1
|
Wang Y, Qiao C, Qu G, Calhoun VD, Stephen JM, Wilson TW, Wang YP. A Deep Dynamic Causal Learning Model to Study Changes in Dynamic Effective Connectivity During Brain Development. IEEE Trans Biomed Eng 2024; 71:3390-3401. [PMID: 38968024 PMCID: PMC11700232 DOI: 10.1109/tbme.2024.3423803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
OBJECTIVE Brain dynamic effective connectivity (dEC), characterizes the information transmission patterns between brain regions that change over time, which provides insight into the biological mechanism underlying brain development. However, most existing methods predominantly capture fixed or temporally invariant EC, leaving dEC largely unexplored. METHODS Herein we propose a deep dynamic causal learning model specifically designed to capture dEC. It includes a dynamic causal learner to detect time-varying causal relationships from spatio-temporal data, and a dynamic causal discriminator to validate these findings by comparing original and reconstructed data. RESULTS Our model outperforms established baselines in the accuracy of identifying dynamic causalities when tested on the simulated data. When applied to the Philadelphia Neurodevelopmental Cohort, the model uncovers distinct patterns in dEC networks across different age groups. Specifically, the evolution process of brain dEC networks in young adults is more stable than in children, and significant differences in information transfer patterns exist between them. CONCLUSION This study highlights the brain's developmental trajectory, where networks transition from undifferentiated to specialized structures with age, in accordance with the improvement of an individual's cognitive and information processing capability. SIGNIFICANCE The proposed model consists of the identification and verification of dynamic causality, utilizing the spatio-temporal fusing information from fMRI. As a result, it can accurately detect dEC and characterize its evolution over age.
Collapse
|
2
|
Wang H, Zhu Z, Bi H, Jiang Z, Cao Y, Wang S, Zou L. Changes in Community Structure of Brain Dynamic Functional Connectivity States in Mild Cognitive Impairment. Neuroscience 2024; 544:1-11. [PMID: 38423166 DOI: 10.1016/j.neuroscience.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/22/2024] [Accepted: 02/24/2024] [Indexed: 03/02/2024]
Abstract
Recent researches have noted many changes of short-term dynamic modalities in mild cognitive impairment (MCI) patients' brain functional networks. In this study, the dynamic functional brain networks of 82 MCI patients and 85 individuals in the normal control (NC) group were constructed using the sliding window method and Pearson correlation. The window size was determined using single-scale time-dependent (SSTD) method. Subsequently, k-means was applied to cluster all window samples, identifying three dynamic functional connectivity (DFC) states. Collective sparse symmetric non-negative matrix factorization (cssNMF) was then used to perform community detection on these states and quantify differences in brain regions. Finally, metrics such as within-community connectivity strength, community strength, and node diversity were calculated for further analysis. The results indicated high similarity between the two groups in state 2, with no significant differences in optimal community quantity and functional segregation (p < 0.05). However, for state 1 and state 3, the optimal community quantity was smaller in MCI patients compared to the NC group. In state 1, MCI patients had lower within-community connectivity strength and overall strength than the NC group, whereas state 3 showed results opposite to state 1. Brain regions with statistical difference included MFG.L, ORBinf.R, STG.R, IFGtriang.L, CUN.L, CUN.R, LING.R, SOG.L, and PCUN.R. This study on DFC states explores changes in the brain functional networks of patients with MCI from the perspective of alterations in the community structures of DFC states. The findings could provide new insights into the pathological changes in the brains of MCI patients.
Collapse
Affiliation(s)
- Hongwei Wang
- School of Computer Science and Artificial Intelligence, Aliyun School of Big Data, School of Software, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Zhihao Zhu
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Hui Bi
- School of Computer Science and Artificial Intelligence, Aliyun School of Big Data, School of Software, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Zhongyi Jiang
- School of Computer Science and Artificial Intelligence, Aliyun School of Big Data, School of Software, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yin Cao
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213164, China
| | - Suhong Wang
- Clinical Psychology, The Third Affiliated Hospital of Soochow University, Juqian Road No. 185, Changzhou, Jiangsu 213164, China
| | - Ling Zou
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou, Jiangsu 213164, China; The Key Laboratory of Brain Machine Collaborative Intelligence Foundation of Zhejiang Province, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
3
|
Yang Y, Yoo S, Park BY. Dynamic transitions of functional brain connectivity during a working memory task. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083033 DOI: 10.1109/embc40787.2023.10340366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Working memory is a cognitive system that temporarily stores and manipulates information via attention. Although brain activity patterns related to working memory have been extensively studied, little is known about how the brain connectome organization dynamically changes while performing working memory tasks. Here, we systematically investigated dynamic changes in functional brain connectivity during a working memory task. We found that functional connectivity in the medial frontal and orbitofrontal cortices and the precuneus showed differences during the transitions between the rest and task. Our results provide topographic patterns of dynamic functional connectivity during the working memory tasks.Clinical Relevance- This study may provide macroscale topography related to working memory and foster establishing memory-related brain mechanisms, which could be applied to clinical neuroscience.
Collapse
|
4
|
Ma H, Zhou YL, Wang WJ, Chen G, Li Q, Lu YC, Wang W. Identifying Modulated Functional Connectivity in Corresponding Cerebral Networks in Facial Nerve Lesions Patients With Facial Asymmetry. Front Neurosci 2022; 16:943919. [PMID: 35833088 PMCID: PMC9271667 DOI: 10.3389/fnins.2022.943919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Facial asymmetry is the major complaint of patients with unilateral facial nerve lesions. Frustratingly, although patients experience the same etiology, the extent of oral commissure asymmetry is highly heterogeneous. Emerging evidence indicates that cerebral plasticity has a large impact on clinical severity by promoting or impeding the progressive adaption of brain function. However, the precise link between cerebral plasticity and oral asymmetry has not yet been identified. In the present study, we performed functional magnetic resonance imaging on patients with unilateral facial nerve transections to acquire in vivo neural activity. We then identified the regions of interest corresponding to oral movement control using a smiling motor paradigm. Next, we established three local networks: the ipsilesional (left) intrahemispheric, contralesional (right) intrahemispheric, and interhemispheric networks. The functional connectivity of each pair of nodes within each network was then calculated. After thresholding for sparsity, we analyzed the mean intensity of each network connection between patients and controls by averaging the functional connectivity. For the objective assessment of facial deflection, oral asymmetry was calculated using FACEgram software. There was decreased connectivity in the contralesional network but increased connectivity in the ipsilesional and interhemispheric networks in patients with facial nerve lesions. In addition, connectivity in the ipsilesional network was significantly correlated with the extent of oral asymmetry. Our results suggest that motor deafferentation of unilateral facial nerve leads to the upregulated ipsilesional hemispheric connections, and results in positive interhemispheric inhibition effects to the contralesional hemisphere. Our findings provide preliminary information about the possible cortical etiology of facial asymmetry, and deliver valuable clues regarding spatial information, which will likely be useful for the development of therapeutic interventions.
Collapse
Affiliation(s)
- Hao Ma
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-lu Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-jin Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Li
- MR Collaborations, Siemens Healthineers Ltd., Shanghai, China
| | - Ye-chen Lu
- Wound Healing Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ye-chen Lu,
| | - Wei Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Wei Wang,
| |
Collapse
|
5
|
Newly Prepared 129Xe Nanoprobe-Based Functional Magnetic Resonance Imaging to Evaluate the Efficacy of Acupuncture on Intractable Peripheral Facial Paralysis. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:3318223. [PMID: 35350701 PMCID: PMC8930243 DOI: 10.1155/2022/3318223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/28/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022]
Abstract
This study focused on the application value of the newly prepared 129Xe nanoprobe-based functional magnetic resonance imaging (fMRI) in exploring the mechanism of the acupuncture treatment for intractable facial paralysis, expected to provide a theoretical reference for the mechanism of acupuncture for the treatment of facial paralysis. In this study, 30 patients with intractable peripheral facial paralysis (experimental group) and 30 healthy volunteers (control group) were selected. All patients were scanned by the newly prepared 129Xe nanoprobe-based fMRI technology, and then brain functional status data and rating data were collected. fMRI scanning results showed that multiple brain regions were activated in the experimental group before treatment, among which the central posterior brain, insula, and thalamus were positively activated, while the precuneus, superior frontal gyrus, and other parts showed signal reduction. After treatment, several brain regions also showed signal enhancement. Comparisons within the healthy control group also showed activation in multiple brain regions, including the lenticular nucleus, inferior frontal gyrus, and superior temporal gyrus, while in the experimental group, no signal changes were detected in these brain regions. At the same time, comparison of fMRI images of patients with intractable peripheral facial paralysis before and after treatment showed that the cerebellar amygdala, superior frontal gyrus, cerebellar mountaintop, and other brain areas were activated, and all showed positive activation. After treatment, the average House–Brackmann (H-B) and Sunnybrook scores of the experimental group were 3.82 and 51, respectively, and the change was significant compared with that before treatment (P < 0.05). In conclusion, the newly prepared 129Xe nanoprobe-based fMRI scan can reflect the functional changes of cerebral cortex after acupuncture. The acupuncture treatment may achieve its therapeutic effect by promoting the functional reorganization of the cerebral cortex in the treatment of intractable facial paralysis.
Collapse
|
6
|
Yang F, Jiang X, Yue F, Wang L, Boecker H, Han Y, Jiang J. Exploring dynamic functional connectivity alterations in the preclinical stage of Alzheimer's disease: an exploratory study from SILCODE. J Neural Eng 2022; 19. [PMID: 35147522 DOI: 10.1088/1741-2552/ac542d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/08/2022] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Exploring functional connectivity (FC) alterations is important for the understanding of underlying neuronal network alterations in subjective cognitive decline (SCD). The objective of this study was to prove that dynamic FC can better reflect the changes of brain function in individuals with SCD compared to static FC, and further to explore the association between FC alterations and amyloid pathology in the preclinical stage of Alzheimer's disease (AD). METHODS 101 normal control (NC) subjects, 97 SCDs, and 55 cognitive impairment (CI) subjects constituted the whole-cohort. Of these, 29 NCs and 52 SCDs with amyloid images were selected as the sub-cohort. First, independent components (ICs) were identified by independent component analysis and static and dynamic FC were calculated by pairwise correlation coefficient between ICs. Second, FC alterations were identified through group comparison, and seed-based dynamic FC analysis was done. Analysis of variance (ANOVA) was used to compare the seed-based dynamic FC maps and measure the group or amyloid effects. Finally, correlation analysis was conducted between the altered dynamic FC and amyloid burden. RESULTS The results showed that 42 ICs were revealed. Significantly altered dynamic FC included those between the salience/ventral attention network, the default mode network, and the visual network. Specifically, the thalamus/caudate (IC 25) drove the hub role in the group differences. In the seed-based dynamic FC analysis, the dynamic FC between the thalamus/caudate and the middle temporal/frontal gyrus was observed to be higher in the SCD and CI groups. Moreover, a higher dynamic FC between the thalamus/caudate and visual cortex was observed in the amyloid positive group. Finally, the altered dynamic FC was associated with the amyloid global standardized uptake value ratio (SUVr). CONCLUSION Our findings suggest SCD-related alterations could be more reflected by dynamic FC than static FC, and the alterations are associated with global SUVr.
Collapse
Affiliation(s)
- Fan Yang
- Shanghai University, Shangda Road, Baoshan district, Shanghai, Shanghai, 200444, CHINA
| | - Xueyan Jiang
- Hainan University, Meilan District, Haikou City, Hainan Province, Haikou, 570288, CHINA
| | - Feng Yue
- Hainan University, Meilan District, Haikou City, Hainan Province, Haikou, 570288, CHINA
| | - Luyao Wang
- Shanghai University, Shangda road, Baoshan district, shanghai, Shanghai, 200444, CHINA
| | - Henning Boecker
- University Hospital Bonn, Positron Emission Tomography (PET) Group, Bonn, Germany, Bonn, Nordrhein-Westfalen, 53127, GERMANY
| | - Ying Han
- Hainan University, Meilan District, Haikou City, Hainan Province, Haikou, 570288, CHINA
| | - Jiehui Jiang
- Shanghai University, Shangda road, Baoshan district, Shanghai, Shanghai, 200444, CHINA
| |
Collapse
|
7
|
Meng X, Wu Y, Liang Y, Zhang D, Xu Z, Yang X, Meng L. A Triple-Network Dynamic Connection Study in Alzheimer's Disease. Front Psychiatry 2022; 13:862958. [PMID: 35444581 PMCID: PMC9013774 DOI: 10.3389/fpsyt.2022.862958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) was associated with abnormal organization and function of large-scale brain networks. We applied group independent component analysis (Group ICA) to construct the triple-network consisting of the saliency network (SN), the central executive network (CEN), and the default mode network (DMN) in 25 AD, 60 mild cognitive impairment (MCI) and 60 cognitively normal (CN) subjects. To explore the dynamic functional network connectivity (dFNC), we investigated dynamic time-varying triple-network interactions in subjects using Group ICA analysis based on k-means clustering (GDA-k-means). The mean of brain state-specific network interaction indices (meanNII) in the three groups (AD, MCI, CN) showed significant differences by ANOVA analysis. To verify the robustness of the findings, a support vector machine (SVM) was taken meanNII, gender and age as features to classify. This method obtained accuracy values of 95, 94, and 77% when classifying AD vs. CN, AD vs. MCI, and MCI vs. CN, respectively. In our work, the findings demonstrated that the dynamic characteristics of functional interactions of the triple-networks contributed to studying the underlying pathophysiology of AD. It provided strong evidence for dysregulation of brain dynamics of AD.
Collapse
Affiliation(s)
- Xianglian Meng
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, China
| | - Yue Wu
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, China
| | - Yanfeng Liang
- School of Basic Medical Sciences, Jiamusi University, Jiamusi, China
| | - Dongdong Zhang
- School of Basic Medical Sciences, Jiamusi University, Jiamusi, China
| | - Zhe Xu
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, China
| | - Xiong Yang
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, China
| | - Li Meng
- School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield, United Kingdom
| |
Collapse
|