1
|
Shang G, Zhou T, Yan X, He K, Liu B, Feng Z, Xu J, Yu X, Zhang Y. Multiscale Analysis Reveals Hippocampal Subfield Vulnerabilities to Chronic Cortisol Overexposure: Evidence From Cushing's Disease. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025:S2451-9022(25)00014-X. [PMID: 39793703 DOI: 10.1016/j.bpsc.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/05/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND Chronic cortisol overexposure plays a significant role in the development of neuropathological changes associated with neuropsychiatric and neurodegenerative disorders. The hippocampus, the primary target of cortisol, may exhibit characteristic regional responses due to its internal heterogeneity. In this study, we explored structural and functional alterations of hippocampal (HP) subfields in Cushing's disease (CD), an endogenous model of chronic cortisol overexposure. METHODS Utilizing structural and resting-state functional magnetic resonance imaging data from 169 participants (86 patients with CD and 83 healthy control participants [HCs]) recruited from a single center, we investigated specific structural changes in HP subfields and explored the functional connectivity alterations driven by these structural abnormalities. We also analyzed potential associative mechanisms between these changes and biological attributes, neuropsychiatric representations, cognitive function, and gene expression profiles. RESULTS Compared with HCs, patients with CD exhibited significant bilateral volume reductions in multiple HP subfields. Notably, volumetric decreases in the left HP body and tail subfields were significantly correlated with cortisol levels, Montreal Cognitive Assessment scores, and quality of life measures. Disrupted connectivity between the structurally abnormal HP subfields and the ventromedial prefrontal cortex may impair reward-based decision making and emotional regulation, with this dysconnectivity being linked to structural changes in right HP subfields. Another region that exhibited dysconnectivity was located in the left pallidum and putamen. Gene expression patterns associated with synaptic components may underlie these macrostructural alterations. CONCLUSIONS Our findings elucidate the subfield-specific effects of chronic cortisol overexposure on the hippocampus, enhancing understanding of shared neuropathological traits linked to cortisol dysregulation in neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Guosong Shang
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Chinese PLA Medical School, Beijing, China
| | - Tao Zhou
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Neurosurgery Institute, Chinese PLA General Hospital, Beijing, China
| | - Xinyuan Yan
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Kunyu He
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Chinese PLA Medical School, Beijing, China
| | - Bin Liu
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Chinese PLA Medical School, Beijing, China
| | - Zhebin Feng
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Chinese PLA Medical School, Beijing, China
| | - Junpeng Xu
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Chinese PLA Medical School, Beijing, China
| | - Xinguang Yu
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Chinese PLA Medical School, Beijing, China; Neurosurgery Institute, Chinese PLA General Hospital, Beijing, China.
| | - Yanyang Zhang
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Neurosurgery Institute, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
2
|
Xu J, Jie J, Feng C, Sun Q, Fan J, Li D. Glucose attenuates the long-term adverse neurodevelopment effect of neonate pain stimulus via CRF/GR in rats. Biochem Biophys Res Commun 2024; 725:150219. [PMID: 38941883 DOI: 10.1016/j.bbrc.2024.150219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/19/2024] [Accepted: 06/02/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND Neonates undergo numerous painful procedures throughout their hospitalization. Repeated procedural pain may cause adverse long-term effects. Glucose as a non-pharmacological analgesia, is used for neonate pain management. In this study, potential mechanism of attenuate pain induced by glucose in neurodevelopment effect of neonate pain stimulus was investigated. METHODS Neonatal rats to perform a repetitive injury model and glucose intervention model in the postnatal day 0-7(P0-7). Pain thresholds were measured by von Frey test weekly. The puberty behavioral outcome, tissue loss and protein expression in hippocampus were analyzed. RESULTS Oral administration of glucose after repeated pain stimulation can maintain the hippocampal structure in, and reduce the expressions of corticotropin releasing factor (CFR) and glucocorticoid receptor (GR), therefore, resulted in long-term threshold of pain and cognitive improvement. CONCLUSION Exposure to neonatal repeated procedural pain causes persistent mechanical hypersensitivity and the dysfunction of spatial memory retention at puberty. In addition, glucose can relieve these adverse effects, possibly via decreasing CRF/GR levels to change the hypothalamus-pituitary-adrenal (HPA) axis.
Collapse
Affiliation(s)
- Jing Xu
- Department of Neonatology, The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, Liaoning, China
| | - Jin Jie
- Department of Neonatology, The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, Liaoning, China
| | - Chunyang Feng
- Department of Neonatology, The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, Liaoning, China
| | - Qianyi Sun
- Department of Biochemistry and Molecular Biology, Dalian Medical University, 116044, Dalian, Liaoning, China
| | - Jianhui Fan
- Department of Biochemistry and Molecular Biology, Dalian Medical University, 116044, Dalian, Liaoning, China.
| | - Dong Li
- Department of Neonatology, The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, Liaoning, China.
| |
Collapse
|
3
|
Lin S, Jiang L, Wei K, Yang J, Cao X, Li C. Sex-Specific Association of Body Mass Index with Hippocampal Subfield Volume and Cognitive Function in Non-Demented Chinese Older Adults. Brain Sci 2024; 14:170. [PMID: 38391744 PMCID: PMC10887390 DOI: 10.3390/brainsci14020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
Recent research suggests a possible association between midlife obesity and an increased risk of dementia in later life. However, the underlying mechanisms remain unclear. Little is known about the relationship between body mass index (BMI) and hippocampal subfield atrophy. In this study, we aimed to explore the associations between BMI and hippocampal subfield volumes and cognitive function in non-demented Chinese older adults. Hippocampal volumes were assessed using structural magnetic resonance imaging. Cognitive function was evaluated using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). A total of 66 participants were included in the final analysis, with 35 females and 31 males. We observed a significant correlation between BMI and the hippocampal fissure volume in older females. In addition, there was a negative association between BMI and the RBANS total scale score, the coding score, and the story recall score, whereas no significant correlations were observed in older males. In conclusion, our findings revealed sex-specific associations between BMI and hippocampal subfield volumes and cognitive performance, providing valuable insights into the development of effective interventions for the early prevention of cognitive decline.
Collapse
Affiliation(s)
- Shaohui Lin
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Department of Geriatrics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Lijuan Jiang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Kai Wei
- Department of Traditional Chinese Medicine, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, China
- Shanghai Institute of Traditional Chinese Medicine for Mental Health, Shanghai 201108, China
| | - Junjie Yang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xinyi Cao
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Clinical Neurocognitive Research Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai 200030, China
- CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences, Shanghai 200030, China
| |
Collapse
|
4
|
Wan M, Xia R, Lin H, Ye Y, Qiu P, Zheng G. Baduanjin exercise modulates the hippocampal subregion structure in community-dwelling older adults with cognitive frailty. Front Aging Neurosci 2022; 14:956273. [PMID: 36600804 PMCID: PMC9806122 DOI: 10.3389/fnagi.2022.956273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Background Regular Baduanjin exercise intervention was proven to be beneficial in improving the cognitive ability and physical performance of older adults with different health conditions but was unclear to influence the structural plasticity of the hippocampus. This study aimed to explore the modulation of hippocampal subregions as a mechanism by which Baduanjin exercise improves cognitive frailty in older adults. Methods A total of 102 community-dwelling older adults with cognitive frailty were recruited and randomly allocated to the Baduanjin exercise training group and usual physical activity control group. The participants in the Baduanjin exercise training group participated in a 24-week Baduanjin exercise intervention program with an exercise frequency of 60 min per day, 3 days per week. Cognitive ability and physical frailty were assessed, and MRI scans were performed on all participants at baseline and after 24 weeks of intervention. The structural MRI data were processed with MRIConvert (version 2.0 Rev. 235) and FreeSurfer (version 6.0.0) software. Data analyses were performed using the independent sample t tests/Mann-Whitney U tests with the Bonferroni correction, mixed linear model, correlation, or mediation analysis by the SPSS 24.0 software (IBM Corp, Armonk, NY, United States). Results After 24 weeks of intervention, a statistically significant increase was found for the Montreal Cognitive Assessment (MoCA) scores (p = 0.002) with a large effect size (Cohen's d = 0.94) and the significant interaction effect (P goup × time < 0.05), Memory Quotient (MQ) scores (p = 0.019) with a medium effect size (Cohen's d = 0.688) and the significant interaction effect (P goup × time < 0.05), and other parameters of WMS-RC test including pictures (p = 0.042), recognition (p = 0.017), and association (p = 0.045) test with a medium effect size (Cohens' d = 0.592, 0.703, and 0.581) for the Baduanjin training group, while significant decrease for the Edmonton Frailty Scale (EFS) score (p = 0.022), with a medium effect size (Cohen's d = -0.659) and the significant interaction effect (P goup × time < 0.05) for the Baduanjin training group. The differences in the left parasubiculum, Hippocampal Amygdala Transition Area (HATA), right Cornu Ammonis Subfield 1 (CA1) and presubiculum volumes from baseline to 24 weeks after intervention in the Baduanjin training group were significantly greater than those in the control group (p < 0.05/12). Further analysis showed that the changes in right CA1 volume were positively correlated with the changes in MoCA and MQ scores (r = 0.510, p = 0.015; r = 0.484, p = 0.022;), the changes in right presubiculum and left parasubiculum volumes were positively correlated with the changes in MQ (r = 0.435, p = 0.043) and picture test scores (r = 0.509, p = 0.016), respectively, and the changes in left parasubiculum and HATA volumes were negatively correlated with the changes in EFS scores (r = -0.534, p = 0.011; r = -0.575, p = 0.005) in the Baduanjin training group, even after adjusting for age, sex, years of education and marital status; furthermore, the volume changes in left parasubiculum and left HATA significantly mediated the Baduanjin exercise training-induced decrease in the EFS scores (β = 0.376, 95% CI 0.024 ~ 0.947; β = 0.484, 95% CI 0.091 ~ 0.995); the changes of left parasubiculum and right CA1 significantly mediated the Baduanjin exercise training-induced increase in the picture and MO scores (β = -0.83, 95% CI-1.95 ~ -0.002; β = -2.44, 95% CI-5.99 ~ -0.32). Conclusion A 24-week Baduanjin exercise intervention effectively improved cognitive ability and reduced physical frailty in community-dwelling older adults with cognitive frailty, and the mechanism might be associated with modulating the structural plasticity of the hippocampal subregion.
Collapse
Affiliation(s)
- Mingyue Wan
- School of Rehabilitation Sciences, Southern Medical University, Guangzhou, China,College of Nursing and Health Management, Shanghai University of Medicine and Health Sciences, Shanghai, China,College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Rui Xia
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China,Department of Rehabilitation, Shenzhen Bao ‘an District People’s Hospital, Shenzhen, China
| | - Huiying Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yu Ye
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Pingting Qiu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Guohua Zheng
- College of Nursing and Health Management, Shanghai University of Medicine and Health Sciences, Shanghai, China,*Correspondence: Guohua Zheng,
| |
Collapse
|
5
|
Baragi VM, Gattu R, Trifan G, Woodard JL, Meyers K, Halstead TS, Hipple E, Haacke EM, Benson RR. Neuroimaging Markers for Determining Former American Football Players at Risk for Alzheimer's Disease. Neurotrauma Rep 2022; 3:398-414. [PMID: 36204386 PMCID: PMC9531889 DOI: 10.1089/neur.2022.0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
NFL players, by virtue of their exposure to traumatic brain injury (TBI), are at higher risk of developing dementia and Alzheimer's disease (AD) than the general population. Early recognition and intervention before the onset of clinical symptoms could potentially avert/delay the long-term consequences of these diseases. Given that AD is thought to have a long pre-clinical incubation period, the aim of the current research was to determine whether former NFL players show evidence of incipient dementia in their structural imaging before diagnosis of AD. To identify neuroimaging markers of AD, against which former NFL players would be compared, we conducted a whole-brain volumetric analysis using a cohort of AD patients (ADNI clinical database) to produce a set of brain regions demonstrating sensitivity to early AD pathology (i.e., the “AD fingerprint”). A group of 46 former NFL players' brain magnetic resonance images were then interrogated using the AD fingerprint, that is, the former NFL subjects were compared volumetrically to AD patients using a T1-weighted magnetization-prepared rapid gradient echo sequence. The FreeSurfer image analysis suite (version 6.0) was used to obtain volumetric and cortical thickness data. The Automated Neuropsychological Assessment Metric-Version 4 was used to assess current cognitive functioning. A total of 55 brain regions demonstrated significant atrophy or ex vacuo dilatation bilaterally in AD patients versus controls. Of the 46 former NFL players, 41% demonstrated a greater than expected number of atrophied/dilated AD regions compared with age-matched controls, presumably reflecting AD pathology.
Collapse
Affiliation(s)
| | - Ramtilak Gattu
- Center for Neurological Studies, Dearborn, Michigan, USA
| | | | | | | | | | | | - Ewart Mark Haacke
- HUH-MR Research/Radiology, Wayne State University/Detroit Receiving Hospital, Detroit, Michigan, USA
| | | |
Collapse
|
6
|
Hippocampal Subfield Volumes in Major Depressive Disorder Adolescents with a History of Suicide Attempt. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5524846. [PMID: 33954172 PMCID: PMC8057893 DOI: 10.1155/2021/5524846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/23/2021] [Accepted: 04/05/2021] [Indexed: 12/03/2022]
Abstract
Suicidal behavior is a leading cause of death and often commences during adolescence/young adulthood (15~29 years old). The hippocampus, which consists of multiple functionally specialized subfields, may contribute to the pathophysiology of depression and suicidal behavior. We aimed to investigate the differences of hippocampal subfield volume between major depressive disorder (MDD) patients with and without suicide attempts and healthy controls in adolescents and young adults. A total of 40 MDD suicide attempters (MDD+SA), 27 MDD patients without suicide attempt (MDD-SA), and 37 healthy controls (HC) were recruited. High-resolution T1 MRI images were analyzed with the automated hippocampal substructure module in FreeSurfer 6.0. Volume differences among the groups were analyzed by a generalized linear model controlling for intracranial cavity volume (ICV). The relationship between hippocampal subfield volumes and clinical characteristics (HAM-D and SSI scores) was assessed using two-tailed partial correlation controlling for ICV in MDD+SA and MDD-SA. We found that MDD-SA had significantly smaller bilateral hippocampal fissure volume than HC and MDD+SA. No significant correlation was observed between hippocampal subfield volume and clinical characteristics (HAM-D and SSI scores) in MDD+SA and MDD-SA. Adolescent/young adult suicide attempters with MDD suicide attempters have larger bilateral hippocampal fissures than depressed patients without suicide attempts, independently from clinical characteristics. Within the heterogeneous syndrome of major depressive disorder that holds a risk for suicidality for subgroups, hippocampal morphology may help to explain or possibly predict such risk, yet longitudinal and functional studies are needed for understanding the biological mechanisms underlying.
Collapse
|
7
|
Wen M, Zhao Y, Shi H, Wang C, Zhang T, Wang Y, Xue C. Short-term supplementation of DHA as phospholipids rather than triglycerides improve cognitive deficits induced by maternal omega-3 PUFA deficiency during the late postnatal stage. Food Funct 2021; 12:564-572. [PMID: 33325958 DOI: 10.1039/d0fo02552f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cognitive deficiencies, which are caused by maternal omega-3 PUFA deficiency (O-3 Def), are likely to be more rapidly and easily reversed at younger ages with quicker DHA reversal. This study aims to compare the efficiency of short-term supplementation of DHA in the form of phospholipids (PL) and triglycerides (TG) and improve cognitive deficiency in the O-3 Def model during different periods of brain development (3-week and 7-week old). The animal's spatial task performance, brain PUFA concentration, histopathology, and expression of synapse-associated proteins in the hippocampus were then analyzed. We demonstrate here that DHA-PL shows improved efficiency in improving cognitive deficiency compared to DHA-TG, particularly for adult O-3 Def offspring. The superiority of DHA-PL also correlates with the specific elevation of synapse-associated proteins, including BDNF, DCX, GAP-43, Syn, and PSD95, except to higher brain DHA accretion. This work highlights the DHA-PL as a better DHA supplement for inferior brain development caused by maternal O-3 Def, especially regarding those who missed the optimal time window of neurodevelopment.
Collapse
Affiliation(s)
- Min Wen
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, P.R. China
| | | | | | | | | | | | | |
Collapse
|
8
|
Trujillo-Villarreal LA, Romero-Díaz VJ, Marino-Martínez IA, Fuentes-Mera L, Ponce-Camacho MA, Devenyi GA, Mallar Chakravarty M, Camacho-Morales A, Garza-Villarreal EE. Maternal cafeteria diet exposure primes depression-like behavior in the offspring evoking lower brain volume related to changes in synaptic terminals and gliosis. Transl Psychiatry 2021; 11:53. [PMID: 33446642 PMCID: PMC7809040 DOI: 10.1038/s41398-020-01157-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Maternal nutritional programming by caloric exposure during pregnancy and lactation results in long-term behavioral modification in the offspring. Here, we characterized the effect of maternal caloric exposure on synaptic and brain morphological organization and its effects on depression-like behavior susceptibility in rats' offspring. Female Wistar rats were exposed to chow or cafeteria (CAF) diet for 9 weeks (pre-pregnancy, pregnancy, and lactation) and then switched to chow diet after weaning. By postnatal day 60, the male Wistar rat offspring were tested for depressive-like behavior using operational conditioning, novelty suppressed feeding, sucrose preference, and open-field test. Brain macro and microstructural morphology were analyzed using magnetic resonance imaging deformation-based morphometry (DBM) and western blot, immunohistochemistry for NMDA and AMPA receptor, synaptophysin and myelin, respectively. We found that the offspring of mothers exposed to CAF diet displayed deficient motivation showing decrease in the operant conditioning, sucrose preference, and suppressed feeding test. Macrostructural DBM analysis showed reduction in the frontomesocorticolimbic circuit volume including the nucleus accumbens (NAc), hippocampus, and prefrontal cortex. Microstructural analysis revealed reduced synaptic terminals in hippocampus and NAc, whereas increased glial fibrillary acidic protein in hippocampus and lateral hypothalamus, as well as a decrease in the hippocampal cell number and myelin reduction in the dentate gyrus and hilus, respectively. Also, offspring exhibited increase of the GluR1 and GLUR2 subunits of AMPA receptor, whereas a decrease in the mGluR2 expression in hippocampus. Our findings reveal that maternal programming might prime depression-like behavior in the offspring by modulating macro and micro brain organization of the frontomesocorticolimbic circuit.
Collapse
Affiliation(s)
- Luis A Trujillo-Villarreal
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, México
- Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, México
| | - Viktor J Romero-Díaz
- Gene therapy Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, México
| | - Iván Alberto Marino-Martínez
- Gene therapy Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, México
| | - Lizeth Fuentes-Mera
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, México
| | - Marco Antonio Ponce-Camacho
- Servicio de Anatomía Patológica y Citopatología. Hospital Universitario Dr José Eleuterio González, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, México
| | - Gabriel A Devenyi
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Department of Biological and Biomedical Engineering, McGill University, Montreal, Canada
| | - Alberto Camacho-Morales
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, México.
- Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, México.
| | - Eduardo E Garza-Villarreal
- Instituto de Neurobiología, Universidad Nacional Autónoma de México campus Juriquilla, Queretaro, Mexico.
| |
Collapse
|
9
|
d'Arbeloff T, Cooke M, Knodt AR, Sison M, Melzer TR, Ireland D, Poulton R, Ramrakha S, Moffitt TE, Caspi A, Hariri AR. Is cardiovascular fitness associated with structural brain integrity in midlife? Evidence from a population-representative birth cohort study. Aging (Albany NY) 2020; 12:20888-20914. [PMID: 33082296 PMCID: PMC7655208 DOI: 10.18632/aging.104112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/09/2020] [Indexed: 12/31/2022]
Abstract
Improving cardiovascular fitness may buffer against age-related cognitive decline and mitigate dementia risk by staving off brain atrophy. However, it is unclear if such effects reflect factors operating in childhood (neuroselection) or adulthood (neuroprotection). Using data from 807 members of the Dunedin Study, a population-representative birth cohort, we investigated associations between cardiovascular fitness and structural brain integrity at age 45, and the extent to which associations reflected possible neuroselection or neuroprotection by controlling for childhood IQ. Higher fitness, as indexed by VO2Max, was not associated with average cortical thickness, total surface area, or subcortical gray matter volume including the hippocampus. However, higher fitness was associated with thicker cortex in prefrontal and temporal regions as well as greater cerebellar gray matter volume. Higher fitness was also associated with decreased hippocampal fissure volume. These associations were unaffected by the inclusion of childhood IQ in analyses. In contrast, a higher rate of decline in cardiovascular fitness from 26 to 45 years was not robustly associated with structural brain integrity. Our findings are consistent with a neuroprotective account of adult cardiovascular fitness but suggest that effects are not uniformly observed across the brain and reflect contemporaneous fitness more so than decline over time.
Collapse
Affiliation(s)
- Tracy d'Arbeloff
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Megan Cooke
- Center for Addiction Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Annchen R Knodt
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Maria Sison
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Tracy R Melzer
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - David Ireland
- Dunedin Multidisciplinary Health and Development Research Unit, Department of Psychology, University of Otago, Dunedin, NZ
| | - Richie Poulton
- Dunedin Multidisciplinary Health and Development Research Unit, Department of Psychology, University of Otago, Dunedin, NZ
| | - Sandhya Ramrakha
- Dunedin Multidisciplinary Health and Development Research Unit, Department of Psychology, University of Otago, Dunedin, NZ
| | - Terrie E Moffitt
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
- Social, Genetic, and Developmental Psychiatry Research Centre, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, De Crespigny Park, Denmark Hill, London, UK
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC 27708, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - Avshalom Caspi
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
- Social, Genetic, and Developmental Psychiatry Research Centre, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, De Crespigny Park, Denmark Hill, London, UK
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC 27708, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - Ahmad R Hariri
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| |
Collapse
|
10
|
d'Arbeloff T. Cardiovascular fitness and structural brain integrity: an update on current evidence. GeroScience 2020; 42:1285-1306. [PMID: 32767221 PMCID: PMC7525918 DOI: 10.1007/s11357-020-00244-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023] Open
Abstract
An aging global population and accompanying increases in the prevalence of age-related disorders are leading to greater financial, social, and health burdens. Aging-related dementias are one such category of age-related disorders that are associated with progressive loss of physical and cognitive integrity. One proposed preventative measure against risk of aging-related dementia is improving cardiovascular fitness, which may help reverse or buffer age-related brain atrophy associated with worse aging-related outcomes and cognitive decline. However, research into the beneficial potential of cardiovascular fitness has suffered from extreme heterogeneity in study design methodology leading to a lack of cohesion in the field and undermining any potential causal evidence that may exist. In addition, cardiovascular fitness and exercise are often conflated, leading to a lack of clarity in results. Here, I review recent literature on cardiovascular fitness, brain structure, and aging with the following goals: (a) to disentangle and lay out recent findings specific to aging, cardiovascular fitness, and brain structure, and (b) to ascertain the extent to which causal evidence actually exists. I suggest that, while there is some preliminary evidence for a link between cardiovascular fitness and brain structure in older adults, more research is still needed before definitive causal conclusions can be drawn. I conclude with a discussion of existing gaps in the field and suggestions for how they may be addressed by future research.
Collapse
Affiliation(s)
- Tracy d'Arbeloff
- Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
11
|
Olescowicz G, Sampaio TB, de Paula Nascimento-Castro C, Brocardo PS, Gil-Mohapel J, Rodrigues ALS. Protective Effects of Agmatine Against Corticosterone-Induced Impairment on Hippocampal mTOR Signaling and Cell Death. Neurotox Res 2020; 38:319-329. [DOI: 10.1007/s12640-020-00212-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 04/06/2020] [Accepted: 04/22/2020] [Indexed: 12/23/2022]
|
12
|
Li H, Sun D, Lu D, Zhang J, Zeng J. Low Hippocampal Dentate Gyrus Volume Associated With Hypertension-Related Cognitive Impairment. Am J Alzheimers Dis Other Demen 2020; 35:1533317520949782. [PMID: 33043683 PMCID: PMC10624078 DOI: 10.1177/1533317520949782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hypertension increases the risk of cognitive impairment independent of detectable stroke or cerebral lesions. However, the principal pathophysiological basis of this increase has not been fully elucidated. The present study investigates the relationships among blood pressure, hippocampal subfields volume, and cognitive function in a relatively young non-stroke population. A total of 59 non-stroke non-dementia subjects (mean age, 57.2 ± 4.9 years) were enrolled. All subjects were subjected to complete assessment of vascular risk factors including 24-hour blood pressure monitoring, various neuropsychological tests, and 3D-T1 MR scan. Freesurfer V6.0 was used for segmentation of hippocampal subfields. Our analyses revealed that both 24-hour and daytime mean systolic blood pressure (SBP) were significantly associated with the low volume of the left DG. Higher coefficient of variation (CV) of daytime SBP was significantly associated with lower volume of the left Cornu Ammonis 4 and dentate gyrus (DG) region. Both higher CV of 24-hour mean SBP and daytime SBP were significantly associated with lower performance in both executive and linguistic function. The low volume of the left DG was significantly associated with the low performance in linguistic function. Our findings support that reduced DG volume and increased SBP variability associated with hypertension-related cognitive impairment.
Collapse
Affiliation(s)
- Huagang Li
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dong Sun
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dongwei Lu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junjian Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junjie Zeng
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Li Y, Qin J, Yan J, Zhang N, Xu Y, Zhu Y, Sheng L, Zhu X, Ju S. Differences of physical vs. psychological stress: evidences from glucocorticoid receptor expression, hippocampal subfields injury, and behavioral abnormalities. Brain Imaging Behav 2019; 13:1780-1788. [PMID: 30229371 DOI: 10.1007/s11682-018-9956-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The glucocorticoid receptor (GR) is the main effector of the activation of the hypothalamus-pituitary-adrenal (HPA) axis, which is caused by different types of stress that can be divided into two major categories: physical stress and psychological stress. Given the marked presence of GR in the hippocampus, GR-mediated hippocampal injury might be the core event under stress. The aim of this study was to investigate GR expression, hippocampal injury, and behaviors in rats to explore the differences between these types of stressors. Adult male rats were stressed using a classical model (electrical foot shock and a yoked psychologically stressful situation) to induce physical or psychological stress. The GR expression, injury of hippocampal subfields and behavioral abnormalities were dynamic, as demonstrated using immunofluorescence, 3D magnetic resonance imaging (MRI) and open field exploration (OFE), respectively. In addition, housing in a normal environment for 6 weeks was used to verify the recovery ability of rats. First, GR-mediated hippocampal atrophy and behavioral abnormalities were found in the second week under physical stress, but those changes did not appear until the fourth week under psychological stress. Second, the effects of stress were more pronounced after physical stressors than after psychological stressors in the fourth week, but this trend had reversed by the sixth week, especially in the DG (Dentate Gyrus) subfield. Except for the rats that had experienced 6 weeks of psychological stress, all rats showed significant recovery after 6 weeks of housing in a normal environment. The effects of physical stress appeared early but were relatively moderate, whereas the effects of psychological stress appeared late but were more severe. In addition, GR-mediated serious injury in the DG might be the cause of the DG volume loss and behaviors that could not be reversed.
Collapse
Affiliation(s)
- Yuefeng Li
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Radiology, Zhongda Affiliated Hospital of Southeast University, No.87, Dingjiaqiao Road, Nanjing, 210009, Jiangsu Province, China
| | - Jiasheng Qin
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jinchuan Yan
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ningning Zhang
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yuhao Xu
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yan Zhu
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Liangju Sheng
- Medical College, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaolan Zhu
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, No.20, Zhengdong Road, Zhenjiang, 212001, Jiangsu Province, China.
| | - Shenghong Ju
- Department of Radiology, Zhongda Affiliated Hospital of Southeast University, No.87, Dingjiaqiao Road, Nanjing, 210009, Jiangsu Province, China.
| |
Collapse
|
14
|
Xie W, Meng X, Zhai Y, Ye T, Zhou P, Nan F, Sun G, Sun X. Antidepressant-like effects of the Guanxin Danshen formula via mediation of the CaMK II-CREB-BDNF signalling pathway in chronic unpredictable mild stress-induced depressive rats. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:564. [PMID: 31807545 DOI: 10.21037/atm.2019.09.39] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Depression is a chronic and recurrent syndrome of mood disorder causing immense social and economic burden; thus, treatment should be improved. Guanxin Danshen formula (GXDSF), a natural botanical drug composition prescription, has significant cardiovascular protective effects and is widely used in the clinical treatment of myocardial ischaemic diseases. However, it is still unclear and seldom studied whether GXDSF has neuroprotective effects against depressive disorders. This study explored whether GXDSF has antidepressant-like effects in rats exposed to chronic unpredictable mild stress (CUMS) and analysed the possible underlying neurotrophic expression and psychotropic mechanisms. Methods The present study was designed to investigate the antidepressant effects of GXDSF treatment in a CUMS-induced rat model. Based on the clinical doses, the drug-treated group was intragastrically administered GXDSF for 30 days, and rats were simultaneously exposed to CUMS stimulation for 30 days. After induction and drug administration, the depression-like behaviours were determined via the sucrose preference test (SPT), the open field test (OFT), the tail suspension test (TST), and the forced swim test (FST). ELISA kits were used to examine the monoaminergic neurotransmitters, monoamine oxidase (MAO) and Ca2+ levels in the hippocampus. Moreover, we measured and analysed the brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) levels and the upstream regulation and signal pathways of BDNF and NGF to explore their related mechanisms in this animal model of depression, including calcium-calmodulin dependent protein kinase-II (CaMKII) and cAMP response element-binding (CREB). Results The results revealed that GXDSF may possess significant antidepressant-like effects via improving body weight, raising the sucrose preference in the SPT, increasing the total distance, the number of upright stands, and the residence time of the central zone in the open field test (OPF) and reducing the immobility time in the TST and FST. In addition, GXDSF significantly upregulated the relative levels of neurotransmitters, including dopamine (DA), norepinephrine (NE), and serotonin (5-HT), in a dose-dependent manner and inhibited MAO activities in the hippocampus. Moreover, GXDSF reversed the decline in intracellular CREB and p-CREB expression induced by CUMS, downregulated the phosphorylation levels of intracellular CaMKII and its two subunits CaMKIIα and CaMKIIβ in the hippocampus, and thus, clearly upregulated the downstream effector protein expression levels of BDNF, NGF, and synitaxine-1 in the hippocampus. These data suggest that the antidepressant effects of GXDSF have a potential relationship with regulating changes in the CaMKII-CREB-BDNF pathway. Conclusions Despite several limitations of this study, the results have suggested that GXDSF administration possesses antidepressant-like effects in CUMS-treated rats and provide the first in vivo demonstration of a possible mechanism of GXDSF via regulating changes in the CaMKII-CREB-BDNF signalling pathway. These findings provide a novel potential substrate by which herbal antidepressants may exert therapeutic effects in the treatment of depression.
Collapse
Affiliation(s)
- Weijie Xie
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China
| | - Xiangbao Meng
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China
| | - Yadong Zhai
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China
| | - Tianyuan Ye
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China
| | - Ping Zhou
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China
| | - Fengwei Nan
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China
| |
Collapse
|
15
|
Kraus C, Seiger R, Pfabigan DM, Sladky R, Tik M, Paul K, Woletz M, Gryglewski G, Vanicek T, Komorowski A, Kasper S, Lamm C, Windischberger C, Lanzenberger R. Hippocampal Subfields in Acute and Remitted Depression-an Ultra-High Field Magnetic Resonance Imaging Study. Int J Neuropsychopharmacol 2019; 22:513-522. [PMID: 31175352 PMCID: PMC6672627 DOI: 10.1093/ijnp/pyz030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/29/2019] [Accepted: 06/05/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Studies investigating hippocampal volume changes after treatment with serotonergic antidepressants in patients with major depressive disorder yielded inconsistent results, and effects on hippocampal subfields are unclear. METHODS To detail treatment effects on total hippocampal and subfield volumes, we conducted an open-label study with escitalopram followed by venlafaxine upon nonresponse in 20 unmedicated patients with major depressive disorder. Before and after 12 weeks treatment, we measured total hippocampal formation volumes and subfield volumes with ultra-high field (7 Tesla), T1-weighted, structural magnetic resonance imaging, and FreeSurfer. Twenty-eight remitted patients and 22 healthy subjects were included as controls. We hypothesized to detect increased volumes after treatment in major depressive disorder. RESULTS We did not detect treatment-related changes of total hippocampal or subfield volumes in patients with major depressive disorder. Secondary results indicated that the control group of untreated, stable remitted patients, compared with healthy controls, had larger volumes of the right hippocampal-amygdaloid transition area and right fissure at both measurement time points. Depressed patients exhibited larger volumes of the right subiculum compared with healthy controls at MRI-2. Exploratory data analyses indicated lower baseline volumes in the subgroup of remitting (n = 10) vs nonremitting (n = 10) acute patients. CONCLUSIONS The results demonstrate that monoaminergic antidepressant treatment in major depressive disorder patients was not associated with volume changes in hippocampal subfields. Studies with larger sample sizes to detect smaller effects as well as other imaging modalities are needed to further assess the impact of antidepressant treatment on hippocampal subfields.
Collapse
Affiliation(s)
- Christoph Kraus
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Rene Seiger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Daniela M Pfabigan
- Department of Basic Psychological Research and Research Methods, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Ronald Sladky
- Department of Basic Psychological Research and Research Methods, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Martin Tik
- MR Centre of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - Katharina Paul
- Department of Basic Psychological Research and Research Methods, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Michael Woletz
- MR Centre of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - Gregor Gryglewski
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Thomas Vanicek
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Arkadiusz Komorowski
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Claus Lamm
- Department of Basic Psychological Research and Research Methods, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Christian Windischberger
- MR Centre of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| |
Collapse
|
16
|
Abnormal hippocampal subfields are associated with cognitive impairment in Essential Tremor. J Neural Transm (Vienna) 2019; 126:597-606. [PMID: 30888510 DOI: 10.1007/s00702-019-01992-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/11/2019] [Indexed: 01/14/2023]
Abstract
Multi-domain cognitive impairment (CI) has been frequently described in patients with essential tremor (ET). However, the exact neuroanatomical basis for this impairment is uncertain. This study aims to ascertain the role of the hippocampal formation in cognitive impairment in ET. Forty patients with ET and 40 age, gender and education matched healthy controls (HC) were enrolled. Cognition was assessed using a structured neuropsychological battery and patients were categorized as ET with CI (ETCI) and ET without CI (ETNCI). Automatic segmentation of hippocampal subfields was performed using FreeSurfer 6.0. The obtained volumes were correlated with scores of neuropsychological tests. Significant atrophy of the left subiculum, CA4, granule-cell layer of dentate gyrus, right molecular layer, and hypertrophy of bilateral parasubiculum, right hippocampus-amygdala-transition-area, bilateral hippocampal tail (HT) and widening of right hippocampal fissure was observed in ET. Trends toward atrophy of right subiculum, and widening of left HF was also observed. Comparison of HC and ETCI revealed atrophy of right subiculum, hypertrophy of bilateral parasubiculum, HT, and widening of left HF. ETCI showed a trend toward widening of right HF. ETNCI had isolated left parasubicular hypertrophy and in comparison, to ETNCI the ETCI subgroup had atrophy of bilateral fimbria. Significant correlations were observed between the volumes of HT, HF, fimbria and scores of tests for executive function, working and verbal memory. Patients with ET have significant volumetric abnormalities of several hippocampal subfields and these abnormalities may be important contributors for some forms of cognitive impairment observed in ET.
Collapse
|
17
|
Hippocampal subfield atrophy in patients with Parkinson’s disease and psychosis. J Neural Transm (Vienna) 2018; 125:1361-1372. [DOI: 10.1007/s00702-018-1891-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/28/2018] [Indexed: 12/20/2022]
|