1
|
Wang J, Zhang W, Xu H, Ellenbroek B, Dai J, Wang L, Yan C, Wang W. The Changes of Histone Methylation Induced by Adolescent Social Stress Regulate the Resting-State Activity in mPFC. RESEARCH (WASHINGTON, D.C.) 2023; 6:0264. [PMID: 38434244 PMCID: PMC10907022 DOI: 10.34133/research.0264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/15/2023] [Indexed: 03/05/2024]
Abstract
Early-life stress can lead to sustained alterations in regional resting-state brain functions, but the underlying molecular mechanism remains unclear. Stress can also induce sustained changes in epigenetic modifications across brain regions, which are not limited to a few genes; rather, they often tend to produce global levels of change. The functional implication of these changes also remains to be elucidated. We hypothesize that global epigenetic changes may partly modulate the resting-state functions of brain regions to influence behavior. To test this hypothesis, we used an adolescent social stress (ASS) model in mice and examined the relationship between epigenetic modifications and regional resting-state brain activity using resting-state functional magnetic resonance imaging (rs-fMRI). The results showed that, compared to the control mice, the stressed mice showed increased anxiety and social avoidance behaviors and greater levels of dimethylation of histone H3 at lysine 9 (H3K9me2) in the medial prefrontal cortex (mPFC). In addition, the resting-state activity represented by the amplitude of low-frequency fluctuation (ALFF) was significantly lower in the mPFC of stressed mice. To verify the relationship of H3K9me2 and ALFF, the specific inhibition of H3Kme2 was performed by using the drug UNC0642, which reversed the anxiety behavior induced by ASS and significantly increase the ALFF value of mPFC in both normal and ASS animals. Our study is the first to report an association between histone modifications and rs-fMRI findings, providing a new perspective for understanding of the significance of regional brain epigenetic changes and a possible molecular explanation for rs-fMRI findings.
Collapse
Affiliation(s)
- Jiesi Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Wei Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Hang Xu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Bart Ellenbroek
- School of Psychology, Victoria University of Wellington, Kelburn, Wellington 6012, New Zealand
| | - Jiajie Dai
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Li Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Chaogan Yan
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Weiwen Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Singh S, Topolnik L. Inhibitory circuits in fear memory and fear-related disorders. Front Neural Circuits 2023; 17:1122314. [PMID: 37035504 PMCID: PMC10076544 DOI: 10.3389/fncir.2023.1122314] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/17/2023] [Indexed: 04/11/2023] Open
Abstract
Fear learning and memory rely on dynamic interactions between the excitatory and inhibitory neuronal populations that make up the prefrontal cortical, amygdala, and hippocampal circuits. Whereas inhibition of excitatory principal cells (PCs) by GABAergic neurons restrains their excitation, inhibition of GABAergic neurons promotes the excitation of PCs through a process called disinhibition. Specifically, GABAergic interneurons that express parvalbumin (PV+) and somatostatin (SOM+) provide inhibition to different subcellular domains of PCs, whereas those that express the vasoactive intestinal polypeptide (VIP+) facilitate disinhibition of PCs by inhibiting PV+ and SOM+ interneurons. Importantly, although the main connectivity motifs and the underlying network functions of PV+, SOM+, and VIP+ interneurons are replicated across cortical and limbic areas, these inhibitory populations play region-specific roles in fear learning and memory. Here, we provide an overview of the fear processing in the amygdala, hippocampus, and prefrontal cortex based on the evidence obtained in human and animal studies. Moreover, focusing on recent findings obtained using genetically defined imaging and intervention strategies, we discuss the population-specific functions of PV+, SOM+, and VIP+ interneurons in fear circuits. Last, we review current insights that integrate the region-specific inhibitory and disinhibitory network patterns into fear memory acquisition and fear-related disorders.
Collapse
Affiliation(s)
- Sanjay Singh
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Quebec City, QC, Canada
- Neuroscience Axis, CRCHUQ, Laval University, Quebec City, QC, Canada
| | - Lisa Topolnik
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Quebec City, QC, Canada
- Neuroscience Axis, CRCHUQ, Laval University, Quebec City, QC, Canada
- *Correspondence: Lisa Topolnik
| |
Collapse
|
3
|
Long non-coding RNA LINC00926 regulates WNT10B signaling pathway thereby altering inflammatory gene expression in PTSD. Transl Psychiatry 2022; 12:200. [PMID: 35551428 PMCID: PMC9098154 DOI: 10.1038/s41398-022-01971-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 11/29/2022] Open
Abstract
Post-traumatic stress disorder (PTSD), which frequently occurs in the aftermath of a psychologically traumatic event is characterized by heightened inflammation. People with PTSD also suffer from a number of comorbid clinical and behavioral disorders that are related to chronic inflammation. Thus, understanding the mechanisms of enhanced inflammation in PTSD can provide insights into the relationship between PTSD and associated comorbid disorders. In the current study, we investigated the role of large intervening non-coding RNAs (lincRNAs) in the regulation of inflammation in people diagnosed with PTSD. We observed that WNT ligand, WNT10B, was upregulated in the peripheral blood mononuclear cells (PBMCs) of PTSD patients. This observation was associated with higher H3K4me3 signals around WNT10B promotor in PTSD patients compared to those without PTSD. Increased H3K4me3 resulted from LINC00926, which we found to be upregulated in the PTSD sample, bringing in histone methyltransferase, MLL1, onto WNT10B promotor leading to the introduction of H3K4 trimethylation. The addition of recombinant human WNT10B to pre-activated peripheral blood mononuclear cells (PBMCs) led to increased expression of inflammatory genes such as IFNG and IL17A, suggesting that WNT10B is involved in their upregulation. Together, our data suggested that LINC00926 interacts physically with MLL1 and thereby controls the expression of IFNG and IL17A. This is the first time a long non-coding RNA is shown to regulate the expression of WNT10B and consequently inflammation. This observation has high relevance to our understanding of disease mechanisms of PTSD and comorbidities associated with PTSD.
Collapse
|
4
|
Qin C, Bian XL, Wu HY, Xian JY, Lin YH, Cai CY, Zhou Y, Kou XL, Li TY, Chang L, Luo CX, Zhu DY. Prevention of the return of extinguished fear by disrupting the interaction of neuronal nitric oxide synthase with its carboxy-terminal PDZ ligand. Mol Psychiatry 2021; 26:6506-6519. [PMID: 33931732 DOI: 10.1038/s41380-021-01118-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 04/13/2021] [Indexed: 02/03/2023]
Abstract
Exposure therapy based on the extinction of fear memory is first-line treatment for post-traumatic stress disorder (PTSD). However, fear extinction is relatively easy to learn but difficult to remember, extinguished fear often relapses under a number of circumstances. Here, we report that extinction learning-induced association of neuronal nitric oxide synthase (nNOS) with its carboxy-terminal PDZ ligand (CAPON) in the infralimbic (IL) subregion of medial prefrontal cortex negatively regulates extinction memory and dissociating nNOS-CAPON can prevent the return of extinguished fear in mice. Extinction training significantly increases nNOS-CAPON association in the IL. Disruptors of nNOS-CAPON increase extracellular signal-regulated kinase (ERK) phosphorylation and facilitate the retention of extinction memory in an ERK2-dependent manner. More importantly, dissociating nNOS-CAPON after extinction training enhances long-term potentiation and excitatory synaptic transmission, increases spine density in the IL, and prevents spontaneous recovery, renewal and reinstatement of remote fear of mice. Moreover, nNOS-CAPON disruptors do not affect other types of learning. Thus, nNOS-CAPON can serve as a new target for treating PTSD.
Collapse
Affiliation(s)
- Cheng Qin
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Xin-Lan Bian
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Hai-Yin Wu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Jia-Yun Xian
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yu-Hui Lin
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Cheng-Yun Cai
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Ying Zhou
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Xiao-Lin Kou
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Ting-You Li
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Lei Chang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Chun-Xia Luo
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Dong-Ya Zhu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China. .,Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing, China. .,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.
| |
Collapse
|
5
|
The Molecular Biology of Susceptibility to Post-Traumatic Stress Disorder: Highlights of Epigenetics and Epigenomics. Int J Mol Sci 2021; 22:ijms221910743. [PMID: 34639084 PMCID: PMC8509551 DOI: 10.3390/ijms221910743] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022] Open
Abstract
Exposure to trauma is one of the most important and prevalent risk factors for mental and physical ill-health. Excessive or prolonged stress exposure increases the risk of a wide variety of mental and physical symptoms. However, people differ strikingly in their susceptibility to develop signs and symptoms of mental illness after traumatic stress. Post-traumatic stress disorder (PTSD) is a debilitating disorder affecting approximately 8% of the world’s population during their lifetime, and typically develops after exposure to a traumatic event. Despite that exposure to potentially traumatizing events occurs in a large proportion of the general population, about 80–90% of trauma-exposed individuals do not develop PTSD, suggesting an inter-individual difference in vulnerability to PTSD. While the biological mechanisms underlying this differential susceptibility are unknown, epigenetic changes have been proposed to underlie the relationship between exposure to traumatic stress and the susceptibility to develop PTSD. Epigenetic mechanisms refer to environmentally sensitive modifications to DNA and RNA molecules that regulate gene transcription without altering the genetic sequence itself. In this review, we provide an overview of various molecular biological, biochemical and physiological alterations in PTSD, focusing on changes at the genomic and epigenomic level. Finally, we will discuss how current knowledge may aid us in early detection and improved management of PTSD patients.
Collapse
|
6
|
WANG H, XING X, WANG H. Propranolol rescued secondary trauma induced by immediate extinction. ACTA PSYCHOLOGICA SINICA 2021. [DOI: 10.3724/sp.j.1041.2021.00603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Peedicayil J. The Potential Role of Epigenetic Drugs in the Treatment of Anxiety Disorders. Neuropsychiatr Dis Treat 2020; 16:597-606. [PMID: 32184601 PMCID: PMC7060022 DOI: 10.2147/ndt.s242040] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
There is increasing evidence that abnormalities in epigenetic mechanisms of gene expression contribute to the pathogenesis of anxiety disorders (ADs). This article discusses the role of epigenetic mechanisms of gene expression in the pathogenesis of ADs. It also discusses the data so far obtained from preclinical and clinical trials on the use of epigenetic drugs for treating ADs. Most drug trials investigating the use of epigenetic drugs for treating ADs have used histone deacetylase inhibitors (HDACi). HDACi are showing favorable results in both preclinical and clinical drug trials for treating ADs. However, at present the mode of action of HDACi in ADs is not clear. More work needs to be done to elucidate how epigenetic dysregulation contributes to the pathogenesis of ADs. More work also needs to be done on the mode of action of HDACi in alleviating the signs and symptoms of ADs.
Collapse
Affiliation(s)
- Jacob Peedicayil
- Department of Pharmacology & Clinical Pharmacology, Christian Medical College, Vellore, India
| |
Collapse
|
8
|
Blacker CJ, Frye MA, Morava E, Kozicz T, Veldic M. A Review of Epigenetics of PTSD in Comorbid Psychiatric Conditions. Genes (Basel) 2019; 10:140. [PMID: 30781888 PMCID: PMC6410143 DOI: 10.3390/genes10020140] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 12/31/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is an acquired psychiatric disorder with functionally impairing physiological and psychological symptoms following a traumatic exposure. Genetic, epigenetic, and environmental factors act together to determine both an individual's susceptibility to PTSD and its clinical phenotype. In this literature review, we briefly review the candidate genes that have been implicated in the development and severity of the PTSD phenotype. We discuss the importance of the epigenetic regulation of these candidate genes. We review the general epigenetic mechanisms that are currently understood, with examples of each in the PTSD phenotype. Our focus then turns to studies that have examined PTSD in the context of comorbid psychiatric disorders or associated social and behavioral stressors. We examine the epigenetic variation in cases or models of PTSD with comorbid depressive disorders, anxiety disorders, psychotic disorders, and substance use disorders. We reviewed the literature that has explored epigenetic regulation in PTSD in adverse childhood experiences and suicide phenotypes. Finally, we review some of the information available from studies of the transgenerational transmission of epigenetic variation in maternal cases of PTSD. We discuss areas pertinent for future study to further elucidate the complex interactions between epigenetic modifications and this complex psychiatric disorder.
Collapse
Affiliation(s)
- Caren J Blacker
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Eva Morava
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA.
- Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA.
| | - Tamas Kozicz
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA.
- Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA.
| | - Marin Veldic
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
9
|
Merz CJ, Wolf OT. The immediate extinction deficit occurs in a nonemotional learning paradigm. ACTA ACUST UNITED AC 2019; 26:39-45. [PMID: 30651376 PMCID: PMC6340120 DOI: 10.1101/lm.048223.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/11/2018] [Indexed: 01/16/2023]
Abstract
The immediate extinction deficit describes a higher return of fear when extinction takes place immediately after fear acquisition compared to a delayed extinction design. One explanation for this phenomenon encompasses the remaining emotional arousal evoked by fear acquisition to be still present during immediate, but not delayed extinction. In the present study, the predictive learning task, a learning task not involving arousal or stress, was used testing the hypothesis that no immediate extinction deficit should occur in this neutral task. Twenty-six participants underwent an immediate extinction procedure and were tested in a recall session 24 h later. For the delayed extinction group (n = 26), acquisition, extinction, and recall were realized 24 h apart from each other. Recall performance of a third group (n = 26) was tested 48 h after the immediate extinction procedure. The immediate extinction deficit was indeed observed for a stimulus not subject to a contextual change from acquisition to extinction, but not for other stimuli involving contextual changes or no extinction control stimuli. Even in a neutral learning task and without emotional arousal, the immediate extinction deficit could be detected but was restricted to the specific contextual embedding of stimuli. Thus, contextual processing appears to differentially modulate the emergence of the immediate extinction deficit.
Collapse
Affiliation(s)
- Christian J Merz
- Department of Cognitive Psychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, 44780 Bochum, Germany
| | - Oliver T Wolf
- Department of Cognitive Psychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, 44780 Bochum, Germany
| |
Collapse
|