/23/2016] [Accepted: 07/31/2016] [Indexed: 12/23/2022]
Abstract
Diabetic cardiac autonomic neuropathy (DCAN) is a serious and common complication in diabetes mellitus (DM). Long noncoding RNAs (lncRNAs), an important class of regulatory molecules in diverse biological processes, have attracted considerable interest in DCAN. Our previous study has indicated a lncRNA, NONRATT021972 (NONCODE ID), was enhanced in sympathetic neuronal-like PC12 cells in the setting of high glucose (HG) and high FFAs (HF); its silence was found to significantly alleviate HGHF-induced tumor necrosis factor-α (TNF-α) release in PC12 cells. Here we further explore the effects of NONRATT021972 small interference RNA (siRNA) on heart rate variability (HRV) mediated by superior cervical ganglia (SCG) in diabetic rats and the possible mechanism underlying. We found an increment of NONRATT021972 in SCG of DM rats. Treatment of NONRATT021972 siRNA in DM rats decreased the elevated expression of TNF-α, blocked serine phosphorylation of insulin receptor substrate (IRS) 1 and increased the down-regulated expression of IRS1 in SCG. Meanwhile, NONRATT021972 siRNA rescued decreased HRV in DM rats. Therefore, inhibition of NONRATT021972 may serve as a novel therapeutic strategy for preventing the development of DCAN.
Collapse
Affiliation(s)
- Hong Xu
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Changle Liu
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Shenqiang Rao
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Luling He
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Tengling Zhang
- Nanchang Institute of Science and Technology, Nanchang, Jiangxi 330006, PR China
| | - Shanshan Sun
- Second Clinical Medical College, Medical College of Nanchang University, Nanchang, 330008, P.R., China
| | - Bing Wu
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Lifang Zou
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Shouyu Wang
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Yun Xue
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Tianyu Jia
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Shanhong Zhao
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Guilin Li
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Shuangmei Liu
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Guodong Li
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, PR China; Department of Clinical Research, Singapore General Hospital, Singapore
| | - Shangdong Liang
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, PR China.
| |
Collapse
|
18
|
Tu G, Zou L, Liu S, Wu B, Lv Q, Wang S, Xue Y, Zhang C, Yi Z, Zhang X, Li G, Liang S. Long noncoding NONRATT021972 siRNA normalized abnormal sympathetic activity mediated by the upregulation of P2X7 receptor in superior cervical ganglia after myocardial ischemia. Purinergic Signal 2016; 12:521-35. [PMID: 27215605 DOI: 10.1007/s11302-016-9518-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/11/2016] [Indexed: 11/26/2022] Open
Abstract
Previous studies showed that the upregulation of the P2X7 receptor in cervical sympathetic ganglia was involved in myocardial ischemic (MI) injury. The dysregulated expression of long noncoding RNAs (lncRNAs) participates in the onset and progression of many pathological conditions. The aim of this study was to investigate the effects of a small interfering RNA (siRNA) against the NONRATT021972 lncRNA on the abnormal changes of cardiac function mediated by the up-regulation of the P2X7 receptor in the superior cervical ganglia (SCG) after myocardial ischemia. When the MI rats were treated with NONRATT021972 siRNA, their increased systolic blood pressure (SBP), diastolic blood pressure (DBP), heart rate (HR), low-frequency (LF) power, and LF/HF ratio were reduced to normal levels. However, the decreased high-frequency (HF) power was increased. GAP43 and tyrosine hydroxylase (TH) are markers of nerve sprouting and sympathetic nerve fibers, respectively. We found that the TH/GAP43 value was significantly increased in the MI group. However, it was reduced after the MI rats were treated with NONRATT021972 siRNA. The serum norepinephrine (NE) and epinephrine (EPI) concentrations were decreased in the MI rats that were treated with NONRATT021972 siRNA. Meanwhile, the increased P2X7 mRNA and protein levels and the increased p-ERK1/2 expression in the SCG were also reduced. NONRATT021972 siRNA treatment inhibited the P2X7 agonist BzATP-activated currents in HEK293 cells transfected with pEGFP-P2X7. Our findings suggest that NONRATT021972 siRNA could decrease the upregulation of the P2X7 receptor and improve the abnormal changes in cardiac function after myocardial ischemia.
Collapse
Affiliation(s)
- Guihua Tu
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Lifang Zou
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Shuangmei Liu
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Bing Wu
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Qiulan Lv
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Shouyu Wang
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Yun Xue
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Chunping Zhang
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Zhihua Yi
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Xi Zhang
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Guilin Li
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China.
| | - Shangdong Liang
- Department of Physiology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China.
- Institute of Life Science of Nanchang University, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
19
|
The effects of NONRATT021972 lncRNA siRNA on PC12 neuronal injury mediated by P2X7 receptor after exposure to oxygen-glucose deprivation. Purinergic Signal 2016; 12:479-87. [PMID: 27100355 DOI: 10.1007/s11302-016-9513-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 04/14/2016] [Indexed: 12/13/2022] Open
Abstract
Adenosine triphosphate (ATP) participates in signal transmission by acting on P2X receptors, and the P2X7 receptor is involved in the pathophysiological changes of ischemic injury. The PC12 cell line is a popular model system to study sympathetic neuronal function. Long noncoding RNAs (lncRNAs) are highly expressed in the nervous system and serve as regulatory RNAs. In this study, the effects of NONRATT021972 lncRNA siRNA on P2X7-mediated PC12 neuronal injury after exposure to oxygen-glucose deprivation (OGD) were investigated. Our results showed that the viability of PC12 cells cultured with OGD or the P2X7 agonist BzATP was significantly decreased. Treatment with NONRATT021972 siRNA reversed the decreased viability of PC12 cells under OGD conditions. The upregulated P2X7 mRNA and protein levels in PC12 cells under OGD conditions or BzATP treatment were significantly decreased when pretreated with NONRATT021972 siRNA. Moreover, NONRATT021972 siRNA treatment effectively suppressed the increase in [Ca(2+)]i induced by OGD or P2X7 agonists (ATP or BzATP) in PC12 cells. Therefore, treatment with NONRATT021972 siRNA may decrease sympathetic neuronal injury induced by ischemia.
Collapse
|
20
|
LncRNA uc.48+ siRNA improved diabetic sympathetic neuropathy in type 2 diabetic rats mediated by P2X7 receptor in SCG. Auton Neurosci 2016; 197:14-8. [PMID: 27118262 DOI: 10.1016/j.autneu.2016.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 04/05/2016] [Accepted: 04/05/2016] [Indexed: 12/18/2022]
Abstract
Diabetic autonomic neuropathy includes the sympathetic ganglionic dysfunction. P2X7 receptor in superior cervical ganglia (SCG) participated in the pathological changes of cardiac dysfunction. Abnormal expression of long noncoding RNAs (lncRNAs) was reported to be involved in nervous system diseases. Our preliminary results obtained from rat lncRNA array profiling revealed that the expression of the uc.48+ was significantly increased in the rat SCG in response to diabetic sympathetic pathology. In this study, we found that lncRNAuc.48+ and P2X7 receptor in the SCG were increased in type 2 diabetic rats and were associated with the cardiac dysfunction. The uc.48+ small interference RNA (siRNA) improved the cardiac autonomic dysfunction and decreased the up-regulation P2X7 and the ratio of phosphorylated extracellular regulated protein kinases1/2 (p-ERK1/2) to ERK1/2 in SCG of type 2 diabetic rats. In conclusion, lncRNA uc.48+ siRNA improved diabetic sympathetic neuropathy in type 2 diabetic rats through regulating the expression of P2X7 and ERK signaling in SCG.
Collapse
|
21
|
Xu H, He L, Liu C, Tang L, Xu Y, Xiong M, Yang M, Fan Y, Hu F, Liu X, Ding L, Gao Y, Xu C, Li G, Liu S, Wu B, Zou L, Liang S. LncRNA NONRATT021972 siRNA attenuates P2X7 receptor expression and inflammatory cytokine production induced by combined high glucose and free fatty acids in PC12 cells. Purinergic Signal 2016; 12:259-68. [PMID: 26865268 DOI: 10.1007/s11302-016-9500-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/03/2016] [Indexed: 02/07/2023] Open
Abstract
Diabetic neuropathy (DNP) is a frequent chronic complication of diabetes mellitus with potentially life-threatening outcomes. High glucose and elevated free fatty acids (FFAs) have been recently recognized as major causes of nervous system damage in diabetes. Our previous study has indicated extracellular stimuli, such as high glucose and/or FFA stress, may activate the p38 mitogen-activated protein kinase (MAPK) signaling pathway and induce a p38 MAPK-dependent sensitization of the P2X7 receptor and release of inflammatory factors in PC12 cells, while the mechanisms underlying remain to be elucidated. Long noncoding RNAs (lncRNAs) play important roles in diverse biological processes, including activation of a series of pathway signalings. Here, we showed combined high D-glucose and FFAs (HGHF) induced an increment of lncRNA-NONRATT021972 (NONCODE ID, nc021972) in PC12 cells. Nc021972 small interference RNA (siRNA) alleviated HGHF-induced activation of p38 MAPK, expression of the P2X7 receptor, and [Ca(2+)]i increment upon P2X7 receptor activation. Further experiments showed that there existed a crosstalk between nc021972 and the p38 MAPK signaling pathway. Inhibition of p38 MAPK signaling decreased nc021972-induced expression of the P2X7 receptor and [Ca(2+)]i increment upon P2X7 receptor activation. Also, nc021972 siRNA inhibited HGHF-induced PC12 release of TNF-α and IL-6 and rescued decreased cell viability mediated by the P2X7 receptor. Therefore, inhibition of nc021972 may serve as a novel therapeutic strategy for diabetes complicated with nervous inflammatory diseases.
Collapse
Affiliation(s)
- Hong Xu
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Luling He
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Changle Liu
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Lan Tang
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Yonghu Xu
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Mengqi Xiong
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Mei Yang
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Yongfang Fan
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Fangfang Hu
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Xingzi Liu
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Lu Ding
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Yun Gao
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Changshui Xu
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Guilin Li
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shuangmei Liu
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Bing Wu
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Lifang Zou
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shangdong Liang
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China.
| |
Collapse
|
22
|
LncRNA uc.48+ is involved in diabetic neuropathic pain mediated by the P2X3 receptor in the dorsal root ganglia. Purinergic Signal 2015; 12:139-48. [PMID: 26686228 DOI: 10.1007/s11302-015-9488-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/10/2015] [Indexed: 12/12/2022] Open
Abstract
Some long non-coding RNAs (lncRNAs) participate in physiological processes that maintain cellular and tissue homeostasis, and thus, the dysregulated expression of lncRNAs is involved in the onset and progression of many pathological conditions. Research has indicated that the genetic knockout of some lncRNAs in mice resulted in peri- or postnatal lethality or developmental defects. Diabetes mellitus (DM) is a major cause of peripheral neuropathy. Our studies showed that the expression levels of lncRNA uc.48+ in the diabetic rat dorsal root ganglia (DRG) and the DM patients' serum samples were increased. It suggested that lncRNA uc.48+ was involved in the pathophysiological process of DM. The aim of this study was to investigate the effects of lncRNA uc.48+ small interfering RNA (siRNA) on diabetic neuropathic pain (DNP) mediated by the P2X3 receptor in the DRG. The values of the mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were measured by the von Frey test and Hargreaves' test, respectively. The levels of P2X3 protein and messenger RNA (mRNA) in the DRG were detected by reverse transcription-polymerase chain reaction (RT-PCR), immunohistochemistry, and western blotting. The experiments showed that the MWT and TWL values in DM rats were lower than those in the control rats. The MWT and TWL values in DM rats treated with lncRNA uc.48+ siRNA were increased compared to those in DM rats, but there was no significant difference between the DM rat group and the DM + scramble siRNA group. The levels of P2X3 protein and mRNA in the DM DRG were higher than those in the control, while the levels of P2X3 protein and mRNA in the DG of DM rats treated with uc.48+ siRNA were significantly decreased compared to those in DM rats. The expression levels of TNF-α in the DRG of DM rats treated with uc.48+ siRNA were significantly decreased compared to those in the DM group. The phosphorylation and activation of ERK1/2 in the DM DRG were decreased by uc.48+ siRNA treatment. Therefore, uc.48+ siRNA treatment may alleviate the DNP by inhibiting the excitatory transmission mediated by the P2X3 receptor in DRG.
Collapse
|
23
|
Zou L, Tu G, Xie W, Wen S, Xie Q, Liu S, Li G, Gao Y, Xu H, Wang S, Xue Y, Wu B, Lv Q, Ying M, Zhang X, Liang S. LncRNA NONRATT021972 involved the pathophysiologic processes mediated by P2X7 receptors in stellate ganglia after myocardial ischemic injury. Purinergic Signal 2015; 12:127-37. [PMID: 26630943 DOI: 10.1007/s11302-015-9486-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/24/2015] [Indexed: 12/20/2022] Open
Abstract
Adenosine triphosphate (ATP) acts on P2X receptors to initiate signal transmission. P2X7 receptors play a role in the pathophysiological process of myocardial ischemic injury. Long noncoding RNAs (lncRNAs) participate in numerous biological functions independent of protein translation. LncRNAs are implicated in nervous system diseases. This study investigated the effects of NONRATT021972 small interference RNA (siRNA) on the pathophysiologic processes mediated by P2X7 receptors in stellate ganglia (SG) after myocardial ischemic injury. Our results demonstrated that the expression of NONRATT021972 in SG was significantly higher in the myocardial ischemic (MI) group than in the control group. Treatment of MI rats with NONRATT021972 siRNA, the P2X7 antagonist brilliant blue G (BBG), or P2X7 siRNA improved the histology of injured ischemic cardiac tissues and decreased the elevated concentrations of serum myocardial enzymes, creatine kinase (CK), CK isoform MB (CK-MB), lactate dehydrogenase (LDH) and aspartate aminotransferase (AST) compared to the MI rats. NONRATT021972 siRNA, BBG, or P2X7 siRNA treatment in MI rats decreased the expression levels of P2X7 immunoreactivity, P2X7 messenger RNA (mRNA), and P2X7 protein, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and phosphorylated p38 mitogen-activated protein kinase (p38 MAPK) in the SG compared to MI rats. NONRATT021972 siRNA treatment prevented the pathophysiologic processes mediated by P2X7 receptors in the SG after myocardial ischemic injury.
Collapse
Affiliation(s)
- Lifang Zou
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Guihua Tu
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Wei Xie
- Undergraduate student of grade 2012, Medical School of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Shiyao Wen
- Undergraduate student of grade 2012, Medical School of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Qiuyu Xie
- Undergraduate student of grade 2012, Medical School of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Shuangmei Liu
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Guilin Li
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Yun Gao
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Hong Xu
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Shouyu Wang
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Yun Xue
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Bing Wu
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Qiulan Lv
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Mofeng Ying
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Xi Zhang
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Shangdong Liang
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
24
|
Trans-resveratrol attenuates high fatty acid-induced P2X7 receptor expression and IL-6 release in PC12 cells: possible role of P38 MAPK pathway. Inflammation 2015; 38:327-37. [PMID: 25348860 DOI: 10.1007/s10753-014-0036-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Diabetic neuropathy (DNP) is the most common chronic complication of diabetes. Elevated free fatty acids (FFAs) have been recently recognized as major causes of inflammation and are relevant to the functional changes of nerve system in diabetes. Trans-resveratrol (RESV), a polyphenolic natural compound, has long been acknowledged to have anti-inflammation properties and may exert a neuroprotective effect on neuronal damage in diabetes, while the mechanisms underlying are largely unknown. Our previous study on differential PC12 cells cultured with high FFAs has shown chronic FFAs overload increased PC12 interleukin (IL)-6 release mediated by P2X7 receptor, a ligand-gated cation channel activated by extracellular adenosine triphosphate (ATP); a high FFA-induced activation of P38 mitogen-activated protein kinase (MAPK) pathway was pointed to be a potential underlying mechanism. Data from this study indicated that RESV, in a dose-dependent manner, reduced high FFA-induced IL-6 release by impeding the activation of P2X7 receptor, as shown by the results that both high FFA-elevated P2X7 receptor messenger RNA (mRNA) and protein expression as well as high FFA-evoked [Ca(2+)]i in response to 3'-O-(4-benzoyl) benzoyl-ATP (a selective P2X7 receptor agonist) were significantly attenuated. Meanwhile, high FFA-induced activation of P38 MAPK, an essential prerequisite for high FFA-activated P2X7 receptor and subsequent IL-6 release, was also dose-dependently abrogated by RESV. Furthermore, RESV may hamper the activation of P38a MAPK (one paramount P38 isoform) via forming hydrogen bonding with Thr175 residue, surrounding the two residues (Thy180 and Tyr182) essential for canonical activation of P38a MAPK. Taken together, RESV could inhibit high FFA-induced inflammatory IL-6 release mediated by P2X7 receptor through deactivation of P38 MAPK signaling pathway. All these results outline the potential mechanisms involved in the neuroprotective roles of RESV and highlight the clinical application of RESV in treatment of inflammation in relation to DNP.
Collapse
|
25
|
Zimmermann H. Extracellular ATP and other nucleotides-ubiquitous triggers of intercellular messenger release. Purinergic Signal 2015; 12:25-57. [PMID: 26545760 DOI: 10.1007/s11302-015-9483-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/29/2015] [Indexed: 12/21/2022] Open
Abstract
Extracellular nucleotides, and ATP in particular, are cellular signal substances involved in the control of numerous (patho)physiological mechanisms. They provoke nucleotide receptor-mediated mechanisms in select target cells. But nucleotides can considerably expand their range of action. They function as primary messengers in intercellular communication by stimulating the release of other extracellular messenger substances. These in turn activate additional cellular mechanisms through their own receptors. While this applies also to other extracellular messengers, its omnipresence in the vertebrate organism is an outstanding feature of nucleotide signaling. Intercellular messenger substances released by nucleotides include neurotransmitters, hormones, growth factors, a considerable variety of other proteins including enzymes, numerous cytokines, lipid mediators, nitric oxide, and reactive oxygen species. Moreover, nucleotides activate or co-activate growth factor receptors. In the case of hormone release, the initially paracrine or autocrine nucleotide-mediated signal spreads through to the entire organism. The examples highlighted in this commentary suggest that acting as ubiquitous triggers of intercellular messenger release is one of the major functional roles of extracellular nucleotides. While initiation of messenger release by nucleotides has been unraveled in many contexts, it may have been overlooked in others. It can be anticipated that additional nucleotide-driven messenger functions will be uncovered with relevance for both understanding physiology and development of therapy.
Collapse
Affiliation(s)
- Herbert Zimmermann
- Institute of Cell Biology and Neuroscience, Molecular and Cellular Neurobiology, Goethe University, Max-von-Laue-Str. 13, Frankfurt am Main, Germany.
| |
Collapse
|
26
|
Sathanoori R, Swärd K, Olde B, Erlinge D. The ATP Receptors P2X7 and P2X4 Modulate High Glucose and Palmitate-Induced Inflammatory Responses in Endothelial Cells. PLoS One 2015; 10:e0125111. [PMID: 25938443 PMCID: PMC4418812 DOI: 10.1371/journal.pone.0125111] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/20/2015] [Indexed: 12/20/2022] Open
Abstract
Endothelial cells lining the blood vessels are principal players in vascular inflammatory responses. Dysregulation of endothelial cell function caused by hyperglycemia, dyslipidemia, and hyperinsulinemia often result in impaired vasoregulation, oxidative stress, inflammation, and altered barrier function. Various stressors including high glucose stimulate the release of nucleotides thus initiating signaling via purinergic receptors. However, purinergic modulation of inflammatory responses in endothelial cells caused by high glucose and palmitate remains unclear. In the present study, we investigated whether the effect of high glucose and palmitate is mediated by P2X7 and P2X4 and if they play a role in endothelial cell dysfunction. Transcript and protein levels of inflammatory genes as well as reactive oxygen species production, endothelial-leukocyte adhesion, and cell permeability were investigated in human umbilical vein endothelial cells exposed to high glucose and palmitate. We report high glucose and palmitate to increase levels of extracellular ATP, expression of P2X7 and P2X4, and inflammatory markers. Both P2X7 and P2X4 antagonists inhibited high glucose and palmitate-induced interleukin-6 levels with the former having a significant effect on interleukin-8 and cyclooxygenase-2. The effect of the antagonists was confirmed with siRNA knockdown of the receptors. In addition, P2X7 mediated both high glucose and palmitate-induced increase in reactive oxygen species levels and decrease in endothelial nitric oxide synthase. Blocking P2X7 inhibited high glucose and palmitate-induced expression of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 as well as leukocyte-endothelial cell adhesion. Interestingly, high glucose and palmitate enhanced endothelial cell permeability that was dependent on both P2X7 and P2X4. Furthermore, antagonizing the P2X7 inhibited high glucose and palmitate-mediated activation of p38-mitogen activated protein kinase. These findings support a novel role for P2X7 and P2X4 coupled to induction of inflammatory molecules in modulating high glucose and palmitate-induced endothelial cell activation and dysfunction.
Collapse
Affiliation(s)
- Ramasri Sathanoori
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
- * E-mail:
| | - Karl Swärd
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Björn Olde
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| | - David Erlinge
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
27
|
Liu S, Shi Q, Zhu Q, Zou T, Li G, Huang A, Wu B, Peng L, Song M, Wu Q, Xie Q, Lin W, Xie W, Wen S, Zhang Z, Lv Q, Zou L, Zhang X, Ying M, Li G, Liang S. P2X₇ receptor of rat dorsal root ganglia is involved in the effect of moxibustion on visceral hyperalgesia. Purinergic Signal 2014; 11:161-9. [PMID: 25527178 DOI: 10.1007/s11302-014-9439-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 12/04/2014] [Indexed: 01/06/2023] Open
Abstract
Irritable bowel syndrome (IBS) and inflammatory bowel disease often display visceral hypersensitivity. Visceral nociceptors after inflammatory stimulation generate afferent nerve impulses through dorsal root ganglia (DRG) transmitting to the central nervous system. ATP and its activated-purinergic 2X7 (P2X7) receptor play an important role in the transmission of nociceptive signal. Purinergic signaling is involved in the sensory transmission of visceral pain. Moxibustion is a therapy applying ignited mugwort directly or indirectly at acupuncture points or other specific parts of the body to treat diseases. Heat-sensitive acupoints are the corresponding points extremely sensitive to moxa heat in disease conditions. In this study, we aimed to investigate the relationship between the analgesic effect of moxibustion on a heat-sensitive acupoint "Dachangshu" and the expression levels of P2X7 receptor in rat DRG after chronic inflammatory stimulation of colorectal distension. Heat-sensitive moxibustion at Dachangshu acupoint inhibited the nociceptive signal transmission by decreasing the upregulated expression levels of P2X7 mRNA and protein in DRG induced by visceral pain, and reversed the abnormal expression of glial fibrillary acidic protein (GFAP, a marker of satellite glial cells) in DRG. Consequently, abdominal withdrawal reflex (AWR) score in a visceral pain model was reduced, and the pain threshold was elevated. Therefore, heat-sensitive moxibustion at Dachangshu acupoint can produce a therapeutic effect on IBS via inhibiting the nociceptive transmission mediated by upregulated P2X7 receptor.
Collapse
Affiliation(s)
- Shuangmei Liu
- Department of Physiology, Medical School, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Burnstock G, Di Virgilio F. Purinergic signalling and cancer. Purinergic Signal 2014; 9:491-540. [PMID: 23797685 DOI: 10.1007/s11302-013-9372-5] [Citation(s) in RCA: 257] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 06/06/2013] [Indexed: 01/24/2023] Open
Abstract
Receptors for extracellular nucleotides are widely expressed by mammalian cells. They mediate a large array of responses ranging from growth stimulation to apoptosis, from chemotaxis to cell differentiation and from nociception to cytokine release, as well as neurotransmission. Pharma industry is involved in the development and clinical testing of drugs selectively targeting the different P1 nucleoside and P2 nucleotide receptor subtypes. As described in detail in the present review, P2 receptors are expressed by all tumours, in some cases to a very high level. Activation or inhibition of selected P2 receptor subtypes brings about cancer cell death or growth inhibition. The field has been largely neglected by current research in oncology, yet the evidence presented in this review, most of which is based on in vitro studies, although with a limited amount from in vivo experiments and human studies, warrants further efforts to explore the therapeutic potential of purinoceptor targeting in cancer.
Collapse
|
29
|
P2X(7) receptor in the kidneys of diabetic rats submitted to aerobic training or to N-acetylcysteine supplementation [corrected]. PLoS One 2014; 9:e97452. [PMID: 24940871 PMCID: PMC4062402 DOI: 10.1371/journal.pone.0097452] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 04/20/2014] [Indexed: 12/22/2022] Open
Abstract
Previous studies in our laboratory showed that N-acetylcysteine supplementation or aerobic training reduced oxidative stress and the progression of diabetic nephropathy in rats. The P2X7 receptor is up-regulated in pathological conditions, such as diabetes mellitus. This up-regulation is related to oxidative stress and induces tissue apoptosis or necrosis. The aim of the present study is to assess the role of P2X7 receptor in the kidneys of diabetic rats submitted to aerobic training or N-acetylcysteine supplementation. Diabetes was induced in male Wistar rats by streptozotocin (60 mg/kg, i.v.) and the training was done on a treadmill; N-acetylcysteine was given in the drinking water (600 mg/L). By confocal microscopy, as compared to control, the kidneys of diabetic rats showed increased P2×7 receptor expression and a higher activation in response to 2′(3′)-O-(4-benzoylbenzoyl) adenosine5'–triphosphate (specific agonist) and adenosine triphosphate (nonspecific agonist) (all p<0.05). All these alterations were reduced in diabetic rats treated with N-acetylcysteine, exercise or both. We also observed measured proteinuria and albuminuria (early marker of diabetic nephropathy) in DM groups. Lipoperoxidation was strongly correlated with P2X7 receptor expression, which was also correlated to NO•, thus associating this receptor to oxidative stress and kidney lesion. We suggest that P2X7 receptor inhibition associated with the maintenance of redox homeostasis could be useful as coadjuvant treatment to delay the progression of diabetic nephropathy.
Collapse
|
30
|
Fan B, Liu S, Xu C, Liu J, Kong F, Li G, Zhang C, Gao Y, Xu H, Yu S, Zheng C, Peng L, Song M, Wu B, Lv Q, Zou L, Ying M, Zhang X, Liang S. The role of P2X7 receptor in PC12 cells after exposure to oxygen-glucose deprivation. Auton Neurosci 2014; 185:36-42. [PMID: 24746144 DOI: 10.1016/j.autneu.2014.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 03/10/2014] [Accepted: 03/24/2014] [Indexed: 12/13/2022]
Abstract
Adenosine triphosphate (ATP) plays an important role in signal transmission via acting on P2X receptors. P2X7 receptor is involved in pathophysiological changes of ischemic diseases. The PC12 cell line is a popular model system to study sympathetic neuronal function. In this study, the effects of P2X7 on the viability or [Ca(2+)]i in PC12 cells after exposure to oxygen-glucose deprivation (OGD) were investigated. The results showed that the viability of PC12 cells was decreased under the condition of OGD. BzATP, a P2X7 agonist, decreased the viability, while P2X7 antagonist oxATP or P2X7 siRNA reversed the viability of PC12 cells under the condition of OGD. The expression levels of P2X7 mRNA and protein in PC12 cells were up-regulated under the condition of OGD or BzATP treatment. The expression levels of P2X7 mRNA and protein were significantly decreased in OGD PC12 cells, which were pretreated with oxATP or P2X7 siRNA. It was also found that oxATP or P2X7 siRNA effectively suppressed the increase of [Ca(2+)]i induced by OGD. P2X7 agonist ATP or BzATP enhanced the [Ca(2+)]i rise induced by OGD in PC12 cells. The [Ca(2+)]i peak induced by ATP or BzATP in OGD group was decreased by ERK inhibitor U0126. Therefore, P2X7 antagonists or P2X7 siRNA could depress the sympathetic neuronal damage induced by ischemia.
Collapse
Affiliation(s)
- Bo Fan
- Department of Physiology, Medical School of Nanchang University, Nanchang 330006, PR China
| | - Shuangmei Liu
- Department of Physiology, Medical School of Nanchang University, Nanchang 330006, PR China
| | - Changshui Xu
- Department of Physiology, Medical School of Nanchang University, Nanchang 330006, PR China
| | - Jun Liu
- Department of Physiology, Medical School of Nanchang University, Nanchang 330006, PR China
| | - Fanjun Kong
- Department of Physiology, Medical School of Nanchang University, Nanchang 330006, PR China
| | - Guilin Li
- Department of Physiology, Medical School of Nanchang University, Nanchang 330006, PR China
| | - Chunping Zhang
- Department of Physiology, Medical School of Nanchang University, Nanchang 330006, PR China
| | - Yun Gao
- Department of Physiology, Medical School of Nanchang University, Nanchang 330006, PR China
| | - Hong Xu
- Department of Physiology, Medical School of Nanchang University, Nanchang 330006, PR China
| | - Shicheng Yu
- Department of Physiology, Medical School of Nanchang University, Nanchang 330006, PR China
| | - Chaoran Zheng
- Department of Physiology, Medical School of Nanchang University, Nanchang 330006, PR China
| | - Lichao Peng
- Department of Physiology, Medical School of Nanchang University, Nanchang 330006, PR China
| | - Miaomiao Song
- Department of Physiology, Medical School of Nanchang University, Nanchang 330006, PR China
| | - Bing Wu
- Department of Physiology, Medical School of Nanchang University, Nanchang 330006, PR China
| | - Qiulan Lv
- Department of Physiology, Medical School of Nanchang University, Nanchang 330006, PR China
| | - Lifang Zou
- Department of Physiology, Medical School of Nanchang University, Nanchang 330006, PR China
| | - Mofeng Ying
- Department of Physiology, Medical School of Nanchang University, Nanchang 330006, PR China
| | - Xi Zhang
- Department of Physiology, Medical School of Nanchang University, Nanchang 330006, PR China
| | - Shangdong Liang
- Department of Physiology, Medical School of Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
31
|
Abstract
Clinical and epidemiological studies support a connection between obesity and thrombosis, involving elevated expression of the prothrombotic molecules plasminogen activator inhibitor-1 and tissue factor (TF) and increased platelet activation. Cardiovascular diseases and metabolic syndrome-associated disorders, including obesity, insulin resistance, type 2 diabetes, and hepatic steatosis, involve inflammation elicited by infiltration and activation of immune cells, particularly macrophages, into adipose tissue. Although TF has been clearly linked to a procoagulant state in obesity, emerging genetic and pharmacologic evidence indicate that TF signaling via G protein-coupled protease-activated receptors (PAR2, PAR1) additionally drives multiple aspects of the metabolic syndrome. TF-PAR2 signaling in adipocytes contributes to diet-induced obesity by decreasing metabolism and energy expenditure, whereas TF-PAR2 signaling in hematopoietic and myeloid cells drives adipose tissue inflammation, hepatic steatosis, and insulin resistance. TF-initiated coagulation leading to thrombin-PAR1 signaling also contributes to diet-induced hepatic steatosis and inflammation in certain models. Thus, in obese patients, clinical markers of a prothrombotic state may indicate a risk for the development of complications of the metabolic syndrome. Furthermore, TF-induced signaling could provide new therapeutic targets for drug development at the intersection between obesity, inflammation, and thrombosis.
Collapse
|