1
|
Talifu Z, Xu X, Du H, Li Z, Wang X, Zhang C, Pan Y, Ke H, Liu W, Gao F, Yang D, Jing Y, Yu Y, Du L, Li J. Effect of in vivo reprogramming of astrocytes combined with exercise training on neurorepair in rats with spinal cord injury. Animal Model Exp Med 2025; 8:595-605. [PMID: 39844772 PMCID: PMC12008439 DOI: 10.1002/ame2.12545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 12/15/2024] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND The inability of damaged neurons to regenerate and of axons to establish new functional connections leads to permanent functional deficits after spinal cord injury (SCI). Although astrocyte reprogramming holds promise for neurorepair in various disease models, it is not sufficient on its own to achieve significant functional recovery. METHODS A rat SCI model was established using a spinal cord impactor. Seven days postsurgery, adeno-associated virus were injected to overexpress the transcription factors NeuroD1 and Neurogenin-2 (Ngn2) in the spinal cord. The rats were then trained to walk on a weight-supported treadmill for 4 weeks, starting 14 days after modeling. The effects of these interventions on motor and sensory functions, as well as spinal cord tissue repair, were subsequently evaluated. RESULTS The combination of NeuroD1 and Ngn2 overexpression with weight-supported exercise training significantly improved gait compared to either intervention alone. The group receiving the combined intervention exhibited enhanced sensitivity in sensory assessments. Immunofluorescence analysis revealed increased colocalization of astrocytes and microtubule-associated protein 2-positive neurons in the injury area. These effects were more pronounced than those observed with spinal cord tissue repair alone. Additionally, the combined intervention significantly reduced glial scarring and the size of the injury area. CONCLUSION Exercise intervention enhances the reprogramming effects of astrocytes and restores motor function, yielding better results than either intervention alone.
Collapse
Affiliation(s)
- Zuliyaer Talifu
- School of RehabilitationCapital Medical UniversityBeijingChina
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research CenterBeijingChina
- Chinese Institute of Rehabilitation ScienceBeijingChina
- Center of Neural Injury and RepairBeijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijingChina
- School of Population Medicine and Public HealthChinese Academy of Medical Sciences/Peking Union Medical CollegeBeijingChina
| | - Xin Xu
- School of RehabilitationCapital Medical UniversityBeijingChina
- Department of Neurology, Cheeloo College of MedicineShandong University, Qilu Hospital of Shandong UniversityJinanChina
- School of Health and Life SciencesUniversity of Health and Rehabilitation SciencesQingdaoChina
| | - Huayong Du
- School of RehabilitationCapital Medical UniversityBeijingChina
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research CenterBeijingChina
- Chinese Institute of Rehabilitation ScienceBeijingChina
- Center of Neural Injury and RepairBeijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijingChina
| | - Zehui Li
- School of RehabilitationCapital Medical UniversityBeijingChina
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research CenterBeijingChina
- Chinese Institute of Rehabilitation ScienceBeijingChina
- Center of Neural Injury and RepairBeijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijingChina
| | - Xiaoxin Wang
- School of RehabilitationCapital Medical UniversityBeijingChina
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research CenterBeijingChina
- Chinese Institute of Rehabilitation ScienceBeijingChina
- Center of Neural Injury and RepairBeijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijingChina
| | - Chunjia Zhang
- School of RehabilitationCapital Medical UniversityBeijingChina
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research CenterBeijingChina
- Chinese Institute of Rehabilitation ScienceBeijingChina
- Center of Neural Injury and RepairBeijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijingChina
| | - Yunzhu Pan
- School of RehabilitationCapital Medical UniversityBeijingChina
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research CenterBeijingChina
- Chinese Institute of Rehabilitation ScienceBeijingChina
- Center of Neural Injury and RepairBeijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijingChina
| | - Han Ke
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research CenterBeijingChina
- Department of Neurology, Cheeloo College of MedicineShandong University, Qilu Hospital of Shandong UniversityJinanChina
- School of Health and Life SciencesUniversity of Health and Rehabilitation SciencesQingdaoChina
| | - Wubo Liu
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research CenterBeijingChina
- Department of Neurology, Cheeloo College of MedicineShandong University, Qilu Hospital of Shandong UniversityJinanChina
- School of Health and Life SciencesUniversity of Health and Rehabilitation SciencesQingdaoChina
| | - Feng Gao
- School of RehabilitationCapital Medical UniversityBeijingChina
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research CenterBeijingChina
- Center of Neural Injury and RepairBeijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijingChina
| | - Degang Yang
- School of RehabilitationCapital Medical UniversityBeijingChina
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research CenterBeijingChina
- Center of Neural Injury and RepairBeijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijingChina
| | - Yingli Jing
- School of RehabilitationCapital Medical UniversityBeijingChina
- Chinese Institute of Rehabilitation ScienceBeijingChina
- Center of Neural Injury and RepairBeijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijingChina
| | - Yan Yu
- School of RehabilitationCapital Medical UniversityBeijingChina
- Chinese Institute of Rehabilitation ScienceBeijingChina
- Center of Neural Injury and RepairBeijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijingChina
| | - Liangjie Du
- School of RehabilitationCapital Medical UniversityBeijingChina
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research CenterBeijingChina
- Center of Neural Injury and RepairBeijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijingChina
| | - Jianjun Li
- School of RehabilitationCapital Medical UniversityBeijingChina
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research CenterBeijingChina
- Chinese Institute of Rehabilitation ScienceBeijingChina
- Center of Neural Injury and RepairBeijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijingChina
- School of Health and Life SciencesUniversity of Health and Rehabilitation SciencesQingdaoChina
| |
Collapse
|
2
|
Talifu Z, Zhang C, Xu X, Pan Y, Ke H, Li Z, Liu W, Du H, Wang X, Gao F, Yang D, Jing Y, Yu Y, Du L, Li J. Neuronal repair after spinal cord injury by in vivo astrocyte reprogramming mediated by the overexpression of NeuroD1 and Neurogenin-2. Biol Res 2024; 57:53. [PMID: 39135103 PMCID: PMC11318173 DOI: 10.1186/s40659-024-00534-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND As a common disabling disease, irreversible neuronal death due to spinal cord injury (SCI) is the root cause of functional impairment; however, the capacity for neuronal regeneration in the developing spinal cord tissue is limited. Therefore, there is an urgent need to investigate how defective neurons can be replenished and functionally integrated by neural regeneration; the reprogramming of intrinsic cells into functional neurons may represent an ideal solution. METHODS A mouse model of transection SCI was prepared by forceps clamping, and an adeno-associated virus (AAV) carrying the transcription factors NeuroD1 and Neurogenin-2(Ngn2) was injected in situ into the spinal cord to specifically overexpress these transcription factors in astrocytes close to the injury site. 5-bromo-2´-deoxyuridine (BrdU) was subsequently injected intraperitoneally to continuously track cell regeneration, neuroblasts and immature neurons marker expression, neuronal regeneration, and glial scar regeneration. In addition, immunoprotein blotting was used to measure the levels of transforming growth factor-β (TGF-β) pathway-related protein expression. We also evaluated motor function, sensory function, and the integrity of the blood-spinal cord barrier(BSCB). RESULTS The in situ overexpression of NeuroD1 and Ngn2 in the spinal cord was achieved by specific AAV vectors. This intervention led to a significant increase in cell regeneration and the proportion of cells with neuroblasts and immature neurons cell properties at the injury site(p < 0.0001). Immunofluorescence staining identified astrocytes with neuroblasts and immature neurons cell properties at the site of injury while neuronal marker-specific staining revealed an increased number of mature astrocytes at the injury site. Behavioral assessments showed that the intervention did not improve The BMS (Basso mouse scale) score (p = 0.0726) and gait (p > 0.05), although the treated mice had more sensory sensitivity and greater voluntary motor ability in open field than the non-intervention mice. We observed significant repair of the BSCB at the center of the injury site (p < 0.0001) and a significant improvement in glial scar proliferation. Electrophysiological assessments revealed a significant improvement in spinal nerve conduction (p < 0.0001) while immunostaining revealed that the levels of TGF-β protein at the site of injury in the intervention group were lower than control group (p = 0.0034); in addition, P70 s6 and PP2A related to the TGF-β pathway showed ascending trend (p = 0.0036, p = 0.0152 respectively). CONCLUSIONS The in situ overexpression of NeuroD1 and Ngn2 in the spinal cord after spinal cord injury can reprogram astrocytes into neurons and significantly enhance cell regeneration at the injury site. The reprogramming of astrocytes can lead to tissue repair, thus improving the reduced threshold and increasing voluntary movements. This strategy can also improve the integrity of the blood-spinal cord barrier and enhance nerve conduction function. However, the simple reprogramming of astrocytes cannot lead to significant improvements in the striding function of the lower limbs.
Collapse
Affiliation(s)
- Zuliyaer Talifu
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
- University of Health and Rehabilitation Sciences, Shandong, 266113, China
| | - Chunjia Zhang
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Xin Xu
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
- University of Health and Rehabilitation Sciences, Shandong, 266113, China
- Cheeloo College of Medicine, Shandong University, Shandong Province, Jinan, 250100, China
| | - Yunzhu Pan
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
- University of Health and Rehabilitation Sciences, Shandong, 266113, China
| | - Han Ke
- Cheeloo College of Medicine, Shandong University, Shandong Province, Jinan, 250100, China
| | - Zehui Li
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Wubo Liu
- Cheeloo College of Medicine, Shandong University, Shandong Province, Jinan, 250100, China
| | - Huayong Du
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Xiaoxin Wang
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Degang Yang
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Yingli Jing
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Yan Yu
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Liangjie Du
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Jianjun Li
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China.
- University of Health and Rehabilitation Sciences, Shandong, 266113, China.
- Cheeloo College of Medicine, Shandong University, Shandong Province, Jinan, 250100, China.
| |
Collapse
|
3
|
Finkel Z, Esteban F, Rodriguez B, Clifford T, Joseph A, Alostaz H, Dalmia M, Gutierrez J, Tamasi MJ, Zhang SM, Simone J, Petekci H, Nath S, Escott M, Garg SK, Gormley AJ, Kumar S, Gulati S, Cai L. AAV6 mediated Gsx1 expression in neural stem progenitor cells promotes neurogenesis and restores locomotor function after contusion spinal cord injury. Neurotherapeutics 2024; 21:e00362. [PMID: 38664194 PMCID: PMC11452562 DOI: 10.1016/j.neurot.2024.e00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 05/05/2024] Open
Abstract
Genomic screened homeobox 1 (Gsx1 or Gsh1) is a neurogenic transcription factor required for the generation of excitatory and inhibitory interneurons during spinal cord development. In the adult, lentivirus (LV) mediated Gsx1 expression promotes neural regeneration and functional locomotor recovery in a mouse model of lateral hemisection spinal cord injury (SCI). The LV delivery method is clinically unsafe due to insertional mutations to the host DNA. In addition, the most common clinical case of SCI is contusion/compression. In this study, we identify that adeno-associated virus serotype 6 (AAV6) preferentially infects neural stem/progenitor cells (NSPCs) in the injured spinal cord. Using a rat model of contusion SCI, we demonstrate that AAV6 mediated Gsx1 expression promotes neurogenesis, increases the number of neuroblasts/immature neurons, restores excitatory/inhibitory neuron balance and serotonergic neuronal activity through the lesion core, and promotes locomotor functional recovery. Our findings support that AAV6 preferentially targets NSPCs for gene delivery and confirmed Gsx1 efficacy in clinically relevant rat model of contusion SCI.
Collapse
Affiliation(s)
- Zachary Finkel
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd, Piscataway, NJ 08854, USA
| | - Fatima Esteban
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd, Piscataway, NJ 08854, USA
| | - Brianna Rodriguez
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd, Piscataway, NJ 08854, USA
| | - Tanner Clifford
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd, Piscataway, NJ 08854, USA
| | - Adelina Joseph
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd, Piscataway, NJ 08854, USA
| | - Hani Alostaz
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd, Piscataway, NJ 08854, USA
| | - Mridul Dalmia
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd, Piscataway, NJ 08854, USA
| | - Juan Gutierrez
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd, Piscataway, NJ 08854, USA; University of California, Santa Barbara, CA 93106, USA
| | - Matthew J Tamasi
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd, Piscataway, NJ 08854, USA
| | - Samuel Ming Zhang
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd, Piscataway, NJ 08854, USA
| | - Jonah Simone
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd, Piscataway, NJ 08854, USA
| | - Hafize Petekci
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd, Piscataway, NJ 08854, USA
| | - Susmita Nath
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd, Piscataway, NJ 08854, USA
| | - Miriam Escott
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd, Piscataway, NJ 08854, USA
| | - Shivam Kumar Garg
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd, Piscataway, NJ 08854, USA
| | - Adam J Gormley
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd, Piscataway, NJ 08854, USA
| | - Suneel Kumar
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd, Piscataway, NJ 08854, USA
| | - Sonia Gulati
- NeuroNovus Therapeutics Inc., 135 E 57th St., New York, NY 10022, USA
| | - Li Cai
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd, Piscataway, NJ 08854, USA; NeuroNovus Therapeutics Inc., 135 E 57th St., New York, NY 10022, USA.
| |
Collapse
|
4
|
Alizadeh SD, Jalalifar MR, Ghodsi Z, Sadeghi-Naini M, Malekzadeh H, Rahimi G, Mojtabavi K, Shool S, Eskandari Z, Masoomi R, Kiani S, Harrop J, Rahimi-Movaghar V. Reprogramming of astrocytes to neuronal-like cells in spinal cord injury: a systematic review. Spinal Cord 2024; 62:133-142. [PMID: 38448665 DOI: 10.1038/s41393-024-00969-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/08/2024]
Abstract
STUDY DESIGN A Systematic Review OBJECTIVES: To determine the therapeutic efficacy of in vivo reprogramming of astrocytes into neuronal-like cells in animal models of spinal cord injury (SCI). METHODS PRISMA 2020 guidelines were utilized, and search engines Medline, Web of Science, Scopus, and Embase until June 2023 were used. Studies that examined the effects of converting astrocytes into neuron-like cells with any vector in all animal models were included, while conversion from other cells except for spinal astrocytes, chemical mechanisms to provide SCI models, brain injury population, and conversion without in-vivo experience were excluded. The risk of bias was calculated independently. RESULTS 5302 manuscripts were initially identified and after eligibility assessment, 43 studies were included for full-text analysis. After final analysis, 13 manuscripts were included. All were graded as high-quality assessments. The transduction factors Sox2, Oct4, Klf4, fibroblast growth factor 4 (Fgf4) antibody, neurogenic differentiation 1 (Neurod1), zinc finger protein 521 (Zfp521), ginsenoside Rg1, and small molecules (LDN193189, CHIR99021, and DAPT) could effectively reprogramme astrocytes into neuron-like cells. The process was enhanced by p21-p53, or Notch signaling knockout, valproic acid, or chondroitin sulfate proteoglycan inhibitors. The type of mature neurons was both excitatory and inhibitory. CONCLUSION Astrocyte reprogramming to neuronal-like cells in an animal model after SCI appears promising. The molecular and functional improvements after astrocyte reprogramming were demonstrated in vivo, and further investigation is required in this field.
Collapse
Affiliation(s)
- Seyed Danial Alizadeh
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad-Rasoul Jalalifar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Ghodsi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Sadeghi-Naini
- Department of neurosurgery, Lorestan University of medical sciences, Khoram-Abad, Iran
| | - Hamid Malekzadeh
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Golnoosh Rahimi
- Department of Cellular and Molecular Biology, University of Science and Culture, Tehran, Iran
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Brain and Cognitive Sciences, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Kurosh Mojtabavi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Neuroscience Department, Erasmus MC, Rotterdam, The Netherlands
| | - Sina Shool
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Eskandari
- Department of Management, Faculty of Social Sciences and Economics, Alzahra University, Tehran, Iran
| | - Rasoul Masoomi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Kiani
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Brain and Cognitive Sciences, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - James Harrop
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
- Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
5
|
Talifu Z, Liu JY, Pan YZ, Ke H, Zhang CJ, Xu X, Gao F, Yu Y, Du LJ, Li JJ. In vivo astrocyte-to-neuron reprogramming for central nervous system regeneration: a narrative review. Neural Regen Res 2023; 18:750-755. [PMID: 36204831 PMCID: PMC9700087 DOI: 10.4103/1673-5374.353482] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The inability of damaged neurons to regenerate within the mature central nervous system (CNS) is a significant neuroscientific challenge. Astrocytes are an essential component of the CNS and participate in many physiological processes including blood-brain barrier formation, axon growth regulation, neuronal support, and higher cognitive functions such as memory. Recent reprogramming studies have confirmed that astrocytes in the mature CNS can be transformed into functional neurons. Building on in vitro work, many studies have demonstrated that astrocytes can be transformed into neurons in different disease models to replace damaged or lost cells. However, many findings in this field are controversial, as the source of new neurons has been questioned. This review summarizes progress in reprogramming astrocytes into neurons in vivo in animal models of spinal cord injury, brain injury, Huntington's disease, Parkinson's disease, Alzheimer's disease, and other neurodegenerative conditions.
Collapse
Affiliation(s)
- Zuliyaer Talifu
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing; School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
| | - Jia-Yi Liu
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yun-Zhu Pan
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing; School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
| | - Han Ke
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Chun-Jia Zhang
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Xin Xu
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yan Yu
- School of Rehabilitation, Capital Medical University; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Liang-Jie Du
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jian-Jun Li
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing; School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
| |
Collapse
|
6
|
Wei M, Feng D, Lu Z, Hu Z, Wu H, Lian Y, Li D, Yan Z, Li Y, Wang X, Zhang H. Neurod1 mediates the reprogramming of NG2 glial into neurons in vitro. Gene Expr Patterns 2023; 47:119305. [PMID: 36682427 DOI: 10.1016/j.gep.2023.119305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/31/2022] [Accepted: 01/14/2023] [Indexed: 01/21/2023]
Abstract
Neuronal defect and loss are the main pathological processes of many central nervous system diseases. Cellular reprogramming is a promising method to supplement lost neurons. However, study on cellular reprogramming is still limited and its mechanism remains unclear. Herein, the effect of Neurod1 expression on differentiation of NG2 glia into neurons was investigated. In this study, we successfully isolated NG2 glial cells from mice prior to identification with immunofluorescence. Afterwards, AAV-Neurod1 virus was used to construct Neurod1 overexpression vectors in NG2 glia. Later, we detected neuronal markers expression with immunofluorescence and real time quantitative polymerase-chain reaction (qRT-PCR). Besides, expression of MAPK-signaling-pathway-related proteins were detected by western blotting technique. Through immunofluorescence and qRT-PCR techniques, we observed that Neurod1 overexpression contributed to NG2 cells differentiated into neurons. Further experiments also showed that Neurod1 overexpression induced the activation of MAPK pathway, but PD98059 (a selective inhibitor of MAPK pathway) partly inhibited the neuronal differentiation induced by Neurod1 overexpression. These findings suggest that Neurod1 could promote NG2 glia cells differentiating into neurons, wherein the mechanism under the differentiation is related to activation of MAPK pathway.
Collapse
Affiliation(s)
- Min Wei
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu Province, China
| | - Dengfeng Feng
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu Province, China
| | - Zhenggang Lu
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu Province, China
| | - Zhengwei Hu
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu Province, China
| | - Hao Wu
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu Province, China
| | - Yingli Lian
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu Province, China
| | - Dongsheng Li
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu Province, China
| | - Zhengcun Yan
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu Province, China
| | - Yuping Li
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu Province, China
| | - Xingdong Wang
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu Province, China
| | - Hengzhu Zhang
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu Province, China.
| |
Collapse
|
7
|
Xu D, Zhong LT, Cheng HY, Wang ZQ, Chen XM, Feng AY, Chen WY, Chen G, Xu Y. Overexpressing NeuroD1 reprograms Müller cells into various types of retinal neurons. Neural Regen Res 2022; 18:1124-1131. [PMID: 36255002 PMCID: PMC9827787 DOI: 10.4103/1673-5374.355818] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The onset of retinal degenerative disease is often associated with neuronal loss. Therefore, how to regenerate new neurons to restore vision is an important issue. NeuroD1 is a neural transcription factor with the ability to reprogram brain astrocytes into neurons in vivo. Here, we demonstrate that in adult mice, NeuroD1 can reprogram Müller cells, the principal glial cell type in the retina, to become retinal neurons. Most strikingly, ectopic expression of NeuroD1 using two different viral vectors converted Müller cells into different cell types. Specifically, AAV7m8 GFAP681::GFP-ND1 converted Müller cells into inner retinal neurons, including amacrine cells and ganglion cells. In contrast, AAV9 GFAP104::ND1-GFP converted Müller cells into outer retinal neurons such as photoreceptors and horizontal cells, with higher conversion efficiency. Furthermore, we demonstrate that Müller cell conversion induced by AAV9 GFAP104::ND1-GFP displayed clear dose- and time-dependence. These results indicate that Müller cells in adult mice are highly plastic and can be reprogrammed into various subtypes of retinal neurons.
Collapse
Affiliation(s)
- Di Xu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong Province, China
| | - Li-Ting Zhong
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong Province, China
| | - Hai-Yang Cheng
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong Province, China
| | - Zeng-Qiang Wang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong Province, China
| | - Xiong-Min Chen
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong Province, China
| | - Ai-Ying Feng
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong Province, China
| | - Wei-Yi Chen
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong Province, China
| | - Gong Chen
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong Province, China,Correspondence to: Ying Xu, ; Gong Chen, .
| | - Ying Xu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong Province, China,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China,Correspondence to: Ying Xu, ; Gong Chen, .
| |
Collapse
|
8
|
Choi HR, Ha JS, Kim EA, Cho SW, Yang SJ. MiR-30a-5p and miR-153-3p regulate LPS-induced neuroinflammatory response and neuronal apoptosis by targeting NeuroD1. BMB Rep 2022; 55:447-452. [PMID: 35651331 PMCID: PMC9537026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 03/08/2024] Open
Abstract
Neurogenic differentiation 1 (NeuroD1) is an essential transcription factor for neuronal differentiation, maturation, and survival, and is associated with inflammation in lipopolysaccharide (LPS)- induced glial cells; however, the concrete mechanisms are still ambiguous. Therefore, we investigated whether NeuroD1-targeting miRNAs affect inflammation and neuronal apoptosis, as well as the underlying mechanism. First, we confirmed that miR-30a-5p and miR-153-3p, which target NeuroD1, reduced NeuroD1 expression in microglia and astrocytes. In LPS-induced microglia, miR-30a-5p and miR-153-3p suppressed pro-inflammatory cytokines, reactive oxygen species, the phosphorylation of c-Jun N-terminal kinase, extracellular-signal-regulated kinase (ERK), and p38, and the expression of cyclooxygenase and inducible nitric oxide synthase (iNOS) via the NF-κB pathway. Moreover, miR-30a-5p and miR-153-3p inhibited the expression of NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasomes, NLRP3, cleaved caspase-1, and IL-1β, which are involved in the innate immune response. In LPS-induced astrocytes, miR-30a-5p and miR-153-3p reduced ERK phosphorylation and iNOS expression via the STAT-3 pathway. Notably, miR-30a-5p exerted greater anti-inflammatory effects than miR-153-3p. Together, these results indicate that miR-30a-5p and miR-153-3p inhibit MAPK/NF-κB pathway in microglia as well as ERK/STAT-3 pathway in astrocytes to reduce LPS-induced neuronal apoptosis. This study highlights the importance of NeuroD1 in microglia and astrocytes neuroinflammation and suggests that it can be regulated by miR-30a-5p and miR-153-3p. [BMB Reports 2022; 55(9): 447-452].
Collapse
Affiliation(s)
- Hye-Rim Choi
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Korea
| | - Ji Sun Ha
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Korea
| | - Eun-A Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Seung-Ju Yang
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Korea
| |
Collapse
|
9
|
Farrokhfar S, Tiraihi T, Movahedin M, Azizi H. Morphine Induces Differential Gene Expression in Transdifferentiated Neuron-Like Cells from Adipose-Derived Stem Cells. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022130052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
10
|
Patel M, Anderson J, Lei S, Finkel Z, Rodriguez B, Esteban F, Risman R, Li Y, Lee KB, Lyu YL, Cai L. Nkx6.1 enhances neural stem cell activation and attenuates glial scar formation and neuroinflammation in the adult injured spinal cord. Exp Neurol 2021; 345:113826. [PMID: 34343529 DOI: 10.1016/j.expneurol.2021.113826] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/06/2021] [Accepted: 07/27/2021] [Indexed: 12/31/2022]
Abstract
Nkx6.1 plays an essential role during the embryonic development of the spinal cord. However, its role in the adult and injured spinal cord is not well understood. Here we show that lentivirus-mediated Nkx6.1 expression in the adult injured mouse spinal cord promotes cell proliferation and activation of endogenous neural stem/progenitor cells (NSPCs) at the acute phase of injury. In the chronic phase, Nkx6.1 increases the number of interneurons, reduces the number of reactive astrocytes, minimizes glial scar formation, and represses neuroinflammation. Transcriptomic analysis reveals that Nkx6.1 upregulates the sequential expression of genes involved in cell proliferation, neural differentiation, and Notch signaling pathway, downregulates genes and pathways involved in neuroinflammation, reactive astrocyte activation, and glial scar formation. Together, our findings support the potential role of Nkx6.1 in neural regeneration in the adult injured spinal cord.
Collapse
Affiliation(s)
- Misaal Patel
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Jeremy Anderson
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Shunyao Lei
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Zachary Finkel
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Brianna Rodriguez
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Fatima Esteban
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Rebecca Risman
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Ying Li
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Ki-Bum Lee
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA; Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Yi Lisa Lyu
- Department of Pharmacology, Rutgers University-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Li Cai
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
11
|
Patel M, Li Y, Anderson J, Castro-Pedrido S, Skinner R, Lei S, Finkel Z, Rodriguez B, Esteban F, Lee KB, Lyu YL, Cai L. Gsx1 promotes locomotor functional recovery after spinal cord injury. Mol Ther 2021; 29:2469-2482. [PMID: 33895323 PMCID: PMC8353206 DOI: 10.1016/j.ymthe.2021.04.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 03/01/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Promoting residential cells, particularly endogenous neural stem and progenitor cells (NSPCs), for tissue regeneration represents a potential strategy for the treatment of spinal cord injury (SCI). However, adult NSPCs differentiate mainly into glial cells and contribute to glial scar formation at the site of injury. Gsx1 is known to regulate the generation of excitatory and inhibitory interneurons during embryonic development of the spinal cord. In this study, we show that lentivirus-mediated expression of Gsx1 increases the number of NSPCs in a mouse model of lateral hemisection SCI during the acute stage. Subsequently, Gsx1 expression increases the generation of glutamatergic and cholinergic interneurons and decreases the generation of GABAergic interneurons in the chronic stage of SCI. Importantly, Gsx1 reduces reactive astrogliosis and glial scar formation, promotes serotonin (5-HT) neuronal activity, and improves the locomotor function of the injured mice. Moreover, RNA sequencing (RNA-seq) analysis reveals that Gsx1-induced transcriptome regulation correlates with NSPC signaling, NSPC activation, neuronal differentiation, and inhibition of astrogliosis and scar formation. Collectively, our study provides molecular insights for Gsx1-mediated functional recovery and identifies the potential of Gsx1 gene therapy for injuries in the spinal cord and possibly other parts of the central nervous system.
Collapse
Affiliation(s)
- Misaal Patel
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Ying Li
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Jeremy Anderson
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Sofia Castro-Pedrido
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Ryan Skinner
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Shunyao Lei
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Zachary Finkel
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Brianna Rodriguez
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Fatima Esteban
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Ki-Bum Lee
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA; Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Yi Lisa Lyu
- Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Li Cai
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
12
|
Kersigo J, Gu L, Xu L, Pan N, Vijayakuma S, Jones T, Shibata SB, Fritzsch B, Hansen MR. Effects of Neurod1 Expression on Mouse and Human Schwannoma Cells. Laryngoscope 2021; 131:E259-E270. [PMID: 32438526 PMCID: PMC7772964 DOI: 10.1002/lary.28671] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/11/2020] [Accepted: 03/18/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVES The objective was to explore the effect of the proneuronal transcription factor neurogenic differentiation 1 (Neurod1, ND1) on Schwann cells (SC) and schwannoma cell proliferation. METHODS Using a variety of transgenic mouse lines, we investigated how expression of Neurod1 effects medulloblastoma (MB) growth, schwannoma tumor progression, vestibular function, and SC cell proliferation. Primary human vestibular schwannoma (VS) cell cultures were transduced with adenoviral vectors expressing Neurod1. Cell proliferation was assessed by 5-ethynyl-2'-deoxyuridine (EdU) uptake. STUDY DESIGN Basic science investigation. RESULTS Expression of Neurod1 reduced the growth of slow-growing but not fast-growing MB models. Gene transfer of Neurod1 in human schwannoma cultures significantly reduced cell proliferation in dose-dependent way. Deletion of the neurofibromatosis type 2 (Nf2) tumor-suppressor gene via Cre expression in SCs led to increased intraganglionic SC proliferation and mildly reduced vestibular sensory-evoked potentials (VsEP) responses compared to age-matched wild-type littermates. The effect of Neurod1-induced expression on intraganglionic SC proliferation in animals lacking Nf2 was mild and highly variable. Sciatic nerve axotomy significantly increased SC proliferation in wild-type and Nf2-null animals, and expression of Neurod1 reduced the proliferative capacity of both wild-type and Nf2-null SCs following nerve injury. CONCLUSION Expression of Neurod1 reduces slow-growing MB progression and reduces human SC proliferation in primary VS cultures. In a genetic mouse model of schwannomas, we find some effects of Neurod1 expression; however, the high variability indicates that more tightly regulated Neurod1 expression levels that mimic our in vitro data are needed to fully validate Neurod1 effects on schwannoma progression. LEVEL OF EVIDENCE NA Laryngoscope, 131:E259-E270, 2021.
Collapse
Affiliation(s)
- Jennifer Kersigo
- Department of Biology, University of Lowa, Lowa City, Lowa, U.S.A
| | - Lintao Gu
- Department of Otolaryngology, University of Lowa, Lowa City, Lowa, U.S.A
- Decibel Pharmaceutical, Boston, Massachusetts, U.S.A
| | - Linjing Xu
- Department of Otolaryngology, University of Lowa, Lowa City, Lowa, U.S.A
| | - Ning Pan
- Department of Biology, University of Lowa, Lowa City, Lowa, U.S.A
- Department of Special Education & Communication Disorders, University of Nebraska, Lincoln, Nebraska, U.S.A
| | - Sarath Vijayakuma
- Department of Otolaryngology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Timothy Jones
- Department of Otolaryngology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Seiji B Shibata
- Department of Otolaryngology, University of Lowa, Lowa City, Lowa, U.S.A
| | - Bernd Fritzsch
- Department of Biology, University of Lowa, Lowa City, Lowa, U.S.A
- Department of Otolaryngology, University of Lowa, Lowa City, Lowa, U.S.A
| | - Marlan R Hansen
- Department of Otolaryngology, University of Lowa, Lowa City, Lowa, U.S.A
| |
Collapse
|
13
|
Chen WH, Lin YX, Lin L, Zhang BQ, Xu SX, Wang W. Identification of potential candidate proteins for reprogramming spinal cord-derived astrocytes into neurons: a proteomic analysis. Neural Regen Res 2021; 16:2257-2263. [PMID: 33818510 PMCID: PMC8354129 DOI: 10.4103/1673-5374.310697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Our previous study has confirmed that astrocytes overexpressing neurogenic differentiation factor 1 (NEUROD1) in the spinal cord can be reprogrammed into neurons under in vivo conditions. However, whether they can also be reprogrammed into neurons under in vitro conditions remains unclear, and the mechanisms of programmed conversion from astrocytes to neurons have not yet been clarified. In the present study, we prepared reactive astrocytes from newborn rat spinal cord astrocytes using the scratch method and infected them with lentivirus carrying NEUROD1. The results showed that NEUROD1 overexpression reprogrammed the cultured reactive astrocytes into neurons in vitro with an efficiency of 13.4%. Using proteomic and bioinformatic analyses, 1952 proteins were identified, of which 92 were differentially expressed. Among these proteins, 11 were identified as candidate proteins in the process of reprogramming based on their biological functions and fold-changes in the bioinformatic analysis. Furthermore, western blot assay revealed that casein kinase II subunit alpha (CSNK2A2) and pinin (PNN) expression in NEUROD1-overexpressing reactive astrocytes was significantly increased, suggesting that NEUROD1 can directly reprogram spinal cord-derived reactive astrocytes into neurons in vitro, and that the NEUROD1-CSNK2A2-PNN pathway is involved in this process. This study was approved by the Animal Ethics Committee of Fujian Medical University, China (approval No. 2016-05) on April 18, 2016.
Collapse
Affiliation(s)
- Wen-Hao Chen
- Department of Pediatric Surgery, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yu-Xiang Lin
- Department of Breast Surgery, Affiliated Union Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Ling Lin
- Institutes of Biomedical Sciences of Shanghai Medical School, Fudan University, Shanghai, China
| | - Bao-Quan Zhang
- Department of Neonatology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Shu-Xia Xu
- Department of Pathology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Wei Wang
- Department of Anatomy and Histoembryology, Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
14
|
Farrokhfar S, Tiraihi T, Movahedin M, Azizi H. Differential gene expression by lithium chloride induction of adipose-derived stem cells into neural phenotype cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:544-550. [PMID: 32489570 PMCID: PMC7239415 DOI: 10.22038/ijbms.2020.41582.9820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/12/2019] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Adipose-derived stem cells (ADSCs), with suitable and easy access, are multipotential cells that have the ability for differentiation into other mesodermal and transdifferentiate into neural phenotype cells. In this study, Lithium chloride (LiCl) was used for in vitro transdifferentiation of rat ADSCs into neuron-like cells (NLCs). MATERIALS AND METHODS ADSCs were isolated from the rats' perinephric region using Dulbecco΄s Modified Eagle΄s Medium (DMEM) with Fetal Bovine Serum (FBS), cultured for 3 passages, characterized by flowcytometry and differentiation into adipogenic and osteogenic phenotypes. The ADSCs were exposed to 0.1, 0.5, 1, 1.5, 2, 5, and 10 millimolar (mM) LiCl without serum for 24 hr. The optimum dose of LiCl was selected according the maximum viability of cells. The expression of neurofilament light chain (NfL), neurofilament high chain (NfH), and nestin was evaluated by immunocytochemistry. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to evaluate the amount of synaptophysin, neurogenin-1, neuroD1, NfL, NfH, and nestin genes' expression in ADSCs and NLCs. RESULTS The optimum dose of LiCl was 1 mM in 24 hr. The transdifferentiated ADSCs showed cytoplasmic extension with synapse-like formation. Synaptophysin, neurogenin-1, neuroD1, NfL, NfH, and nestin genes were significantly expressed more in NLCs than in ADSCs. CONCLUSION LiCl can induce ADSCs into neural phenotype cells with higher expression of neural and neuronal genes.
Collapse
Affiliation(s)
- Samaneh Farrokhfar
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Taki Tiraihi
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, P.O.BOX.14115-331 Tehran, Iran
| | - Mansoureh Movahedin
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, P.O.BOX.14115-331 Tehran, Iran
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, P.O.BOX.14115-331 Tehran, Iran
| |
Collapse
|
15
|
Wang Z, Huang J, Liu C, Liu L, Shen Y, Shen C, Liu C. BAF45D Downregulation in Spinal Cord Ependymal Cells Following Spinal Cord Injury in Adult Rats and Its Potential Role in the Development of Neuronal Lesions. Front Neurosci 2019; 13:1151. [PMID: 31736692 PMCID: PMC6828649 DOI: 10.3389/fnins.2019.01151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023] Open
Abstract
The endogenous spinal cord ependymal cells (SCECs), which form the central canal (CC), are critically involved in proliferation, differentiation and migration after spinal cord injury (SCI) and represents a repair cell source in treating SCI. Previously, we reported that BAF45D is expressed in the SCECs and the spinal cord neurons in adult mice and knockdown of BAF45D fail to induce expression of PAX6, a neurogenic fate determinant, during early neural differentiation of human embryonic stem cells. However, the effects of SCI on expression of BAF45D have not been reported. The aim of this study is to explore the expression and potential role of BAF45D in rat SCI model. In this study, adult rats were randomly divided into intact, sham, and SCI groups. We first explored expression of BAF45D in the SCECs in intact adult rats. We then explored SCI-induced loss of motor neurons and lesion of neurites in the anterior horns induced by the SCI. We also investigated whether the SCI-induced lesions in SCECs are accompanied by the motor neuron lesions. Finally, we examined the effect of BAF45D knockdown on cell growth in neuro2a cells. Our data showed that BAF45D is expressed in SCECs, neurons, and oligodendrocytes but not astrocytes in the spinal cords of intact adult rats. After SCI, the structure of CC was disrupted and the BAF45D-positive SCEC-derivatives were decreased. During the early stages of SCI, when shape of CC was affected but there was no disruption in circular structure of the SCECs, it was evident that there was a significant reduction in the number of neurites and motor neurons in the anterior horns compared with those of intact rats. In comparison, a complete loss of SCECs accompanied by further loss of motor neurons but not neurites was observed at the later stage. BAF45D knockdown was also found to inhibit cell growth in neuro2a cells. These results highlight the decreased expression of BAF45D in SCI-injured SCECs and the potential role of BAF45D downregulation in development of neuronal lesion after SCI in adult rats.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Histology and Embryology, Anhui Medical University, Hefei, China
- Institute of Stem Cell and Tissue Engineering, Anhui Medical University, Hefei, China
| | - Jian Huang
- Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Histology and Embryology, Anhui Medical University, Hefei, China
- Institute of Stem Cell and Tissue Engineering, Anhui Medical University, Hefei, China
| | - Chang Liu
- Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lihua Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yuxian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Cailiang Shen
- Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chao Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Histology and Embryology, Anhui Medical University, Hefei, China
- Institute of Stem Cell and Tissue Engineering, Anhui Medical University, Hefei, China
| |
Collapse
|
16
|
Gao F, Lei J, Zhang Z, Yang Y, You H. Curcumin alleviates LPS-induced inflammation and oxidative stress in mouse microglial BV2 cells by targeting miR-137-3p/NeuroD1. RSC Adv 2019; 9:38397-38406. [PMID: 35540218 PMCID: PMC9075845 DOI: 10.1039/c9ra07266g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/30/2019] [Indexed: 12/19/2022] Open
Abstract
Curcumin has been reported to exert protective effects on inflammation-related diseases, including spinal cord injury (SCI).
Collapse
Affiliation(s)
- Feng Gao
- Center for Biomedical Research on Pain (CBRP)
- Xi'an Jiaotong University Health Science Center
- Xi'an
- P. R. China
- Department of Physiology
| | - Jing Lei
- Center for Biomedical Research on Pain (CBRP)
- Xi'an Jiaotong University Health Science Center
- Xi'an
- P. R. China
| | - Zhaowei Zhang
- Center for Biomedical Research on Pain (CBRP)
- Xi'an Jiaotong University Health Science Center
- Xi'an
- P. R. China
| | - Yanling Yang
- Department of Physiology
- School of Medicine
- Yan'an University
- Yan'an
- P. R. China
| | - Haojun You
- Center for Biomedical Research on Pain (CBRP)
- Xi'an Jiaotong University Health Science Center
- Xi'an
- P. R. China
| |
Collapse
|
17
|
Xiong Y, Mahmood A, Chopp M. Current understanding of neuroinflammation after traumatic brain injury and cell-based therapeutic opportunities. Chin J Traumatol 2018; 21:137-151. [PMID: 29764704 PMCID: PMC6034172 DOI: 10.1016/j.cjtee.2018.02.003] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 02/04/2023] Open
Abstract
Traumatic brain injury (TBI) remains a major cause of death and disability worldwide. Increasing evidence indicates that TBI is an important risk factor for neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and chronic traumatic encephalopathy. Despite improved supportive and rehabilitative care of TBI patients, unfortunately, all late phase clinical trials in TBI have yet to yield a safe and effective neuroprotective treatment. The disappointing clinical trials may be attributed to variability in treatment approaches and heterogeneity of the population of TBI patients as well as a race against time to prevent or reduce inexorable cell death. TBI is not just an acute event but a chronic disease. Among many mechanisms involved in secondary injury after TBI, emerging preclinical studies indicate that posttraumatic prolonged and progressive neuroinflammation is associated with neurodegeneration which may be treatable long after the initiating brain injury. This review provides an overview of recent understanding of neuroinflammation in TBI and preclinical cell-based therapies that target neuroinflammation and promote functional recovery after TBI.
Collapse
Affiliation(s)
- Ye Xiong
- Department of Neurosurgery Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI, 48202, USA.
| | - Asim Mahmood
- Department of Neurosurgery Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI, 48202, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI, 48202, USA; Department of Physics, Oakland University, Rochester, MI, 48309, USA
| |
Collapse
|