1
|
Maheu MG, James N, Clark Z, Yang A, Patel R, Beaudette SM, MacPherson REK, Duarte-Guterman P. Running to remember: The effects of exercise on perineuronal nets, microglia, and hippocampal angiogenesis in female and male mice. Behav Brain Res 2025; 484:115478. [PMID: 39956366 DOI: 10.1016/j.bbr.2025.115478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/24/2025] [Accepted: 02/08/2025] [Indexed: 02/18/2025]
Abstract
Exercise is accepted as a positive health behaviour; however, the mechanisms of exercise on neuroprotection and cognitive health are not completely understood. The purpose of this study was to explore the neurobiological benefits of chronic treadmill exercise in female and male mice through its role in microglial content and morphology, cerebral vascularization, and perineuronal net (PNN) expression. We further examined how these neurobiological changes relate to spatial memory outcomes. Adult mice were assigned to a sedentary or treadmill exercise group for eight weeks. During the final week, all mice were trained on a spatial memory task (Barnes maze) and brains were collected for immunohistochemistry. Exercised mice made fewer errors than sedentary mice during the first two days of training and probe trial. Females, regardless of exercise training, made fewer errors during Barnes maze training and demonstrated a greater frequency of spatial strategy use compared to males. Exercised mice, regardless of sex, had fewer PNNs in the dentate gyrus of the hippocampus compared to sedentary controls. The number of PNNs in the dorsal dentate gyrus was positively correlated with total errors during training. During the probe, greater errors correlated with more PNNs among the exercised group only. Microglia count and cerebral vascularization were not affected by exercise, although proportions of microglia type (ameboid, stout/thick, and thick/thin) were regulated by exercise in the ventral dentate gyrus. We conclude that exercise decreases PNNs in the dentate gyrus in both sexes and this may be related to better spatial learning and memory.
Collapse
Affiliation(s)
- Madeleine G Maheu
- Department of Psychology, Brock University, St. Catharines, ON, Canada; Department of Health Sciences, Brock University, St. Catharines, ON, Canada; Centre for Neuroscience, Brock University, St. Catharines, ON, Canada
| | - Noah James
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Zach Clark
- Department of Psychology, Brock University, St. Catharines, ON, Canada
| | - Alex Yang
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Ridhi Patel
- Centre for Neuroscience, Brock University, St. Catharines, ON, Canada
| | - Shawn M Beaudette
- Centre for Neuroscience, Brock University, St. Catharines, ON, Canada; Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Rebecca E K MacPherson
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada; Centre for Neuroscience, Brock University, St. Catharines, ON, Canada.
| | - Paula Duarte-Guterman
- Department of Psychology, Brock University, St. Catharines, ON, Canada; Centre for Neuroscience, Brock University, St. Catharines, ON, Canada.
| |
Collapse
|
2
|
Banovac I, Prkačin MV, Kirchbaum I, Trnski-Levak S, Bobić-Rasonja M, Sedmak G, Petanjek Z, Jovanov-Milosevic N. Morphological and Molecular Characteristics of Perineuronal Nets in the Human Prefrontal Cortex-A Possible Link to Microcircuitry Specialization. Mol Neurobiol 2025; 62:1094-1111. [PMID: 38958887 PMCID: PMC11711633 DOI: 10.1007/s12035-024-04306-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
Perineuronal nets (PNNs) are a type of extracellular matrix (ECM) that play a significant role in synaptic activity and plasticity of interneurons in health and disease. We researched PNNs' regional and laminar representation and molecular composition using immunohistochemistry and transcriptome analysis of Brodmann areas (BA) 9, 14r, and 24 in 25 human postmortem brains aged 13-82 years. The numbers of VCAN- and NCAN-expressing PNNs, relative to the total number of neurons, were highest in cortical layers I and VI while WFA-binding (WFA+) PNNs were most abundant in layers III-V. The ECM glycosylation pattern was the most pronounced regional difference, shown by a significantly lower proportion of WFA+ PNNs in BA24 (3.27 ± 0.69%) compared to BA9 (6.32 ± 1.73%; P = 0.0449) and BA14 (5.64 ± 0.71%; P = 0.0278). The transcriptome of late developmental and mature stages revealed a relatively stable expression of PNN-related transcripts (log2-transformed expression values: 6.5-8.5 for VCAN and 8.0-9.5 for NCAN). Finally, we propose a classification of PNNs that envelop GABAergic neurons in the human cortex. The significant differences in PNNs' morphology, distribution, and molecular composition strongly suggest an involvement of PNNs in specifying distinct microcircuits in particular cortical regions and layers.
Collapse
Affiliation(s)
- Ivan Banovac
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, HR-10000, Zagreb, Croatia
- Croatian Institute for Brain Research, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine University of Zagreb, Šalata 12, HR-10000, Zagreb, Croatia
| | - Matija Vid Prkačin
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, HR-10000, Zagreb, Croatia
- Croatian Institute for Brain Research, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine University of Zagreb, Šalata 12, HR-10000, Zagreb, Croatia
| | - Ivona Kirchbaum
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, HR-10000, Zagreb, Croatia
| | - Sara Trnski-Levak
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, HR-10000, Zagreb, Croatia
| | - Mihaela Bobić-Rasonja
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, HR-10000, Zagreb, Croatia
- Department of Biology, University of Zagreb School of Medicine, Šalata 3, HR-10000, Zagreb, Croatia
| | - Goran Sedmak
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, HR-10000, Zagreb, Croatia
| | - Zdravko Petanjek
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, HR-10000, Zagreb, Croatia
- Croatian Institute for Brain Research, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine University of Zagreb, Šalata 12, HR-10000, Zagreb, Croatia
| | - Natasa Jovanov-Milosevic
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, HR-10000, Zagreb, Croatia.
- Croatian Institute for Brain Research, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine University of Zagreb, Šalata 12, HR-10000, Zagreb, Croatia.
- Department of Biology, University of Zagreb School of Medicine, Šalata 3, HR-10000, Zagreb, Croatia.
| |
Collapse
|
3
|
Sanchez B, Kraszewski P, Lee S, Cope EC. From molecules to behavior: Implications for perineuronal net remodeling in learning and memory. J Neurochem 2024; 168:1854-1876. [PMID: 38158878 DOI: 10.1111/jnc.16036] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Perineuronal nets (PNNs) are condensed extracellular matrix (ECM) structures found throughout the central nervous system that regulate plasticity. They consist of a heterogeneous mix of ECM components that form lattice-like structures enwrapping the cell body and proximal dendrites of particular neurons. During development, accumulating research has shown that the closure of various critical periods of plasticity is strongly linked to experience-driven PNN formation and maturation. PNNs provide an interface for synaptic contacts within the holes of the structure, generally promoting synaptic stabilization and restricting the formation of new synaptic connections in the adult brain. In this way, they impact both synaptic structure and function, ultimately influencing higher cognitive processes. PNNs are highly plastic structures, changing their composition and distribution throughout life and in response to various experiences and memory disorders, thus serving as a substrate for experience- and disease-dependent cognitive function. In this review, we delve into the proposed mechanisms by which PNNs shape plasticity and memory function, highlighting the potential impact of their structural components, overall architecture, and dynamic remodeling on functional outcomes in health and disease.
Collapse
Affiliation(s)
- Brenda Sanchez
- Department of Neuroscience, University of Virginia School of Medicine, Virginia, USA
| | - Piotr Kraszewski
- Department of Neuroscience, University of Virginia School of Medicine, Virginia, USA
| | - Sabrina Lee
- Department of Neuroscience, University of Virginia School of Medicine, Virginia, USA
| | - Elise C Cope
- Department of Neuroscience, University of Virginia School of Medicine, Virginia, USA
| |
Collapse
|
4
|
Yao JY, Zhao TS, Guo ZR, Li MQ, Lu XY, Zou GJ, Chen ZR, Liu Y, Cui YH, Li F, Li CQ. Degradation of perineuronal nets in the medial prefrontal cortex promotes extinction and reduces reinstatement of methamphetamine-induced conditioned place preference in female mice. Behav Brain Res 2024; 472:115152. [PMID: 39032868 DOI: 10.1016/j.bbr.2024.115152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/03/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
The high rate of relapse to compulsive methamphetamine (MA)-taking and seeking behaviors after abstinence constitutes a major obstacle to the treatment of MA addiction. Perineuronal nets (PNNs), essential components of the extracellular matrix, play a critical role in synaptic function, learning, and memory. Abnormalities in PNNs have been closely linked to a series of neurological diseases, such as addiction. However, the exact role of PNNs in MA-induced related behaviors remains elusive. Here, we established a MA-induced conditioned place preference (CPP) paradigm in female mice and found that the number and average optical density of PNNs increased significantly in the medial prefrontal cortex (mPFC) of mice during the acquisition, extinction, and reinstatement stages of CPP. Notably, the removal of PNNs in the mPFC via chondroitinase ABC (ChABC) before extinction training not only facilitated the extinction of MA-induced CPP and attenuated the relapse of extinguished MA preference but also significantly reduced the activation of c-Fos in the mPFC. Similarly, the ablation of PNNs in the mPFC before reinstatement markedly lessened the reinstatement of MA-induced CPP, which was accompanied by the decreased expression of c-Fos in the mPFC. Collectively, our results provide more evidence for the implication of degradation of PNNs in facilitating extinction and preventing relapse of MA-induced CPP, which indicate that targeting PNNs may be an effective therapeutic option for MA-induced CPP memories.
Collapse
Affiliation(s)
- Jia-Yu Yao
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Tian-Shu Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zi-Rui Guo
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Meng-Qing Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xiao-Yu Lu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Guang-Jing Zou
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zhao-Rong Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yu Liu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yan-Hui Cui
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Fang Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| | - Chang-Qi Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| |
Collapse
|
5
|
Doody NE, Smith NJ, Akam EC, Askew GN, Kwok JCF, Ichiyama RM. Differential expression of genes in the RhoA/ROCK pathway in the hippocampus and cortex following intermittent hypoxia and high-intensity interval training. J Neurophysiol 2024; 132:531-543. [PMID: 38985935 PMCID: PMC11427053 DOI: 10.1152/jn.00422.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/13/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024] Open
Abstract
Structural neuroplasticity such as neurite extension and dendritic spine dynamics is enhanced by brain-derived neurotrophic factor (BDNF) and impaired by types of inhibitory molecules that induce growth cone collapse and actin depolymerization, for example, myelin-associated inhibitors, chondroitin sulfate proteoglycans, and negative guidance molecules. These inhibitory molecules can activate RhoA/rho-associated coiled-coil containing protein kinase (ROCK) signaling (known to restrict structural plasticity). Intermittent hypoxia (IH) and high-intensity interval training (HIIT) are known to upregulate BDNF that is associated with improvements in learning and memory and greater functional recovery following neural insults. We investigated whether the RhoA/ROCK signaling pathway is also modulated by IH and HIIT in the hippocampus, cortex, and lumbar spinal cord of male Wistar rats. The gene expression of 25 RhoA/ROCK signaling pathway components was determined following IH, HIIT, or IH combined with HIIT (30 min/day, 5 days/wk, 6 wk). IH included 10 3-min bouts that alternated between hypoxia (15% O2) and normoxia. HIIT included 10 3-min bouts alternating between treadmill speeds of 50 cm·s-1 and 15 cm·s-1. In the hippocampus, IH and HIIT significantly downregulated Acan and NgR2 mRNA that are involved in the inhibition of neuroplasticity. However, IH and IH + HIIT significantly upregulated Lingo-1 and NgR3 in the cortex. This is the first time IH and HIIT have been linked to the modulation of plasticity-inhibiting pathways. These results provide a fundamental step toward elucidating the interplay between the neurotrophic and inhibitory mechanisms involved in experience-driven neural plasticity that will aid in optimizing physiological interventions for the treatment of cognitive decline or neurorehabilitation.NEW & NOTEWORTHY Intermittent hypoxia (IH) and high-intensity interval training (HIIT) enhance neuroplasticity and upregulate neurotrophic factors in the central nervous system (CNS). We provide evidence that IH and IH + HIIT also have the capacity to regulate genes involved in the RhoA/ROCK signaling pathway that is known to restrict structural plasticity in the CNS. This provides a new mechanistic insight into how these interventions may enhance hippocampal-related plasticity and facilitate learning, memory, and neuroregeneration.
Collapse
Affiliation(s)
- Natalie E Doody
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| | - Nicole J Smith
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Elizabeth C Akam
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Graham N Askew
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Jessica C F Kwok
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
- Institute of Experimental Medicine, The Czech Academy of Sciences, Prague 4, Czech Republic
| | - Ronaldo M Ichiyama
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
6
|
Sánchez-Ventura J, Lago N, Penas C, Navarro X, Udina E. Link Protein 1 Is Involved in the Activity-Dependent Modulation of Perineuronal Nets in the Spinal Cord. Int J Mol Sci 2024; 25:4267. [PMID: 38673852 PMCID: PMC11050079 DOI: 10.3390/ijms25084267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
One of the challenges of the mature nervous system is to maintain the stability of neural networks while providing a degree of plasticity to generate experience-dependent modifications. This plasticity-stability dynamism is regulated by perineuronal nets (PNNs) and is crucial for the proper functioning of the system. Previously, we found a relation between spinal PNNs reduction and maladaptive plasticity after spinal cord injury (SCI), which was attenuated by maintaining PNNs with activity-dependent therapies. Moreover, transgenic mice lacking the cartilage link protein 1 (Crtl1 KO mice) showed aberrant spinal PNNs and increased spinal plasticity. Therefore, the aim of this study is to evaluate the role of link protein 1 in the activity-dependent modulation of spinal PNNs surrounding motoneurons and its impact on the maladaptive plasticity observed following SCI. We first studied the activity-dependent modulation of spinal PNNs using a voluntary wheel-running protocol. This training protocol increased spinal PNNs in WT mice but did not modify PNN components in Crtl1 KO mice, suggesting that link protein 1 mediates the activity-dependent modulation of PNNs. Secondly, a thoracic SCI was performed, and functional outcomes were evaluated for 35 days. Interestingly, hyperreflexia and hyperalgesia found at the end of the experiment in WT-injured mice were already present at basal levels in Crtl1 KO mice and remained unchanged after the injury. These findings demonstrated that link protein 1 plays a dual role in the correct formation and in activity-dependent modulation of PNNs, turning it into an essential element for the proper function of PNN in spinal circuits.
Collapse
Affiliation(s)
| | | | | | - Xavier Navarro
- Department Cell Biology, Physiology and Immunology, Institute of Neuroscience, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain (N.L.); (C.P.)
| | - Esther Udina
- Department Cell Biology, Physiology and Immunology, Institute of Neuroscience, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain (N.L.); (C.P.)
| |
Collapse
|
7
|
Mayne P, Das J, Zou S, Sullivan RKP, Burne THJ. Perineuronal nets are associated with decision making under conditions of uncertainty in female but not male mice. Behav Brain Res 2024; 461:114845. [PMID: 38184206 DOI: 10.1016/j.bbr.2024.114845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
Biological sex influences decision-making processes in significant ways, differentiating the responses animals choose when faced with a range of stimuli. The neurobiological underpinnings that dictate sex differences in decision-making tasks remains an important open question, yet single-sex studies of males form most studies in behavioural neuroscience. Here we used female and male BALB/c mice on two spatial learning and memory tasks and examined the expression of perineuronal nets (PNNs) and parvalbumin interneurons (PV) in regions correlated with spatial memory. Mice underwent the aversive active place avoidance (APA) task or the appetitive trial-unique nonmatching-to-location (TUNL) touchscreen task. Mice in the APA cohort learnt to avoid the foot-shock and no differences were observed on key measures of the task nor in the number and intensity of PNNs and PV. On the delay but not separation manipulation in the TUNL task, females received more incorrect trials and less correct trials compared to males. Furthermore, females in this cohort exhibited higher intensity PNNs and PV cells in the agranular and granular retrosplenial cortex, compared to males. These data show that female and male mice perform similarly on spatial learning tasks. However, sex differences in neural circuitry may underly differences in making decisions under conditions of uncertainty on an appetitive task. These data emphasise the importance of using mice of both sexes in studies of decision-making neuroscience.
Collapse
Affiliation(s)
- Phoebe Mayne
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Joyosmita Das
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Simin Zou
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Robert K P Sullivan
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Thomas H J Burne
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia; Queensland Centre for Mental Health Research, Wacol, QLD 4076, Australia.
| |
Collapse
|
8
|
Dong Y, Zhao K, Qin X, Du G, Gao L. The mechanisms of perineuronal net abnormalities in contributing aging and neurological diseases. Ageing Res Rev 2023; 92:102092. [PMID: 37839757 DOI: 10.1016/j.arr.2023.102092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
The perineuronal net (PNN) is a highly latticed extracellular matrix in the central nervous system, which is composed of hyaluronic acid, proteoglycan, hyaluronan and proteoglycan link protein (Hapln), and tenascin. PNN is predominantly distributed in GABAergic interneurons expressing Parvalbumin (PV) and plays a critical role in synaptic function, learning and memory, oxidative stress, and inflammation. In addition, PNN's structure and function are also modulated by a variety of factors, including protein tyrosine phosphatase σ (PTPσ), orthodenticle homeo-box 2 (Otx2), and erb-b2 receptor tyrosine kinase 4 (ErbB4). Glycosaminoglycan (GAG), a component of proteoglycan, also influences PNN through its sulfate mode. PNN undergoes abnormal changes during aging and in various neurological diseases, such as Alzheimer's disease, Parkinson's disease, schizophrenia, autism spectrum disorder, and multiple sclerosis. Nevertheless, there is limited report on the relationship between PNN and aging or age-related neurological diseases. This review elaborates on the mechanisms governing PNN regulation and summarizes how PNN abnormalities contribute to aging and neurological diseases, offering insights for potential treatments.
Collapse
Affiliation(s)
- Yixiao Dong
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China
| | - Kunkun Zhao
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China
| | - Guanhua Du
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Li Gao
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China.
| |
Collapse
|
9
|
Štepánková K, Chudíčková M, Šimková Z, Martinez-Varea N, Kubinová Š, Urdzíková LM, Jendelová P, Kwok JCF. Low oral dose of 4-methylumbelliferone reduces glial scar but is insufficient to induce functional recovery after spinal cord injury. Sci Rep 2023; 13:19183. [PMID: 37932336 PMCID: PMC10628150 DOI: 10.1038/s41598-023-46539-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023] Open
Abstract
Spinal cord injury (SCI) induces the upregulation of chondroitin sulfate proteoglycans (CSPGs) at the glial scar and inhibits neuroregeneration. Under normal physiological condition, CSPGs interact with hyaluronan (HA) and other extracellular matrix on the neuronal surface forming a macromolecular structure called perineuronal nets (PNNs) which regulate neuroplasticity. 4-methylumbelliferone (4-MU) is a known inhibitor for HA synthesis but has not been tested in SCI. We first tested the effect of 4-MU in HA reduction in uninjured rats. After 8 weeks of 4-MU administration at a dose of 1.2 g/kg/day, we have not only observed a reduction of HA in the uninjured spinal cords but also a down-regulation of CS glycosaminoglycans (CS-GAGs). In order to assess the effect of 4-MU in chronic SCI, six weeks after Th8 spinal contusion injury, rats were fed with 4-MU or placebo for 8 weeks in combination with daily treadmill rehabilitation for 16 weeks to promote neuroplasticity. 4-MU treatment reduced the HA synthesis by astrocytes around the lesion site and increased sprouting of 5-hydroxytryptamine fibres into ventral horns. However, the current dose was not sufficient to suppress CS-GAG up-regulation induced by SCI. Further adjustment on the dosage will be required to benefit functional recovery after SCI.
Collapse
Affiliation(s)
- Kateřina Štepánková
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic.
- Department of Neuroscience, Charles University, Second Faculty of Medicine, 15006, Prague, Czech Republic.
| | - Milada Chudíčková
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic
| | - Zuzana Šimková
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic
| | - Noelia Martinez-Varea
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic
- Department of Neuroscience, Charles University, Second Faculty of Medicine, 15006, Prague, Czech Republic
| | - Šárka Kubinová
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic
- Institute of Physics, Czech Academy of Sciences, 182 21, Prague, Czech Republic
| | - Lucia Machová Urdzíková
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic.
- Department of Neuroscience, Charles University, Second Faculty of Medicine, 15006, Prague, Czech Republic.
| | - Pavla Jendelová
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic.
- Department of Neuroscience, Charles University, Second Faculty of Medicine, 15006, Prague, Czech Republic.
| | - Jessica C F Kwok
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic.
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
10
|
Carceller H, Gramuntell Y, Klimczak P, Nacher J. Perineuronal Nets: Subtle Structures with Large Implications. Neuroscientist 2023; 29:569-590. [PMID: 35872660 DOI: 10.1177/10738584221106346] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Perineuronal nets (PNNs) are specialized structures of the extracellular matrix that surround the soma and proximal dendrites of certain neurons in the central nervous system, particularly parvalbumin-expressing interneurons. Their appearance overlaps the maturation of neuronal circuits and the closure of critical periods in different regions of the brain, setting their connectivity and abruptly reducing their plasticity. As a consequence, the digestion of PNNs, as well as the removal or manipulation of their components, leads to a boost in this plasticity and can play a key role in the functional recovery from different insults and in the etiopathology of certain neurologic and psychiatric disorders. Here we review the structure, composition, and distribution of PNNs and their variation throughout the evolutive scale. We also discuss methodological approaches to study these structures. The function of PNNs during neurodevelopment and adulthood is discussed, as well as the influence of intrinsic and extrinsic factors on these specialized regions of the extracellular matrix. Finally, we review current data on alterations in PNNs described in diseases of the central nervous system (CNS), focusing on psychiatric disorders. Together, all the data available point to the PNNs as a promising target to understand the physiology and pathologic conditions of the CNS.
Collapse
Affiliation(s)
- Héctor Carceller
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
- CIBERSAM, Spanish National Network for Research in Mental Health, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Imaging Unit FISABIO-CIPF, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana, Valencia, Spain
| | - Yaiza Gramuntell
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - Patrycja Klimczak
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
- CIBERSAM, Spanish National Network for Research in Mental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Nacher
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
- CIBERSAM, Spanish National Network for Research in Mental Health, Instituto de Salud Carlos III, Madrid, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| |
Collapse
|
11
|
Štěpánková K, Mareková D, Kubášová K, Sedláček R, Turnovcová K, Vacková I, Kubinová Š, Makovický P, Petrovičová M, Kwok JCF, Jendelová P, Machová Urdzíková L. 4-Methylumbeliferone Treatment at a Dose of 1.2 g/kg/Day Is Safe for Long-Term Usage in Rats. Int J Mol Sci 2023; 24:3799. [PMID: 36835210 PMCID: PMC9959083 DOI: 10.3390/ijms24043799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
4-methylumbelliferone (4MU) has been suggested as a potential therapeutic agent for a wide range of neurological diseases. The current study aimed to evaluate the physiological changes and potential side effects after 10 weeks of 4MU treatment at a dose of 1.2 g/kg/day in healthy rats, and after 2 months of a wash-out period. Our findings revealed downregulation of hyaluronan (HA) and chondroitin sulphate proteoglycans throughout the body, significantly increased bile acids in blood samples in weeks 4 and 7 of the 4MU treatment, as well as increased blood sugars and proteins a few weeks after 4MU administration, and significantly increased interleukins IL10, IL12p70 and IFN gamma after 10 weeks of 4MU treatment. These effects, however, were reversed and no significant difference was observed between control treated and 4MU-treated animals after a 9-week wash-out period.
Collapse
Affiliation(s)
- Kateřina Štěpánková
- Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic
- Department of Neuroscience, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Dana Mareková
- Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic
- Department of Neuroscience, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Kristýna Kubášová
- Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, 16000 Prague, Czech Republic
| | - Radek Sedláček
- Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, 16000 Prague, Czech Republic
| | - Karolína Turnovcová
- Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Irena Vacková
- Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Šárka Kubinová
- Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic
- Institute of Physics, Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Pavol Makovický
- Department of Biology, Faculty of Education, J. Seyle University, SK-94501 Komarno, Slovakia
| | - Michaela Petrovičová
- Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Jessica C. F. Kwok
- Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Pavla Jendelová
- Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic
- Department of Neuroscience, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Lucia Machová Urdzíková
- Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic
- Department of Neuroscience, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| |
Collapse
|
12
|
Brown TE, Sorg BA. Net gain and loss: influence of natural rewards and drugs of abuse on perineuronal nets. Neuropsychopharmacology 2023; 48:3-20. [PMID: 35568740 PMCID: PMC9700711 DOI: 10.1038/s41386-022-01337-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 12/26/2022]
Abstract
Overindulgence, excessive consumption, and a pattern of compulsive use of natural rewards, such as certain foods or drugs of abuse, may result in the development of obesity or substance use disorder, respectively. Natural rewards and drugs of abuse can trigger similar changes in the neurobiological substrates that drive food- and drug-seeking behaviors. This review examines the impact natural rewards and drugs of abuse have on perineuronal nets (PNNs). PNNs are specialized extracellular matrix structures that ensheathe certain neurons during development over the critical period to provide synaptic stabilization and a protective microenvironment for the cells they surround. This review also analyzes how natural rewards and drugs of abuse impact the density and maturation of PNNs within reward-associated circuitry of the brain, which may contribute to maladaptive food- and drug-seeking behaviors. Finally, we evaluate the relatively few studies that have degraded PNNs to perturb reward-seeking behaviors. Taken together, this review sheds light on the complex way PNNs are regulated by natural rewards and drugs and highlights a need for future studies to delineate the molecular mechanisms that underlie the modification and maintenance of PNNs following exposure to rewarding stimuli.
Collapse
Affiliation(s)
- Travis E Brown
- Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, 99164, USA.
| | - Barbara A Sorg
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, OR, 97232, USA
| |
Collapse
|
13
|
Fisher KM, Garner JP, Darian-Smith C. Small sensory spinal lesions that affect hand function in monkeys greatly alter primary afferent and motor neuron connections in the cord. J Comp Neurol 2022; 530:3039-3055. [PMID: 35973735 PMCID: PMC9561953 DOI: 10.1002/cne.25395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/20/2022] [Accepted: 07/15/2022] [Indexed: 11/08/2022]
Abstract
Small sensory spinal injuries induce plasticity across the neuraxis, but little is understood about their effect on segmental connections or motor neuron (MN) function. Here, we begin to address this at two levels. First, we compared afferent input distributions from the skin and muscles of the digits with corresponding MN pools to determine their spatial relationship, in both the normal state and 4-6 months after a unilateral dorsal root/dorsal column lesion (DRL/DCL), affecting digits 1-3. Second, we looked at specific changes to MN inputs and membrane properties that likely impact functional recovery. Monkeys received a targeted unilateral DRL/DCL, and 4-6 months later, cholera toxin subunit B (CT-B) was injected bilaterally into either the distal pads of digits 1-3, or related intrinsic hand muscles, to label inputs to the cord, and corresponding MNs. In controls (unlesioned side), cutaneous and proprioceptive afferents from digits 1-3 showed different distribution patterns but similar rostrocaudal spread within the dorsal horn from C1 to T2. In contrast, MNs were distributed across just two segments (C7-8). Following the lesion, sensory inputs were significantly diminished across all 10 segments, though this did not alter MN distributions. Afferent and monoamine inputs, as well as KCC2 cotransporters, were also significantly altered on the cell membrane of CT-B labeled MNs postlesion. In contrast, inhibitory neurotransmission and perineuronal net integrity were not altered at this prechronic timepoint. Our findings indicate that even a small sensory injury can significantly impact sensory and motor spinal neurons and provide new insight into the complex process of recovery.
Collapse
Affiliation(s)
- Karen M. Fisher
- Department of Comparative Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA94305-5342
| | - Joseph P. Garner
- Department of Comparative Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA94305-5342
| | - Corinna Darian-Smith
- Department of Comparative Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA94305-5342
| |
Collapse
|
14
|
John U, Patro N, Patro I. Perineuronal nets: Cruise from a honeycomb to the safety nets. Brain Res Bull 2022; 190:179-194. [DOI: 10.1016/j.brainresbull.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/17/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022]
|
15
|
Sánchez-Ventura J, Canal C, Hidalgo J, Penas C, Navarro X, Torres-Espin A, Fouad K, Udina E. Aberrant perineuronal nets alter spinal circuits, impair motor function, and increase plasticity. Exp Neurol 2022; 358:114220. [PMID: 36064003 DOI: 10.1016/j.expneurol.2022.114220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/24/2022] [Accepted: 08/28/2022] [Indexed: 11/04/2022]
Abstract
Perineuronal nets (PNNs) are a specialized extracellular matrix that have been extensively studied in the brain. Cortical PNNs are implicated in synaptic stabilization, plasticity inhibition, neuroprotection, and ionic buffering. However, the role of spinal PNNs, mainly found around motoneurons, is still unclear. Thus, the goal of this study is to elucidate the role of spinal PNNs on motor function and plasticity in both intact and spinal cord injured mice. We used transgenic mice lacking the cartilage link protein 1 (Crtl1 KO mice), which is implicated in PNN assembly. Crtl1 KO mice showed disorganized PNNs with an altered proportion of their components in both motor cortex and spinal cord. Behavioral and electrophysiological tests revealed motor impairments and hyperexcitability of spinal reflexes in Crtl1 KO compared to WT mice. These functional outcomes were accompanied by an increase in excitatory synapses around spinal motoneurons. Moreover, following spinal lesions of the corticospinal tract, Crtl1 KO mice showed increased contralateral sprouting compared to WT mice. Altogether, the lack of Crtl1 generates aberrant PNNs that alter excitatory synapses and change the physiological properties of motoneurons, overall altering spinal circuits and producing motor impairment. This disorganization generates a permissive scenario for contralateral axons to sprout after injury.
Collapse
Affiliation(s)
- J Sánchez-Ventura
- Institute of Neuroscience, Department Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - C Canal
- Institute of Neuroscience, Department Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - J Hidalgo
- Institute of Neuroscience, Department Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - C Penas
- Institute of Neuroscience, Department Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - X Navarro
- Institute of Neuroscience, Department Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - A Torres-Espin
- Weill Institute for Neuroscience, Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - K Fouad
- Neuroscience and Mental Health Institute, Department of Physical Therapy, Faculty of Rehabilitative Medicine, University of Alberta, Edmonton, AB, Canada
| | - E Udina
- Institute of Neuroscience, Department Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain.
| |
Collapse
|
16
|
Sánchez-Ventura J, Lane MA, Udina E. The Role and Modulation of Spinal Perineuronal Nets in the Healthy and Injured Spinal Cord. Front Cell Neurosci 2022; 16:893857. [PMID: 35669108 PMCID: PMC9163449 DOI: 10.3389/fncel.2022.893857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Rather than being a stable scaffold, perineuronal nets (PNNs) are a dynamic and specialized extracellular matrix involved in plasticity modulation. They have been extensively studied in the brain and associated with neuroprotection, ionic buffering, and neural maturation. However, their biological function in the spinal cord and the effects of disrupting spinal PNNs remain elusive. The goal of this review is to summarize the current knowledge of spinal PNNs and their potential in pathological conditions such as traumatic spinal cord injury (SCI). We also highlighted interventions that have been used to modulate the extracellular matrix after SCI, targeting the glial scar and spinal PNNs, in an effort to promote regeneration and stabilization of the spinal circuits, respectively. These concepts are discussed in the framework of developmental and neuroplastic changes in PNNs, drawing similarities between immature and denervated neurons after an SCI, which may provide a useful context for future SCI research.
Collapse
Affiliation(s)
- Judith Sánchez-Ventura
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Michael A. Lane
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, United States
- The Marion Murray Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, PA, United States
| | - Esther Udina
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
- *Correspondence: Esther Udina
| |
Collapse
|
17
|
Neurogenesis mediated plasticity is associated with reduced neuronal activity in CA1 during context fear memory retrieval. Sci Rep 2022; 12:7016. [PMID: 35488117 PMCID: PMC9054819 DOI: 10.1038/s41598-022-10947-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/14/2022] [Indexed: 12/17/2022] Open
Abstract
Postnatal hippocampal neurogenesis has been demonstrated to affect learning and memory in numerous ways. Several studies have now demonstrated that increased neurogenesis can induce forgetting of memories acquired prior to the manipulation of neurogenesis and, as a result of this forgetting can also facilitate new learning. However, the mechanisms mediating neurogenesis-induced forgetting are not well understood. Here, we used a subregion-based analysis of the immediate early gene c-Fos as well as in vivo fiber photometry to determine changes in activity corresponding with neurogenesis induced forgetting. We found that increasing neurogenesis led to reduced CA1 activity during context memory retrieval. We also demonstrate here that perineuronal net expression in areas CA1 is bidirectionally altered by the levels or activity of postnatally generated neurons in the dentate gyrus. These results suggest that neurogenesis may induce forgetting by disrupting perineuronal nets in CA1 which may otherwise protect memories from degradation.
Collapse
|
18
|
Grycz K, Głowacka A, Ji B, Krzywdzińska K, Charzyńska A, Czarkowska-Bauch J, Gajewska-Woźniak O, Skup M. Regulation of perineuronal net components in the synaptic bouton vicinity on lumbar α-motoneurons in the rat after spinalization and locomotor training: New insights from spatio-temporal changes in gene, protein expression and WFA labeling. Exp Neurol 2022; 354:114098. [DOI: 10.1016/j.expneurol.2022.114098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/31/2022] [Accepted: 04/24/2022] [Indexed: 11/25/2022]
|
19
|
Lukacova K, Hamaide J, Baciak L, Van der Linden A, Kubikova L. Striatal Injury Induces Overall Brain Alteration at the Pallial, Thalamic, and Cerebellar Levels. BIOLOGY 2022; 11:biology11030425. [PMID: 35336799 PMCID: PMC8945699 DOI: 10.3390/biology11030425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 12/02/2022]
Abstract
Simple Summary Magnetic resonance imaging showed that striatal injury leads to structural changes within several brain areas. Here, we specify these changes via gene expression of synaptic plasticity markers, neuronal markers, assessing the number of newborn cells as well as cell densities. We found that the injury resulted in long-lasting modifications involving plasticity and neural protection mechanisms in areas directly as well as indirectly connected with the damaged striatum, including the cerebellum. Abstract The striatal region Area X plays an important role during song learning, sequencing, and variability in songbirds. A previous study revealed that neurotoxic damage within Area X results in micro and macrostructural changes across the entire brain, including the downstream dorsal thalamus and both the upstream pallial nucleus HVC (proper name) and the deep cerebellar nuclei (DCN). Here, we specify these changes on cellular and gene expression levels. We found decreased cell density in the thalamic and cerebellar areas and HVC, but it was not related to neuronal loss. On the contrary, perineuronal nets (PNNs) in HVC increased for up to 2 months post-lesion, suggesting their protecting role. The synaptic plasticity marker Forkhead box protein P2 (FoxP2) showed a bi-phasic increase at 8 days and 3 months post-lesion, indicating a massive synaptic rebuilding. The later increase in HVC was associated with the increased number of new neurons. These data suggest that the damage in the striatal vocal nucleus induces cellular and gene expression alterations in both the efferent and afferent destinations. These changes may be long-lasting and involve plasticity and neural protection mechanisms in the areas directly connected to the injury site and also to distant areas, such as the cerebellum.
Collapse
Affiliation(s)
- Kristina Lukacova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
- Correspondence: (K.L.); (L.K.)
| | - Julie Hamaide
- Bio-Imaging Laboratory, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, B-2610 Antwerp, Belgium; (J.H.); (A.V.d.L.)
| | - Ladislav Baciak
- Central Laboratories, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovakia;
| | - Annemie Van der Linden
- Bio-Imaging Laboratory, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, B-2610 Antwerp, Belgium; (J.H.); (A.V.d.L.)
| | - Lubica Kubikova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
- Correspondence: (K.L.); (L.K.)
| |
Collapse
|
20
|
Hirono M, Karube F, Yanagawa Y. Modulatory Effects of Monoamines and Perineuronal Nets on Output of Cerebellar Purkinje Cells. Front Neural Circuits 2021; 15:661899. [PMID: 34194302 PMCID: PMC8236809 DOI: 10.3389/fncir.2021.661899] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/12/2021] [Indexed: 12/27/2022] Open
Abstract
Classically, the cerebellum has been thought to play a significant role in motor coordination. However, a growing body of evidence for novel neural connections between the cerebellum and various brain regions indicates that the cerebellum also contributes to other brain functions implicated in reward, language, and social behavior. Cerebellar Purkinje cells (PCs) make inhibitory GABAergic synapses with their target neurons: other PCs and Lugaro/globular cells via PC axon collaterals, and neurons in the deep cerebellar nuclei (DCN) via PC primary axons. PC-Lugaro/globular cell connections form a cerebellar cortical microcircuit, which is driven by serotonin and noradrenaline. PCs' primary outputs control not only firing but also synaptic plasticity of DCN neurons following the integration of excitatory and inhibitory inputs in the cerebellar cortex. Thus, strong PC-mediated inhibition is involved in cerebellar functions as a key regulator of cerebellar neural networks. In this review, we focus on physiological characteristics of GABAergic transmission from PCs. First, we introduce monoaminergic modulation of GABAergic transmission at synapses of PC-Lugaro/globular cell as well as PC-large glutamatergic DCN neuron, and a Lugaro/globular cell-incorporated microcircuit. Second, we review the physiological roles of perineuronal nets (PNNs), which are organized components of the extracellular matrix and enwrap the cell bodies and proximal processes, in GABA release from PCs to large glutamatergic DCN neurons and in cerebellar motor learning. Recent evidence suggests that alterations in PNN density in the DCN can regulate cerebellar functions.
Collapse
Affiliation(s)
- Moritoshi Hirono
- Department of Physiology, Wakayama Medical University, Wakayama, Japan
| | - Fuyuki Karube
- Lab of Histology and Cytology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
21
|
Wingert JC, Sorg BA. Impact of Perineuronal Nets on Electrophysiology of Parvalbumin Interneurons, Principal Neurons, and Brain Oscillations: A Review. Front Synaptic Neurosci 2021; 13:673210. [PMID: 34040511 PMCID: PMC8141737 DOI: 10.3389/fnsyn.2021.673210] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/14/2021] [Indexed: 12/11/2022] Open
Abstract
Perineuronal nets (PNNs) are specialized extracellular matrix structures that surround specific neurons in the brain and spinal cord, appear during critical periods of development, and restrict plasticity during adulthood. Removal of PNNs can reinstate juvenile-like plasticity or, in cases of PNN removal during early developmental stages, PNN removal extends the critical plasticity period. PNNs surround mainly parvalbumin (PV)-containing, fast-spiking GABAergic interneurons in several brain regions. These inhibitory interneurons profoundly inhibit the network of surrounding neurons via their elaborate contacts with local pyramidal neurons, and they are key contributors to gamma oscillations generated across several brain regions. Among other functions, these gamma oscillations regulate plasticity associated with learning, decision making, attention, cognitive flexibility, and working memory. The detailed mechanisms by which PNN removal increases plasticity are only beginning to be understood. Here, we review the impact of PNN removal on several electrophysiological features of their underlying PV interneurons and nearby pyramidal neurons, including changes in intrinsic and synaptic membrane properties, brain oscillations, and how these changes may alter the integration of memory-related information. Additionally, we review how PNN removal affects plasticity-associated phenomena such as long-term potentiation (LTP), long-term depression (LTD), and paired-pulse ratio (PPR). The results are discussed in the context of the role of PV interneurons in circuit function and how PNN removal alters this function.
Collapse
Affiliation(s)
- Jereme C Wingert
- Program in Neuroscience, Robert S. Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, United States
| | - Barbara A Sorg
- Program in Neuroscience, Robert S. Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, United States
| |
Collapse
|
22
|
Bilchak JN, Caron G, Côté MP. Exercise-Induced Plasticity in Signaling Pathways Involved in Motor Recovery after Spinal Cord Injury. Int J Mol Sci 2021; 22:ijms22094858. [PMID: 34064332 PMCID: PMC8124911 DOI: 10.3390/ijms22094858] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
Spinal cord injury (SCI) leads to numerous chronic and debilitating functional deficits that greatly affect quality of life. While many pharmacological interventions have been explored, the current unsurpassed therapy for most SCI sequalae is exercise. Exercise has an expansive influence on peripheral health and function, and by activating the relevant neural pathways, exercise also ameliorates numerous disorders of the central nervous system (CNS). While the exact mechanisms by which this occurs are still being delineated, major strides have been made in the past decade to understand the molecular underpinnings of this essential treatment. Exercise rapidly and prominently affects dendritic sprouting, synaptic connections, neurotransmitter production and regulation, and ionic homeostasis, with recent literature implicating an exercise-induced increase in neurotrophins as the cornerstone that binds many of these effects together. The field encompasses vast complexity, and as the data accumulate, disentangling these molecular pathways and how they interact will facilitate the optimization of intervention strategies and improve quality of life for individuals affected by SCI. This review describes the known molecular effects of exercise and how they alter the CNS to pacify the injury environment, increase neuronal survival and regeneration, restore normal neural excitability, create new functional circuits, and ultimately improve motor function following SCI.
Collapse
|
23
|
An Extracellular Perspective on CNS Maturation: Perineuronal Nets and the Control of Plasticity. Int J Mol Sci 2021; 22:ijms22052434. [PMID: 33670945 PMCID: PMC7957817 DOI: 10.3390/ijms22052434] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
During restricted time windows of postnatal life, called critical periods, neural circuits are highly plastic and are shaped by environmental stimuli. In several mammalian brain areas, from the cerebral cortex to the hippocampus and amygdala, the closure of the critical period is dependent on the formation of perineuronal nets. Perineuronal nets are a condensed form of an extracellular matrix, which surrounds the soma and proximal dendrites of subsets of neurons, enwrapping synaptic terminals. Experimentally disrupting perineuronal nets in adult animals induces the reactivation of critical period plasticity, pointing to a role of the perineuronal net as a molecular brake on plasticity as the critical period closes. Interestingly, in the adult brain, the expression of perineuronal nets is remarkably dynamic, changing its plasticity-associated conditions, including memory processes. In this review, we aimed to address how perineuronal nets contribute to the maturation of brain circuits and the regulation of adult brain plasticity and memory processes in physiological and pathological conditions.
Collapse
|
24
|
Mencio CP, Hussein RK, Yu P, Geller HM. The Role of Chondroitin Sulfate Proteoglycans in Nervous System Development. J Histochem Cytochem 2021; 69:61-80. [PMID: 32936033 PMCID: PMC7780190 DOI: 10.1369/0022155420959147] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
The orderly development of the nervous system is characterized by phases of cell proliferation and differentiation, neural migration, axonal outgrowth and synapse formation, and stabilization. Each of these processes is a result of the modulation of genetic programs by extracellular cues. In particular, chondroitin sulfate proteoglycans (CSPGs) have been found to be involved in almost every aspect of this well-orchestrated yet delicate process. The evidence of their involvement is complex, often contradictory, and lacking in mechanistic clarity; however, it remains obvious that CSPGs are key cogs in building a functional brain. This review focuses on current knowledge of the role of CSPGs in each of the major stages of neural development with emphasis on areas requiring further investigation.
Collapse
Affiliation(s)
- Caitlin P Mencio
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Rowan K Hussein
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Panpan Yu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou, China
| | - Herbert M Geller
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| |
Collapse
|
25
|
EA Improves the Motor Function in Rats with Spinal Cord Injury by Inhibiting Signal Transduction of Semaphorin3A and Upregulating of the Peripheral Nerve Networks. Neural Plast 2020; 2020:8859672. [PMID: 33273908 PMCID: PMC7700027 DOI: 10.1155/2020/8859672] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/22/2020] [Accepted: 10/31/2020] [Indexed: 11/18/2022] Open
Abstract
Peripheral nerve networks (PNNs) play a vital role in the neural recovery after spinal cord injury (SCI). Electroacupuncture (EA), as an alternative medicine, has been widely used in SCI and was proven to be effective on neural functional recovery. In this study, the interaction between PNNs and semaphrin3A (Sema3A) in the recovery of the motor function after SCI was observed, and the effect of EA on them was evaluated. After the establishment of the SCI animal model, we found that motor neurons in the ventral horn of the injured spinal cord segment decreased, Nissl bodies were blurry, and PNNs and Sema3A as well as its receptor neuropilin1 (NRP1) aggregated around the central tube of the gray matter of the spinal cord. When we knocked down the expression of Sema3A at the damage site, NRP1 also downregulated, importantly, PNNs concentration decreased, and tenascin-R (TN-R) and aggrecan were also reduced, while the Basso-Beattie-Bresnahan (BBB) motor function score dramatically increased. In addition, when conducting EA stimulation on Jiaji (EX-B2) acupoints, the highly upregulated Sema3A and NRP1 were reversed post-SCI, which can lessen the accumulation of PNNs around the central tube of the spinal cord gray matter, and simultaneously promote the recovery of motor function in rats. These results suggest that EA may further affect the plasticity of PNNs by regulating the Sema3A signal and promoting the recovery of the motor function post-SCI.
Collapse
|
26
|
Sánchez-Ventura J, Giménez-Llort L, Penas C, Udina E. Voluntary wheel running preserves lumbar perineuronal nets, enhances motor functions and prevents hyperreflexia after spinal cord injury. Exp Neurol 2020; 336:113533. [PMID: 33264633 DOI: 10.1016/j.expneurol.2020.113533] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/02/2020] [Accepted: 11/19/2020] [Indexed: 11/16/2022]
Abstract
Perineuronal nets (PNN) are a promising candidate to harness neural plasticity since their activity-dependent modulation allows to either stabilize the circuits or increase plasticity. Modulation of plasticity is the basis of rehabilitation strategies to reduce maladaptive plasticity after spinal cord injuries (SCI). Hence, it is important to understand how spinal PNN are affected after SCI and rehabilitation. Thus, this work aims to describe functional and PNN changes after thoracic SCI in mice, followed by different activity-dependent therapies: enriched environment, voluntary wheel and forced treadmill running. We found that the contusion provoked thermal hyperalgesia, hyperreflexia and locomotor impairment as measured by thermal plantar test, H wave recordings and the BMS score of locomotion, respectively. In the spinal cord, SCI reduced PNN density around lumbar motoneurons. In contrast, activity-based therapies increased motoneuron activity and reversed PNN decrease. The voluntary wheel group showed full preservation of PNN which also correlated with reduced hyperreflexia and better locomotor recovery. Furthermore, both voluntary wheel and treadmill running reduced hyperalgesia, but this finding was independent of lumbar PNN levels. In the brainstem sensory nuclei, SCI did not modify PNN whereas some activity-based therapies reduced them. The results of the present study highlight the impact of SCI on decreasing PNN at caudal segments of the spinal cord and the potential of physical activity-based therapies to reverse PNN disaggregation and to improve functional recovery. As modulating plasticity is crucial for restoring damaged neural circuits, regulating PNN by activity is an encouraging target to improve the outcome after injury.
Collapse
Affiliation(s)
- J Sánchez-Ventura
- Institute of Neurosciences, Department Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - L Giménez-Llort
- Institute of Neurosciences, Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - C Penas
- Institute of Neurosciences, Department Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - E Udina
- Institute of Neurosciences, Department Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain.
| |
Collapse
|
27
|
Al’joboori YD, Edgerton VR, Ichiyama RM. Effects of Rehabilitation on Perineural Nets and Synaptic Plasticity Following Spinal Cord Transection. Brain Sci 2020; 10:brainsci10110824. [PMID: 33172143 PMCID: PMC7694754 DOI: 10.3390/brainsci10110824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/27/2020] [Accepted: 11/03/2020] [Indexed: 01/08/2023] Open
Abstract
Epidural electrical stimulation (ES) of the lumbar spinal cord combined with daily locomotor training has been demonstrated to enhance stepping ability after complete spinal transection in rodents and clinically complete spinal injuries in humans. Although functional gain is observed, plasticity mechanisms associated with such recovery remain mostly unclear. Here, we investigated how ES and locomotor training affected expression of chondroitin sulfate proteoglycans (CSPG), perineuronal nets (PNN), and synaptic plasticity on spinal motoneurons. To test this, adult rats received a complete spinal transection (T9-T10) followed by daily locomotor training performed under ES with administration of quipazine (a serotonin (5-HT) agonist) starting 7 days post-injury (dpi). Excitatory and inhibitory synaptic changes were examined at 7, 21, and 67 dpi in addition to PNN and CSPG expression. The total amount of CSPG expression significantly increased with time after injury, with no effect of training. An interesting finding was that γ-motoneurons did not express PNNs, whereas α-motoneurons demonstrated well-defined PNNs. This remarkable difference is reflected in the greater extent of synaptic changes observed in γ-motoneurons compared to α-motoneurons. A medium negative correlation between CSPG expression and changes in putative synapses around α-motoneurons was found, but no correlation was identified for γ-motoneurons. These results suggest that modulation of γ-motoneuron activity is an important mechanism associated with functional recovery induced by locomotor training under ES after a complete spinal transection.
Collapse
Affiliation(s)
- Yazi D. Al’joboori
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK;
| | - V. Reggie Edgerton
- Physiological Science, Neurobiology and Brain Research Institute, University of California, Los Angeles, CA 90095, USA;
| | - Ronaldo M. Ichiyama
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK;
- Correspondence: ; Tel.: +44-113-343-4291
| |
Collapse
|
28
|
Abstract
In the adult mammalian hippocampus, new neurons arise from stem and progenitor cell division, in a process known as adult neurogenesis. Adult-generated neurons are sensitive to experience and may participate in hippocampal functions, including learning and memory, anxiety and stress regulation, and social behavior. Increasing evidence emphasizes the importance of new neuron connectivity within hippocampal circuitry for understanding the impact of adult neurogenesis on brain function. In this Review, we discuss how the functional consequences of new neurons arise from the collective interactions of presynaptic and postsynaptic neurons, glial cells, and the extracellular matrix, which together form the "tetrapartite synapse."
Collapse
Affiliation(s)
- Elise C Cope
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ 08544, USA
| | - Elizabeth Gould
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
29
|
Abstract
Understanding mechanisms underlying learning and memory is crucial in view of tackling cognitive decline occurring during aging or following neurological disorders. The cerebellum offers an ideal system to achieve this goal because of the well-characterized forms of motor learning that it controls. It is so far unclear whether cerebellar memory processes depend on changes in perineuronal nets (PNNs). PNNs are assemblies of extracellular matrix molecules around neurons, which regulate neural plasticity. Here we demonstrate that during eyeblink conditioning (EBC), which is a form of cerebellar motor learning, PNNs in the mouse deep cerebellar nuclei are dynamically modulated, and PNN changes are essential for the formation and storage of EBC memories. Together, these results unveil an important mechanism controlling motor associative memories. Perineuronal nets (PNNs) are assemblies of extracellular matrix molecules, which surround the cell body and dendrites of many types of neuron and regulate neural plasticity. PNNs are prominently expressed around neurons of the deep cerebellar nuclei (DCN), but their role in adult cerebellar plasticity and behavior is far from clear. Here we show that PNNs in the mouse DCN are diminished during eyeblink conditioning (EBC), a form of associative motor learning that depends on DCN plasticity. When memories are fully acquired, PNNs are restored. Enzymatic digestion of PNNs in the DCN improves EBC learning, but intact PNNs are necessary for memory retention. At the structural level, PNN removal induces significant synaptic rearrangements in vivo, resulting in increased inhibition of DCN baseline activity in awake behaving mice. Together, these results demonstrate that PNNs are critical players in the regulation of cerebellar circuitry and function.
Collapse
|
30
|
Płatek R, Grycz K, Więckowska A, Czarkowska-Bauch J, Skup M. L1 Cell Adhesion Molecule Overexpression Down Regulates Phosphacan and Up Regulates Structural Plasticity-Related Genes Rostral and Caudal to the Complete Spinal Cord Transection. J Neurotrauma 2019; 37:534-554. [PMID: 31426714 DOI: 10.1089/neu.2018.6103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
L1 cell adhesion molecule (L1CAM) supports spinal cord cellular milieu after contusion and compression lesions, contributing to neuroprotection, promoting axonal outgrowth, and reducing outgrowth-inhibitory molecules in lesion proximity. We extended investigations into L1CAM molecular targets and explored long-distance effects of L1CAM rostral and caudal to complete spinal cord transection (SCT) in adult rats. L1CAM overexpression in neurons and glia after Th10/Th11 SCT was achieved using adeno-associated viral vector serotype 5 (AAV5) injected into an L1-lumbar segment immediately after transection. At 5 weeks, a L1CAM mRNA profound decrease detected rostral and caudal to the transection site was alleviated by AAV5-L1CAM treatment, with increased endogenous L1CAM rostral to the SCT. Transected corticospinal tract fibers showed attenuated retraction after treatment, accompanied by a multi-segmental increase of lesion-reduced expression of adenylate cyclase 1 (Adcy1), synaptophysin, growth-associated protein 43, and myelin basic protein genes caudal to transection, and Adcy1 rostral to transection. In parallel, chondroitin sulfate proteoglycan phosphacan elevated after SCT was downregulated after treatment. Low-molecular L1CAM isoforms generated after spinalization indicated the involvement of sheddases in L1CAM processing and long-distance effects. A disintegrin and metalloproteinase (ADAM)10 sheddase immunoreactivity, stronger in AAV5-L1CAM than AAV5- enhanced green fluorescent protein (EGFP)-transduced motoneurons indicated local ADAM10 upregulation by L1CAM. The results suggest that increased L1CAM availability and penetration of diffusible L1CAM fragments post-lesion induce both local and long-distance neuronal and glial responses toward better neuronal maintenance, neurite growth, and myelination. Despite the fact that intervention promoted beneficial molecular changes, kinematic analysis of hindlimb movements showed minor improvement, indicating that spinalized rats require longer L1CAM treatment to regain locomotor functions.
Collapse
Affiliation(s)
- Rafał Płatek
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Kamil Grycz
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | | |
Collapse
|
31
|
Reichelt AC, Hare DJ, Bussey TJ, Saksida LM. Perineuronal Nets: Plasticity, Protection, and Therapeutic Potential. Trends Neurosci 2019; 42:458-470. [DOI: 10.1016/j.tins.2019.04.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/16/2019] [Accepted: 04/22/2019] [Indexed: 12/18/2022]
|
32
|
The roles of perineuronal nets and the perinodal extracellular matrix in neuronal function. Nat Rev Neurosci 2019; 20:451-465. [PMID: 31263252 DOI: 10.1038/s41583-019-0196-3] [Citation(s) in RCA: 341] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2019] [Indexed: 01/09/2023]
Abstract
Perineuronal nets (PNNs) are extracellular matrix (ECM) chondroitin sulfate proteoglycan (CSPG)-containing structures that surround the soma and dendrites of various mammalian neuronal cell types. PNNs appear during development around the time that the critical periods for developmental plasticity end and are important for both their onset and closure. A similar structure - the perinodal ECM - surrounds the axonal nodes of Ranvier and appears as myelination is completed, acting as an ion-diffusion barrier that affects axonal conduction speed. Recent work has revealed the importance of PNNs in controlling plasticity in the CNS. Digestion, blocking or removal of PNNs influences functional recovery after a variety of CNS lesions. PNNs have further been shown to be involved in the regulation of memory and have been implicated in a number of psychiatric disorders.
Collapse
|
33
|
Mukhamedshina Y, Povysheva T, Nikolenko V, Kuznecov M, Rizvanov A, Chelyshev Y. Upregulation of proteoglycans in the perilesion perimeter in ventral horns after spinal cord injury. Neurosci Lett 2019; 704:220-228. [DOI: 10.1016/j.neulet.2019.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/05/2019] [Accepted: 04/02/2019] [Indexed: 12/18/2022]
|
34
|
Lin J, Anopas D, Milbreta U, Lin PH, Chin JS, Zhang N, Wee SK, Tow A, Ang WT, Chew SY. Regenerative rehabilitation: exploring the synergistic effects of rehabilitation and implantation of a bio-functional scaffold in enhancing nerve regeneration. Biomater Sci 2019; 7:5150-5160. [DOI: 10.1039/c9bm01095e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Combinatorial approach of rehabilitation and regeneration is essential for functional recovery.
Collapse
Affiliation(s)
- Junquan Lin
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
| | - Dollaporn Anopas
- School of Mechanical and Aerospace Engineering
- Nanyang Technological University
- Singapore
| | - Ulla Milbreta
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
| | - Po Hen Lin
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
| | - Jiah Shin Chin
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
- NTU Institute for Health Technologies (Health Tech NTU)
- Interdisciplinary Graduate School
| | - Na Zhang
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
| | - Seng Kwee Wee
- Department of Rehabilitation Medicine
- Tan Tock Seng Hospital
- Singapore
| | - Adela Tow
- Department of Rehabilitation Medicine
- Tan Tock Seng Hospital
- Singapore
| | - Wei Tech Ang
- School of Mechanical and Aerospace Engineering
- Nanyang Technological University
- Singapore
| | - Sing Yian Chew
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
- Lee Kong Chian School of Medicine
- Nanyang Technological University
| |
Collapse
|
35
|
Irvine SF, Kwok JCF. Perineuronal Nets in Spinal Motoneurones: Chondroitin Sulphate Proteoglycan around Alpha Motoneurones. Int J Mol Sci 2018; 19:ijms19041172. [PMID: 29649136 PMCID: PMC5979458 DOI: 10.3390/ijms19041172] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/03/2018] [Accepted: 04/07/2018] [Indexed: 12/27/2022] Open
Abstract
Perineuronal nets (PNNs) are extracellular matrix structures surrounding neuronal sub-populations throughout the central nervous system, regulating plasticity. Enzymatically removing PNNs successfully enhances plasticity and thus functional recovery, particularly in spinal cord injury models. While PNNs within various brain regions are well studied, much of the composition and associated populations in the spinal cord is yet unknown. We aim to investigate the populations of PNN neurones involved in this functional motor recovery. Immunohistochemistry for choline acetyltransferase (labelling motoneurones), PNNs using Wisteria floribunda agglutinin (WFA) and chondroitin sulphate proteoglycans (CSPGs), including aggrecan, was performed to characterise the molecular heterogeneity of PNNs in rat spinal motoneurones (Mns). CSPG-positive PNNs surrounded ~70–80% of Mns. Using WFA, only ~60% of the CSPG-positive PNNs co-localised with WFA in the spinal Mns, while ~15–30% of Mns showed CSPG-positive but WFA-negative PNNs. Selective labelling revealed that aggrecan encircled ~90% of alpha Mns. The results indicate that (1) aggrecan labels spinal PNNs better than WFA, and (2) there are differences in PNN composition and their associated neuronal populations between the spinal cord and cortex. Insights into the role of PNNs and their molecular heterogeneity in the spinal motor pools could aid in designing targeted strategies to enhance functional recovery post-injury.
Collapse
Affiliation(s)
- Sian F Irvine
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | - Jessica C F Kwok
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK.
- Centre of Reconstructive Neurosciences, Institute of Experimental Medicine, The Czech Academy of Sciences, Prague 4, Czech Republic.
| |
Collapse
|
36
|
van 't Spijker HM, Kwok JCF. A Sweet Talk: The Molecular Systems of Perineuronal Nets in Controlling Neuronal Communication. Front Integr Neurosci 2017; 11:33. [PMID: 29249944 PMCID: PMC5717013 DOI: 10.3389/fnint.2017.00033] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/14/2017] [Indexed: 11/13/2022] Open
Abstract
Perineuronal nets (PNNs) are mesh-like structures, composed of a hierarchical assembly of extracellular matrix molecules in the central nervous system (CNS), ensheathing neurons and regulating plasticity. The mechanism of interactions between PNNs and neurons remain uncharacterized. In this review, we pose the question: how do PNNs regulate communication to and from neurons? We provide an overview of the current knowledge on PNNs with a focus on the cellular interactions. PNNs ensheath a subset of the neuronal population with distinct molecular aspects in different areas of the CNS. PNNs control neuronal communication through molecular interactions involving specific components of the PNNs. This review proposes that the PNNs are an integral part of neurons, crucial for the regulation of plasticity in the CNS.
Collapse
Affiliation(s)
- Heleen M van 't Spijker
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
| | - Jessica C F Kwok
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom.,Czech Academy of Sciences, Institute of Experimental Medicine, Centre of Reconstructive Neurosciences, Prague, Czechia
| |
Collapse
|
37
|
Härtig W, Appel S, Suttkus A, Grosche J, Michalski D. Abolished perineuronal nets and altered parvalbumin-immunoreactivity in the nucleus reticularis thalami of wildtype and 3xTg mice after experimental stroke. Neuroscience 2016; 337:66-87. [PMID: 27634771 DOI: 10.1016/j.neuroscience.2016.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/18/2016] [Accepted: 09/03/2016] [Indexed: 12/14/2022]
Abstract
Treatment strategies for ischemic stroke are still limited, since numerous attempts were successful only in preclinical research but failed under clinical condition. To overcome this translational roadblock, clinical relevant stroke models should consider co-morbidities, age-related effects and the complex neurovascular unit (NVU) concept. The NVU includes neurons, vessels and glial cells with astrocytic endfeet in close relation to the extracellular matrix (ECM). However, the role of the ECM after stroke-related tissue damage is poorly understood and mostly neglected for treatment strategies. This study is focused on alterations of perineuronal nets (PNs) as ECM constituents and parvalbumin-containing GABAergic neurons in mice with emphasis on the nucleus reticularis thalami (NRT) in close proximity to the ischemic lesion as induced by a filament-based stroke model. One day after ischemia onset, immunofluorescence-based quantitative analyses revealed drastically declined PNs in the ischemia-affected NRT from 3- and 12-month-old wildtype and co-morbid triple-transgenic (3xTg) mice with Alzheimer-like alterations. Parvalbumin-positive cells decreased numerically in the ischemia-affected NRT, while staining intensity did not differ between the affected and non-affected hemisphere. Additional qualitative analyses demonstrated ischemia-induced loss of PNs and allocated neuropil ECM immunoreactive for aggrecan and neurocan, and impaired immunoreactivity for calbindin, the potassium channel subunit Kv3.1b and the glutamate decarboxylase isoforms GAD65 and GAD67 in the NRT. In conclusion, these data confirm PNs as highly sensitive constituents of the ECM along with impaired neuronal integrity of GABAergic neurons. Therefore, specific targeting of ECM components might appear as a promising strategy for future treatment strategies in stroke.
Collapse
Affiliation(s)
- Wolfgang Härtig
- Paul Flechsig Institute for Brain Research University of Leipzig, Liebigstr. 19, 04103 Leipzig, Germany.
| | - Simon Appel
- Paul Flechsig Institute for Brain Research University of Leipzig, Liebigstr. 19, 04103 Leipzig, Germany
| | - Anne Suttkus
- Paul Flechsig Institute for Brain Research University of Leipzig, Liebigstr. 19, 04103 Leipzig, Germany; Department of Pediatric Surgery, University Hospital Leipzig, Liebigstr. 20 A, 04103 Leipzig, Germany
| | - Jens Grosche
- Effigos GmbH, Am Deutschen Platz 4, 04103 Leipzig, Germany
| | - Dominik Michalski
- Department of Neurology, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany
| |
Collapse
|
38
|
Confocal raman microspectral imaging of ex vivo human spinal cord tissue. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 163:177-84. [PMID: 27588715 DOI: 10.1016/j.jphotobiol.2016.08.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 08/23/2016] [Indexed: 01/11/2023]
Abstract
Confocal Raman microspectral imaging (CRMI) provides a versatile tool to illustrate the biochemical nature and structure of biological tissue without introducing any external labels. In this work, a precise correlation was established between the biochemical profile and histological architecture of ex vivo human spinal cord tissue by using CRMI with 633nm excitation. After precisely linking the spectral features to the chemical constituents, much information about the molecular composition of both gray and white matter were revealed. Two-dimensional Raman images were generated by integrating the intensities of the characteristic Raman bands in the area of the intermediate column and ventral horn. K-mean cluster analysis was further applied to visualize the underlying morphological basis of spinal cord tissue by chemical component types and their distribution pattern. Lipid-rich white matter could be visually distinguished from gray matter considering a CH2 bending/scissoring band at 1445cm(-1) and an amide III band at 1250cm(-1). Meanwhile, the formation and distribution pattern of perineuronal nets (PNNs) in the scanning area was validated by the integration of saccharides (617cm(-1)) and amide III bands. Moreover, the heme profile indicated a higher degree of vascularization in gray matter. All of the results obtained testified to the possibility that gray matter could be more susceptible to spinal cord injury (SCI) because of capillary network distribution and glycosaminoglycans (GAGs) aggregation. These findings are important for interpreting the morphological specificity of human spinal cord tissue, and also for studying the molecular basis of SCI.
Collapse
|
39
|
Neuron-Glia Interactions in Neural Plasticity: Contributions of Neural Extracellular Matrix and Perineuronal Nets. Neural Plast 2016; 2016:5214961. [PMID: 26881114 PMCID: PMC4736403 DOI: 10.1155/2016/5214961] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/10/2015] [Indexed: 11/17/2022] Open
Abstract
Synapses are specialized structures that mediate rapid and efficient signal transmission between neurons and are surrounded by glial cells. Astrocytes develop an intimate association with synapses in the central nervous system (CNS) and contribute to the regulation of ion and neurotransmitter concentrations. Together with neurons, they shape intercellular space to provide a stable milieu for neuronal activity. Extracellular matrix (ECM) components are synthesized by both neurons and astrocytes and play an important role in the formation, maintenance, and function of synapses in the CNS. The components of the ECM have been detected near glial processes, which abut onto the CNS synaptic unit, where they are part of the specialized macromolecular assemblies, termed perineuronal nets (PNNs). PNNs have originally been discovered by Golgi and represent a molecular scaffold deposited in the interface between the astrocyte and subsets of neurons in the vicinity of the synapse. Recent reports strongly suggest that PNNs are tightly involved in the regulation of synaptic plasticity. Moreover, several studies have implicated PNNs and the neural ECM in neuropsychiatric diseases. Here, we highlight current concepts relating to neural ECM and PNNs and describe an in vitro approach that allows for the investigation of ECM functions for synaptogenesis.
Collapse
|
40
|
Wiese S, Faissner A. The role of extracellular matrix in spinal cord development. Exp Neurol 2015; 274:90-9. [DOI: 10.1016/j.expneurol.2015.05.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/13/2015] [Accepted: 05/25/2015] [Indexed: 01/06/2023]
|
41
|
Oohashi T, Edamatsu M, Bekku Y, Carulli D. The hyaluronan and proteoglycan link proteins: Organizers of the brain extracellular matrix and key molecules for neuronal function and plasticity. Exp Neurol 2015; 274:134-44. [PMID: 26387938 DOI: 10.1016/j.expneurol.2015.09.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 09/11/2015] [Accepted: 09/17/2015] [Indexed: 02/06/2023]
Abstract
The hyaluronan and proteoglycanbinding link protein (Hapln) is a key molecule in the formation and control of hyaluronan-based condensed perineuronal matrix in the adult brain. This review summarizes the recent advances in understanding the role of Haplns in the formation and control of two distinct types of perineuronal matrices, one for "classical" PNN and the other for the specialized extracellular matrix (ECM) at the node of Ranvier in the central nervous system (CNS). We introduce the structural components of each ECM organization including the basic concept of supramolecular structure named "HLT model". We furthermore summarize the developmental and physiological role of perineuronal ECMs from the studies of Haplns and related molecules. Finally, we also discuss the potential mechanism modulating PNNs in the adult CNS. This layer of organized matrices may exert a direct effect via core protein or sugar moiety from the structure or by acting as a binding site for biologically active molecules, which are important for neuronal plasticity and saltatory conduction.
Collapse
Affiliation(s)
- Toshitaka Oohashi
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Midori Edamatsu
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Yoko Bekku
- NYU Neuroscience Institute, New York University Langone Medical Center, 522 First Avenue, New York, NY 10016, USA
| | - Daniela Carulli
- Department of Neuroscience, Neuroscience Institute of Turin (NIT), Neuroscience Institute Cavalieri-Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| |
Collapse
|
42
|
Modifications of perineuronal nets and remodelling of excitatory and inhibitory afferents during vestibular compensation in the adult mouse. Brain Struct Funct 2015; 221:3193-209. [PMID: 26264050 DOI: 10.1007/s00429-015-1095-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/27/2015] [Indexed: 12/13/2022]
Abstract
Perineuronal nets (PNNs) are aggregates of extracellular matrix molecules surrounding several types of neurons in the adult CNS, which contribute to stabilising neuronal connections. Interestingly, a reduction of PNN number and staining intensity has been observed in conditions associated with plasticity in the adult brain. However, it is not known whether spontaneous PNN changes are functional to plasticity and repair after injury. To address this issue, we investigated PNN expression in the vestibular nuclei of the adult mouse during vestibular compensation, namely the resolution of motor deficits resulting from a unilateral peripheral vestibular lesion. After unilateral labyrinthectomy, we found that PNN number and staining intensity were strongly attenuated in the lateral vestibular nucleus on both sides, in parallel with remodelling of excitatory and inhibitory afferents. Moreover, PNNs were completely restored when vestibular deficits of the mice were abated. Interestingly, in mice with genetically reduced PNNs, vestibular compensation was accelerated. Overall, these results strongly suggest that temporal tuning of PNN expression may be crucial for vestibular compensation.
Collapse
|